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ABSTRACT: The Farey-Brocot (F-B) sequence can be found in a number of prob-
lems, both in mathematics and in the empirical sciences. The problem of finding
a general formula an(j) for the j'* element in the n'* F-B sequence is partially
solved in this paper, by giving information on what are the rational numbers in the
n'h? F-B sequence. First we show that it is sufficient to know the denominators in
the n'* F-B;then we normalize the set of these denominators so that the first and
last ones are the extremes of the unit interval and, as n tends to infinity, we obtain
a limit set QC[0,1]. We study the geometrical structure of €, which is endowed
with strong self-similar geometry, described here in a precise quantitative way.

INTRODUCTION. Let us review some of the physical problems in which the Farey-
Brocot (F-B) sequence shows itself. Per Bak [1] explored the forced-pendulum problem
by means of a dynamical system. For certain critical values of the parameters involved
we have that, when plotting the winding number w as a function g of the internal
frequency w of the system, then w = g(w) is a Cantor-type staircase, i.c. an increasing
function in the unit interval, constant on each interval of resonance Ix, k € IN . We also
have that p'{[0,1] — > Ix} = pu'() = 0, where p' is the usual Lebesgue measure
ke IN

on IR. The set Q has Hausdorff dimension dy(§2) = 0.868 £0.0002. Also the constant

value of g over each Ii is a rational number.

Cvitanovic, Jensen, Kadanoff, and Procaccia [2] discovered a property of this staircase:
Let g and %: be the values of w for a pair of intervals of resonance I and I', such
that all intervals of resonance in the gap between I and I' are smaller in size than
both I and I'. Then there is an interval of resonance I" in this gap such that the
corresponding constant value of w is %'7 = %}_’—g—i, and we will see below that F-B
rationals are constructed exactly in this way. Also, this interval I" is the widest of all

intervals of resonance in the gap between I and I'. This is a purely empirical finding.

Cvitanovic et al. [2] and Halsey et al. [3] have different examples of other physical
phenomena exhibiting Cantor-type staircases with the F-B arrangement, and we can
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find this arrangement in some of the staircases shown in [1] including the chemical

reaction of Belusov-Zabotinsky.

Finally, Bruinsma and Bak [4] studied the magnetic structure of ferromagnetic qua-
sicrystals by plotting the ratio of up spins against the strength of magnetic field applied
to the quasicrystalline structure, when only 2 values of each spin are allowed, i.e. + and

-, or up and down. Again the result is a Cantor staircase with the Farey arrangement.

In our attempt at finding a mathematical model of the multifractal spectra associated
with the physical phenomena referred to so far, we found all the necessary tools within
Hyperbolic Geometry [5]. But again, the most important tiling of the Hyperbolic plane
is precisely the Farey tiling [6]. We wish. to stress the empirical connection between the
Farey arrangement in the staircases referred to above, and the underlying fractal sets

Q=[0,1] - > Ik, each Ix aresonance interval. Although the sets € involved in the
ke IN
corresponding literature are not as completely self-similar as, e.g., the Koch snowflake,

they still possess important self-similar characteristics, which become apparent in a
multifractal decomposition of Procaccia of each such €. Thus, it becomes relevant to

look for sclf-similar properties when studying the F-B geometric structure.

SECTION 1

and 3 be two positive rational numbers such that 3 < 2. We

SECTION 1.1  Let e
(1)

a

b

have that & < ¢tc < <
ave that 3 < 335 < ¢-

a a-+c a+c ¢

Also b bidlbrd dl|s ; . Let ¥ and 1 be 4 and <. Then (1) can be
)

written as ¢ < 2 <1 (Step 1). With  and ] and with } and 1 taking turns as %

and § we have (]—) < % < % < % < % (Step 2). Iterating this procedure once more we

obtain Step 3: %, i, %, %, %, %, %, %, %./ ... and so on.

