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APPROXIMATION AND INTERPOLATION OF FUNCTIONS
OF HYPERBOLIC COMPLEX VARIABLE

SORIN G. GAL

ABSTRACT. We develop a theory of approximation and interpolation by
polynomials of the functions of hyperbolic complex variable. In the class of the so-called
pseudoholomorphic functions, a Jackson-type estimate is obtained and a result on mean
convergence of Lagrange interpolation is proved. Then, estimates in approximation of

continuous functions by areolar polynomials of Bernstein-type and of DeVore-Szabados-type
are given.

1. INTRODUCTION

Let o, B € R be fixed and g a solution of the equation g2 = ¢ g+ B . An important
resuit (see e.g.[11]) states that the algebraic ring C, = {z =a+gqbsa,be R} is ring-isomorphic
with one of the following three:

(i) Cq ,q2 =-1, called the field of complex numbers, if o 2/4+ B <0;

(i) C, , g* =0, called the ring of dual complex numbers, if a?>/4+ f =0;

(iii) C,,q* =+1, if a’/4+ B >0.A number in C, ,q* =+1 is called binary [11] , or
double [32] , or perplex [10] , or anormal-complex [2] , or hyperbolic complex [6-
8],[24]. Throughout in this paper we will use the term of hyperbolic complex number.

Suggested by the classical complex analysis , between 1935-1941 a theory of the
functions of hyperbolic complex and dual complex variables was deeply investigated in e.g.
[4-8],[24-31]and seems to have some applications in theoretical physics , as was pointed out
in the recent papers [10] , [13-14].

For all that , the theory of approximation of functions of hyperbolic complex variable
by polynomials contains a single result obtained in 1936 in [8]. Because of this reasons , the
purpose of the present paper is to give other contributions to this field of investigations. The
main idea that can be derived is that , in contrast with what happens in the classical complex
analysis , the properties are consequences of known results in the real approximation theory .
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Section 2 contains some preliminaries . In Section 3 we firstly give an estimate for the
approximation result in [8] and then , by using the Szabados’s polynomials in [20] , we
obtaind a Jackson-type result .

Also , we consider the problem of approximation by some particular classes of areolar
polynomials .

In Section 4 we deal with the interpolation of functions of hyperbohc complex
variable.

2. PRELIMINARIES

We will consider some known concepts and results in [6-7] which will be used in the
next sections.

Let C, be with g> =+1.

DEFINITION 2.1. The hyperbolic complex numbers q, =(1+q)/2 , q,=(1-q)/2
are called isotropic units. If z=x+qy € C, then z=z'q +z’q, with 2’=x+y,z"=x~y is
called the isotropic form of z.

If z=x+qye C, then Z=x—qy is the conjugate of z , |lz|=(x" +y*)"* is the
modulus of zand N, (z)=z-Z = x* = y? is the hyperbolic norm of z.

i zn—zl—>0.
o

no

The number z =x+qy =2'q, +2°q,,€ C, represents a point M(X,y) in the system of the
axes XOY and on the other hand, a point M, (z’,z") in the so-called isotropic system of

coordinates composed by the first and second btsectrtx and obtained from XOY by a rotation
with 7t | 4 in trigonometric sense .

A rectangle having the sides parallel with the first and second bisectrix will be called
isotropic rectangle .

If a=aq, +a,q,,b=bg, +b,q, € C, satisfy N (b—a)#0 , then by R(a,b) will be

denoted the isotropic rectangle having M) (a,,a,), M?(a,,a,) (i.e. in the isotropic system
of coordonates ) as opposite sharp points. Let suppose , for example , that @, <b, and a, <b, .
In this case , R(a,b) = {M,,(z’,z");a, £z’ <b,,a, < z’ <b,}.

Let us denote R*(a,b) = {z=2zq, +z"q, € C, (z’,z") € R(a,b)} .

Ifo=A4gq,+4,9,,B =Bgq,+B,q,€C, then
a+f =(4,+B)q,+(4,+B,)q,, a- B =(4,B,))q, +(4,B,)q,, a"=A4'q, + 4,9,
o/ B =(4,/B))q,+(A4,/B,)q,,for B,-B, #0.

Ifae Rthena=aq, +aq, andif z=x+qy= Aq, + Bg, then z = Bg, + Aq, .

The number z=x+qy=Aq,+Bq, € C, is divisor of zero iff N (z2)=0 (or
equivalently 4- B = 0). Also we have |z| =[(4% + B*)/2]"* <[|4|+|B|]/v2 .

