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ABSTRACT. Itis shown that a unique solution to a nonlinear integral equation obtained
from the heat equation with nonlinear boundary conditions, can be obtained by successive
approximations in the spaces L'(0, ). A natural extension is then considered in the final

section.

1. INTRODUCTION

We consider initially, a problem involving the temperature of a semi-infinite heat-
conducting solid occupying the half-space x > 0 and satisfying a nonlinear boundary
condition at x = 0. By letting T(x, t) be the temperature, the following initial value

problem results.

Tu(x, t) = Tx(X, 1), x>0,t>0 (1.1
Tx(0, t) = aT"(0, t) - fit), t>0 (1.2)
T(x, 0)=0 x>0 (13)
T(x,t) > 0asx —> o t>0 (1.4)

where o is a given positive constant and n is a positive integer.

It could be obsérved that the case where n =1 is equivalent to Newton’s Law of Cooling
“and fhe'case where n = 4 is equivalent to the Stefan-Boltzmann Radiation Law. This
problem was considered by Keller and Olmstead [2], Mann and Wolf [4], Padmavally[5],
and Roberts and Mann [6].

2. ESTIMATES

A solution T(x, t) of equations (1.1) to (1.4) can be obtained in the form

T(x, t) =c, st expl x/4(t ~9)] T"(0,s)ds +c, S: expl —x/4(t ~9)] f(s)ds (2.1)

9 ()
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where ¢; and ¢, are constants.

By setting x = 0 in equation (2.1), we obtain the integral equation

S\/TS)TH(O s)ds +c, sﬁ

A solution T(0, t) to equation (2.2) will yield the solution T(x, t) of equations (1.1) to

T(, t) = f (s) ds 2.2)

(1.4). Keller and Olmstead [2] showed the existence of this solution by successive

approximations. In this note, we show that a contraction mapping does exist in an

oo . Up
appropriate L"(0, o) space, namely, f; [f] = [ 5 JF)|” dt ] <ocowhere 1 <p <oo.
3 0

This consequently implies the existence of a unique solution achievable by successive
approximations. More precisely, we state the following theorem.

Theorem 1

Equation (2.2) has a unique solution in the space L'(0, o), provided that the function F(t)
) &:(t —s)rhl'l2 f(s)ds satisfies the relation ||F,| = [ s: |F(sjr ds]m < g, where

€9 = €o(n, 1, ¢2) and r = 2(n - 1). The solution is obtainable through the iterations,

S\[Ts)q&k(s)ds +CZS J_—_s)

Proof (A Version of the Contraction Mapping):

(bk # (t) f(S) dS .

Let us call ¢(t) = T(0, t) and define the mapping
t 1

A(@)=c, [ —==¢"(s)ds +c, [ ——==F(s)ds From the potential theorem

50 N 5 o J(t —s)

(pages 119 and 120 of [7]), we obtain |

1
where — = -1 R
' r 2

o |-

r ol
p=—,r=2(n-1),and F=¢ Soi f(s)ds Now, consider the convex function
n | FhJE-s)

y = ¢1X"+ yo where yo > 0 and n >1. The equation x = ¢;x" + y, possesses two positive

roots if yo is small. Call x; the smallest positive root. If 0 < x < x,, then we have
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Cix" +yo<x,. Hence |A(¢)|, <x, if |#|. <x,.Secondly, if yo — 0" then x; --0". On

the other hand, it can be readily seen that

Co
SO “\K—t‘—_—s—)(ldhl +|¢,

n-—l +l _1 and r = 2(n - 1), we obtain
r r 2

|A(¢) —A(4,)| <nc, Y " |6, = ¢,|ds. On applying the potential

theorem [7] again with 1
r

u—]"

”A(¢1) _A(¢2 )IL = nClH'¢'l[ + [452

. b, — d’sz and if ¢ <x, then
|A() —A(s,)|, <2"7'nC,x;7'|¢, — &, |, . By selecting 2" 'nC x} ™ <1, the mapping
¢ — A() becomes a contraction mapping in the ball {d); “‘75”, <x, } Here it should be

noted that x, is a function of y; and moreover, x; — 0' ifyy = 0'. Thus with the
establishment of a contraction mapping, we note that if f € LY0, oc) and ¢ e L'(0, =) with

2(n—-1)
n

r=2(n-1)andq= , then the solution will always be meaningful for n > 2.

In the particular case of Stefan’s Radiation Law, where n = 4, we obtain r = 6 implying
that [A(g)], <C,|d; + C,|[F], . The equation y = c;x" + yy then becomes x = ¢;x* +y,
and x, i_s its smallest positive root. Then for any ¢, and ¢,, we can obtain

|A(S) — A(6,)], <c@x,)|¢, — &,],. By choosing c(2x;)' < 1, we obtain a

contraction mapping.

3. ANATURAL EXTENSION

The problem in Section 1 can be stated in a more general context. Namely, to solve the

integral equation;
u() =¢ [—— () dy + £05) G1)
p(x—y)"

where p is the parabolic distance, that is, p is the unique root of the equation

2
y 1 =1 .ag>1,
I

equation (3.1) arise in the modeling of nonisotropic diffusion. The case where k = 4, as

a|=a, +a, +---+a,, and 0 <B <|a|. Kemnels of the type shownin _
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indicated earlier, relates to the Stefan-Boltzmann Radiation Law. Equation (3.1) can be
solved by using the method of successive approximations.
Due to the appearance of a parabolic potential operator in equation (3.1) we invoke the

following theorem, the proof of which can be found in [1].

Theorem 2
1 . n T/pN 1 1 B
Let u(x)= S_m_—,é"()') dy, ifv € L(R") then u € L'(R") where —=———,
| olx—y)" rop g
1 g :
1>— —H >0, and ||u“r < canp (c does not depend on v).
p |la
A consequence of this theorem is the following:
Theorem 3
Let u(x) = 5—m$vk(y) dy +f(x) 3.2)
p(x—y)"

4

I
If l% >k—k——17 then for p =(k —1)% we have that u] <c|v

The proof of this theorem is a direct consequence of the tollowing theorem, the proof of

, + I,

which follows the same lines used in proving theorem 1.

Theorem 4

Let f, =|f] ~and let x; be the smallest positive root of the equation y = cx* + f, when y =

x Ifv;

v[, <x, then u] <x,. Furthermore,x; —0"asfy —0'and if [f] is small

enough; then the mapping described by equation (3.2) is a contraction mapping in L(R")
for p=(k —-1)—.
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