The n'* step of this procedure is known as the Farey-Brocot (F-B) sequence of order
n. If we started the F-B procedure more generally, from numbers % and 7, asin (1),
then the 4'* F-B sequence would be ‘

a 4a+c 3a+c Sa+2c 2a+c¢c HBa+3c  3a+2c  4da+ 3c
b’ 4b+d’ 3b+d 5b+2d° 2b+d 5b+3d’ 3b+2d 4b+3d’
a+c 3a+4c 2a+3c 3a+5c a+2 2a+5c a+3c a+dc c
b+d 3b+4d 2b+3d 3b+5d° b+2d 2b+5d b+3d b+4d d
Notice that each one of the 2" + 1 = 2* + 1" elements in this n®* (4'*) F-B sequence

is of the fo;m %Zi%; We are, therefore, interested in the (V, M) _pai;s obtained in

the n'* F-B sequence. These (N, M) pairs for different values of n form the so called
Brocot Tree in Fig.1. Notice that in the 2" step of the tree we obtain the symmetric
(N, M) pairs (2,1) and (1,2), whereas in the next step the pairs (3,1) and (3,2) are the
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symmetric of (2,3) and (1,3). This symmetry, carried down through all the steps in the
tree, permits as to study just one half of the tree, e.g. the half shown in Fig.2. Let us
draw the reduced tree in Fig.2 up to the 3" step. Let us leave (1,1) out (see Fig.3). If
we write down the 1°! coordinate of each (N, M) pair, going from top to bottom and
from left to right —i.e. 1, 2, 3, 3, 4, 5, 5, 4~ we obtain the 2"¢ coordinate of the next
(4t*) step in the tree of Fig.2. Therefore we are interested in studying the evolution
of the 1°! coordinate only of each (N, M) pair, i.e. the numerical tree shown in Fig.4.
We invite the reader to notice that each number in this tree is the sum of two numbers
obtained in previous steps in a unique way. Again, there is a strong symmetry between
left and right halves of the tree, and we will work on one half only.

SECTION 1.2

In what follows n will enumerate the step 6, , and with k we will denote the location of
the number in the step 8., so a} isin the kt* place in step 6,. In Fig.5 we observe the
numerical tree developed from step 6 till §5. Studying the numerical tree we observe

{a;:_ll = a}, k=1,...,2"+1
n+1 __ —
ay =agp+ap,,, k=1,.,2"

(2)

Henceforth, we will concentrate in the study of the integers that appear in step 6n, as

n — 0o0.

SECTION 2
SECTION 2.1

The Fibonacci sequence is the sequence {un},c v, such that u, = up_1 + un—2
and u_, = 1; ug = 0. Let us locate these Fibonacci numbers in our numerical tree.
In Fig.6 (full line) we observe these numbers as indicated by the zig-zag Z(1,2) that
starts from u; = 1 and uz = 2 from left to right.

SECTION 2.2

The “Fibonacci-type” sequence is obtained by up, = un—1+un—s,... but u_; and ug
are any other pair (z,y). In Fig.6 we see a Fibonacci-type sequence with (z,y) = (2,5)
indicated by the dotted zig-zag line, Z(z,y) = Z(2,5), drawn starting from right to
left, as opposed to the ordinary Fibonacci sequence zig-zag Z(1,2) drawn from left to
right (full line). In the same figure, with (z,y) = (1,3) we have again a left to right zig-
zag. Other left-to-right and right-to-left examples are shown in the same figure. Next,
let us compare Fig.6 with Fig.7. In Fig.6 we can observe Z(1,2), 2(1,3), Z(2,5),
Z(3,8) and Z(5,13) intertwined in a certain way. In Fig.7 2(1,3), 2(1,4), 2(3,7),
Z(4,11) and Z(7,18) are intertwined in exactly the same way as the Z(z,y) in Fig.6,
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Fig. 6
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as can be seen by direct observation. What one sees in Fig.7 is but what is seen in Fig.6
except for a “change of scale”: The Z(z,y) in Fig.7 are simply smaller than those in
Fig.6. Were it not for this change of scale the two diagrams are structurally identical.
The expression “self-similar” will denote this connection between the diagrams in the
two Figs. In Fig.6, we notice that Z(1,2) generated Z(1,3) (and also Z(2,5), etc.),
and, in Fig.7 this same Z(1,3), in turn, generated Z(1,4) (and many others). This
remark, and a moment of reflection, show that all steps 8, of the numerical tree can
be reached by a Z(zk,yx) generated by a Z(zx—;1,yx—1) generated by ... by Z(1,2),
the original Fibonacci zig-zag. It should be remarked that the initial (z,y) from which
a Z(z,y) arises has a unique (k,k + 1) location in a unique step 6, of the numerical
tree. It should also be remarked that, given the self-similarity observed in the structures
drawn from Figs.6 and 7, then the study of our numerical tree can be started in any

Z(z,y)—not necessarily Z(1,2)— for any well defined initial pair of values (z,y).

SECTION 3

In what follows, we will take a certain zig-zag Z(z,y); for a certain initial pair (z,y),
then take the associated smaller zig-zags intertwined with it --Figs.6 and 7 and we
will put this whole visual structure (generated by (z,y)) in formulas.

SE‘CTION‘ 3.1 - NOTATION

Given an initial pair (z,y), we define the elements of Z(z,y) by: a_) =z, ay = vy,
ap = ap-1+an—2, and with “a” we will simply denote the whole sequence {an},~_;-
Notice that « is Z(z,y) —-the first zig-zag from the pair (z,y). We will keep denc:ting
with greek letters (3, v... all Fibonacci-type zig-zags. a will be called the “first gen-
eration sequence from the pair (z,y)”. Let us define the (infinite) second generation
sequence from (z,y). A sequence § = {f,},>_, is a Fibonacci-type sequence of sec-
ond generation from (z, y) when there exists m € IN such that the initial pair fullfils
(B=1,B0) = (t¢m-2,0m). In this case, we will say that the initial pair of § was gener-
ated in the step m of the sequence a, and we will indicate this fact by the notation /™
instead of just 8. In step n of the first generation sequence a (from the pair (z,y))
we would, all in all, have: the n!* term of « (an = Fpz + Fny1y, where Fy is the
k* Fibonacci number), the (n — 1)** term from A' (BL_;, = Fn—1a—1 + Fhoay), the
(n — 2)* term from sequence f? (8%_, = F,_sa¢ + Fn_102),..., the second term of
B2 (,H:?—2 = Feapn_4 + Fian_3), the first term of g™~ ( {‘_1 = Flan_3 + Foan_1)
and the initial pair of data for f® —that is f®, = anp_2 and B} = a,. In general,
Bi* = Fjam—2 + Fjt1am ¥V j > —1.
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SECTION 3.2

In what follows we will assume 2z < y, where (z,y) is our initial pair (this entails no
loss of generality, as 2z = y for the first proper Fibonacci sequence with initial pair
(z,y) = (1,2), and 2z < y for all other Fibonacci-type sequence pairs).
Proposition. Let n € IN; n > 2, therefore:

a) 2™ < B YVm=1,..,n-1;

b) ﬂm<ﬂ 'm Vi=1l.,n—m; m asin a);

¢) Brt o < ap, mas in a);

d) :Bn m+2 = Pn— m+2+,3n m+2° m=3,,n+1,

6) /Bn—m+2 = /Hn—m+l +13n-m7 m = 17'“7" -1
Proof. Trivial.

Notice that d) and e) imply that, if one knows 3}, 33,32, and B2 one can know all the
other ﬂ,’c‘ Thus, we make the different values of different sequences /™ notationally
independent of the values in the sequence a, and also independent of the particular
values of z and y.

Let n € IN, for k =1,...,n; let us consider all elements ﬂﬁ—kﬂ —in the (n41)* step
of a they are the elements of any second generation 3 sequence. In terms of 81,41, 82,
and (2 these numbers can be easily seen to be

BE _kp1 = Fica (Fack1Bi + FackBh) + Froy (Fa—k—18? + Fa_if2). (3)
Equally easy it is to see that 8} < 8% and 26? + 8} < 82 + B}. (4)
Notice that the finite sequence 8%_;,;,for k =1,...,n (i.e. ﬂ,ll_lﬂ,ﬁfl__ﬁﬂ, s B nt1)

is not in monotonically increasing order. We want to permute the indices such that

the permuted finite sequence is re-ordered in an increasing way. The permutation is
1
H[ ] (2j,n+2—2j), denoted by o,,. This oy, is a product of [2$!] two-term cycles
e
2Z n+ 2> 27 applied in succession, for 7 =1,..., [ 3 1] ,in a way illustrated in the

following example: Let n = 14; then our ﬂ,’f k41> £ =1,...,n are

(S) /3147 /813a ,312, ﬂlla ﬂma ,39, ﬂsa :87a /367 5 ) il, ;2’ﬂ213 and‘ﬂll4'

whereas [n_;d] = 3. Therefore, 014 = H -1 (27, 16 — 2j5) = (2,14).(4, 12).(6,10)
switches positions 2 and 14, then 4 and 12 and after that 6 and 10, thus:

(S): Bl @3, Bl b, Bho, B3, 85, 01, 08, B°, O1', 65 gt

(S'): Bl B, B, ﬂp, B3, BS, ﬂs, o 8 B 4E,ﬂ2,m
(") ﬁ}g 8%, 812, Bl ﬂg,ﬂs,ﬂm 82, 620, g1, By, 68, A%
(8"): Bia, Bi* ﬁi'z, 32, B, Bs°, Bs, B3, Be, B, Bi's B, B3’ Bis




217

equence 1s now 1in increasing order as we can verl irectly. Furthermore
S s d fy directly. Furth
from sequence S"':

1 14 3 12 5 10 7 8 9 6
/3]4a 1 ﬁ]Z) 3 ﬂlOa 5 IBBa 1677 ﬂﬁv /39) ﬂ117ﬂ2 L] 13
L T | 5 L J L a1 J L

we can readly verify that

14— Bly = Fuis (B} —By) =Fi3A=Fy7_,1A= F0)-14
=By = Fo (8] = B3) = FoA = Fos1A = Fj)1A
—Blo=Fs(Bf —B3) = FsA=Fp3_1A = Fyj3,A

B -B5=Fi (8] - B;) = FiA = Fou 1A = Fyja)-1A

Bs —Bs = F3 (B} — B3) = A= Fpa 1A= Fyjsy1 A

Bl — By = F1 (B — By) = FrA = Fay1A = Fyji1 A
Bi — B = Fi (B - By) = FiiA=F6_1A = Fyj7)-,A

where the sequence of subindices “j(k)”, k = 1,...,7 of the Fibonacci numbers Fj()—;
at the right hand side of each equation follows the law

k: 1234{567
V=5
(k) : 7531 2 46
|

From S"" we can calculate other differences:

/3114’ ,Blza 53 ) 107 ;0, ﬁg, ﬁ?k ﬁga ﬁg’ ‘11’ ﬂ?l’ éj’ '8123

B3, — =FnB = Fy6-1B = Fy;1).1B
B3 — By’ = F1B=F,4_1B = Fy(3_,B
Bi — B = F3sB=F;3, 1B = Fyj5)-1B
B3 — B7 = B = F21-1B = Fj(4)- B

~ B8 =FsB=Fy3_1B = Fy5_,B

—Bf, =FB = F5.,B = Faj6)-1B

where, in this case, B = 3 — 28} + 8; — B} . The law k — j(k), k= 1,...,6, follows

k: 123 456
| lr"?‘*—ﬂW
g (k) : 4 1 35

L'——»—’i

In the case where n is odd the situation is slightly more complicated, but analogous to

that just depicted. In the general case we have:
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Theorem. Let the 87, p and ¢ in IN, be defined as above. We have:

n (k)

a) Given the finite sequence B5_, ., k = 1,...,n; the reordered sequence B°" ,
q n—k+1 9 n—oa(k)+1

k=1,...,n is placed in increasing order.

b) Let n = 0(2).

by ) Then we have ,B;,j_zl_“ — /872:;21—21: = Fyji)—14, k = 1,..., 57, where the function
k— j(k) s

n n n n
k- 12 3 4 - 5-8 -2 -1 ¢
T T = 1
(k) : ’21 g—z 3‘4 g—s <E—17 g—s 3—3 3—1
l__.»__4
L L ' P =, L

and A =} — B3.

by ) Hik_‘;}c — B;‘,j_zl_zk = Fjy-1B, k = 1,...,% — 1, where B 1s as in our ezample,
and j(k) follows an analogous spiral-like configuration.

c) Let n = 1(2). The case where n 1s odd will be done sticking five subcases cy )...cs ).
Notice that in the ezample above (n = 14) we had two spiral-like laws for k — j(k):
the first spiral began with k = 1, j(1) = 7, whereas in the second spiral —one turn
shorter— we had j(1) = 6. In what follows we need to distinguish these cases with, say,
notations jz(k) and je(k) for the two spirals just depicted— and with notation jn(k)
in the general case when j(1) = n. With this in mind we have:

1) ﬁ;’;’f{zk - i’jr_zl_% = Fr_,]-[%](k)A, k=1,.., ["T'H] , where A is as in by ).

c2) BEREL — BEATH = FZJ-[% (0B, k=1,.,[}], where B is as in by ).

]

c3) [3[[;]+2 _ ﬁ[[g]]i—ll =C, where C =32 — B} — 3.

cq) ﬁZ",;H_Zk — 121k+1—2k = sz[%](k)A, k= [541] +1,.., [%] (A as before).

cs ) ﬁik_ﬁz_zk — ;’,;H_Zk = FQj[n]_l(k)B’ k= [%] +1,.., [%] —1 (B as before).
Proof: The proof of this theorem is both long and very technical. The details are in [7].

SECTION 4: NORMALIZATION - THE HALIOTIS PARVUS
SECTION 4.1. THE SPIRAL DIAGRAM.

According to the proposition in section 3 we have: $%2_, < ap4; and apy1 — B2, =
F,_1z = F,_1B. Westart with an observation: For clarity let us work with the concrete
example of section 3, where n is even (n = 14). The B% involved in increasing order,
and the geometrical configuration given by the differences in parts (b) of the theorem
can be put together in one diagram, thus:
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/"—_\
Fz;(l) 147 505 - A F21(3) 14 Fz:(4) 1A F2](5) A F21(67 1A Frjny—1A

- Bis ﬂ]“"‘ﬁa 2—"‘,31 +/33 _'L/BG 4‘545'511“)_132 ﬂ1237‘ Q5=

Y
Fyjay-1B F2502)- 1B 2](3) 'B_ F21(4) lB F2](5) IB F3i6) 7 JB -
~ -

T e e e = = = e T

Diagram (D)
1— 1

: Fajr 1)1 A _Fy_el'-yll 1 rxil ; ;
Notice that Fare i) 1A Fis = o0—pT =97 T g a quantity very much like

¢ = 5'7—‘@ and ¢ = . We invite the reader to follow the spiral in order to verify
Ly Faiz-1A Fyjza)-1 A

that, e.g., Fo o1 A (5) and Tt A (6) are, likewise, very much like ¢2 .

can be seen for the other spiral joining the B-differences. For growing valuecs of n,

¢2 ; here

The same

these quotients —analogous to (5) and (6)— are more and more like 313 For short
we will group all the 8’s and a’s in diagram (D) with the abbreviation: Sn(z,y) =
{5ZN(:)(k)+l , Otn+1} and we will keep in mind that such an S,(z,y) is a pair of spirals.
Notice that, if (z,y) = (1,2) —and only in this case— we do not have two spirals, but

one.

SECTION 4.2. NORMALIZATION

Let us go back to step 6, in section 1 (see Fig.5). The smallest number in this finite
sequence is always 1, and the largest is Fi,+3. If we normalize step 0,,, by Fm4s, for

growing values of m we obtain:

a) Each normalized set { 7 ’+3,

In the limit n — oo, we obtain a set {2 maximally contained in [0, 1].

T € Hm} = w;, will be maximally contained in {ﬁ, 1].

b) Notice that our Sn(z,y), like the one in diagram (D), is in some step ;. On the
value of this £ we can say the following;: let us recall that all elementsin S;,(z,y) started
in an initial (z,y) pair, and this (z,y) pair had a unique location in a certain €,... then
£ =p+m+1. Once we normalize this 6y (by Fyi3 all elements in Sy, (z,y) have
their own corresponding location inside the normalized we..., and for growing values of

£ they acquire their precise location in .

c) Diagram (D) —and all such Sn(z,y) diagrams— is mapped by the normalizing
process Fp4s — wm — Q into a corresponding diagram Dg in © C [0,1]. On this
normalized Dg we may observe that:

c1) It is still, like (D), a spiral diagram.
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c2) Quotients like (5) and (6) in section 4.1 —and all such quotients in that
section— are now exactly glz- , instead of “very much like # ”? or “more like #”. There
is an element in Nature with exactly these characteristics, i.e. a spiral with a $12_ growth
per half turn: it is the Haliotis Parvus (H-P). We will use this H-P=H-P(z, y) expression
in order to denote a Dg diagram of a normalized Sm(z,y).

c3) Going to part (c) of the Theorem we observe that, when n is odd, the corre-
sponding normalized diagram Dg will be no different from the case in which n is even

(Theorem, part (b)), since the constant C in part (c) will have gone to zero.

cq) Since, as we saw, min ﬂﬁ_Hl‘ = (), and the corresponding maximum is
1<k<n

2_,, then (see part (a) of the Theorem) we have 2_;, — 8! = F,y — Fho1z (7)
Notice that (7) implies that in the normalized set €2, the corresponding H-P (z,y) has
a certain length associated with the pair (z,y).

SECTION 5: IRRATIONAL NUMBERS ().

In order to facilitate the study of the geometrical structure of 2 we will associate a real
number —that will turn out to be irrational— ¢(H-P(z,y)) = i(z,y) to any H-P (z,y).
Such a real number will simply be the centre of the spiral H-P(z,y) of infinite turns,
i.e. the point around which the spiral coils. Let us calculate i(1,2), i.e., the centre
of the H-P spiral located more to the right in Q—actually H-P(1,2) touches the right
boundary point of [0,1].

Let n € IN, and let us consider the corresponding Sn»(1,2). We know that (1,2) € 6o,
A=y—-2z =0, B=2z=1 and S,(1,2) C Ony1. Its left-most element is B} =
Foio +2F, 1. Since we know all differences of each two adjacent HZZ(:,?(k)H (see the
Theorem) we can find the centre of the not-normalized S,(1,2) by adding to B all

the differences between adjacent B's, starting from 2, till we reach the smallest spiral

turn. This sum ¥, is B} +Z ] Fn_4j+1. Since the biggest element in 0,41 is Frnyq,
then, when normalizing ¥, by 1t, we have

Fusa+2Fuis + 3 [ (6" - 1) - gz (¥" - 1)]

1,2)= 1 = I — 20
¥1,2) = lim = e Foia $+2
Analogously, we have i(z,y) = ¢2(¢+2)¢ k(z+ ¢y) (8)

for any other suitable pair (z,y), where “k” is the only integer such that (:1: y) € Ok.
The difference between coefficients and hmges on the fact that A = 0 only

for (z,y) =(1,2).

¢2(¢+2)
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SECTION 6: SELF SIMILARITY OF Q.
SECTION 6.1 IRRATIONAL NUMBERS OF THE FIRST GENERATION.

Let us assume now that all H-P(z,y) have been replaced by, or associated with, a
certain irrational #(z,y). Let us refer to these numbers as of the zero generation, and
let us denote them by ig))(.r,y), for suitable (z,y)-pairs. Let us choose a certain pair
(z,y), in, say, 6,. Let us observe in Fig.6 that the corresponding Z(z,y) (Z2(1,2)
in Fig.6) is directly interwined with other Z’s, e.g. 2(1,3), 2(2,5), 2(3,8), Z(5,13),
among others, in the same Fig. Let us take the corresponding associated pairs (1,3),
(2,5), (3,8), (5,13) ... etc. in the same Fig., and let us denote them by {(zn,yn)}rec v -
Let us recall that (see the end of section 3.1) 2 = a_1; ¥y = ap; Th = ah—z and yp = ap
where the aj are the h-Fibonacci-type numbers derived from the initial pair (z,y), i.e.
ap = Frz + Fr41y. Replacing this in (8) we obtain a sequence of irrational numbers
{i(zh,yr)}nev . We affirm that this sequence is ordered as an H-P. For the quotient
of the amplitudes in a half turn is

|t (zht1, Y1) — 2 (Thts ynts)l _ 1
i (zh,yn) = i (Ths2, Ynt2)] ¢?

Therefore, in order to calculate the centre of this H-P, it is enough to take the limit
limp oo i(zh,yn) = % . mqﬁ_k (z+ ¢y), k as before. We will denote these irra-
tionals by ig)(m,y), i.e. the points around which coil the original H-P’s. Notice that
we can write z'g)(z,y) = %ig)(z,y).

SECTION 6.2. The irrational numbers is(—,") in any generation n have an expression
identical to that of ig) ), except for a change of scale. Indeed, all we have to do is to

iterate the last formula in section 6.1. The result:

) = (Z) @ew.

where (%) " is the change of scale referred to above.
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