If z,=x,+qy,=4,9,+B,9,,n€ N, z=x+qy=Aq,+Bg, , then z, —»z iff
x, > x,y, >yoriff 4, - 4,B, -5 B.

l.ﬂ)

l.vo
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3. UNIFORM APPROXIMATION

Let QcC,,¢"=+,f:Q—>C,. We can wrte f(z)=u(x,y)+q v(x,),
z=x+qy € Q or the isotropic form f(z) = P(z,,2,)q, + P,(2,,2,)4,, 2 = 2,4, + 2,4, € Q.

The definition of the continuity of f at z, = x, +qy, = z}q, + Zy9, being the same as
in the classical complex analysis , can be proved that f is continuous in zy iff u(x,y),v(x,y)
are continuous in (x,,y,) or iff P (z,,z,), P,(z,,z,) are continuous in (z,,z7) (see [7]).

An important subclass consists in the so-called pseudoholomorphic functions , i.e. of
the form f(z) = f,(z)q, + f,(z)q, , z=2'q,+2z"q, , with f,,f, continuous functions on
their domains of definition .

As was proved in [7] , the natural domains of definition for such functions f , are of
the form R”(a,b). The following result of approximation was proved in'[8] .

THEOREM 3.1. If f:R"(0,1) - C, is pseudoholomorphic on R*(0,1),
(0=0-g9,+0-q,, 1=1-q, +1-q,) then the Bernstein polynomials

B (f)z)= i(:)f(k Im)z*(1-2)"* converge uniformly (when n — +) to f(z) on R*(0,]).
k=0

REMARK. In the system of the axes of coordinates XOY , R(0,1) represents a
quadrangle having the side equal with 1 and (0,0),(0,«/—2-) as opposite sharp points , while
R'(0)={z=2'q,+2°q,;0<z’<10< 2" <} = {z=x+qy;0< x+ y < 1,0<x—y<1jhas as
geometric image a quadrangle of side equal with /2 /2 and with (0,0) , (0,1) as opposite
sharp points .

The proof of Theorem 3.1. is based on the following relation :

M) fla)*1-2"* =[fi(a)q + frla)a,) [zfa + 25a,) [z g+ (1= 2, g,

= fi(a,) 'Zlk(l_zl)n_kql +vf2(ak)'z7l_‘(1_zz)n—k‘]2 »Z2=24,+2,9,,0;, € R.
We will give an estimate in the above theorem by using the following.
LEMMA 3.2. Let f(z)=P(z',z")q,+ B,(z",z")q, , z=2'q,+2"q, , continuous for

ze R'(01). Denoting  a(f,8)=sup{f(z)~f(z,)}z,7, € R ONJ5-2|<8} |

o(P,;8,8) = sup{|P, (z/,20) - P, (z},20) <8 |- < 6,274,272, e 0]}, k=12,
the following inequality =

(P,;;6,8)+w(P,;8,8) <2\20(f;8), 6§ >0
holds.

PROOF. We have :

£ @) - £\ =[R2 - B Dla + PG - B 2)a|=
1/2
~{(re2n-Re3.2) +(BGha - B2 ] 2]
From here it follows

@) - £ 2R 2~ Bz )N/V2. | f () - F(2) 2Bz 2D - B2 )2

Passing to supremum with |z1 - Zzl <d,z,z, € R"(0,]) , we get

o(£8) 2 (1/+2) - sup{| P (21,20 - Pu(z}, 20 )b|es — 2] < 62,2, € RT(OD)} =

’ ’
2y~ 2y

£
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= (1/\/5)- sup{|f}c(z{, z{')—Pk(zg,z;)l;\/(z{—zg)z’+(z{’—z§")2 <82, 4,25, 225 € [0,1]}2

Z(I/ﬁ)-sup{lPk(z{,z,')—Pk(z;,z;' z] —z;| < "—z;’| <9 ,z{,2},2],z] € [O,l]}=
~(1/2)w(P,;6,8), k=12, i

which implies ‘

o(P;6,6)+w(P,;8,8) < 2\2a(f;6)
and the lemma is proved. :

REMARK. If f(z)= f,(z))q, + f,(z")q, is pseudoholomorphic on R*(0,1) then
entirely analogous we get

o £,:8)+ 0l f,:6) < 2420(f;6),8 > 0.

THEOREM 3.3. If f(z) = £,(2)q, + £,(2")q,, z=2'q, +2"q, is pseudoholo-morphic
on R*(0,1) then '
Bn(f)(z)—f(z)| < 2k0a)(f;1/\[r;), neN, ze R'(0,1), where k, represent the
Sikkema'’s constant in [18].

PROOF. By (1) (see [8, p.205, Theorem 1]) we have

B,(£)@) - £(2) = [B,(£)) - £,(N]a, +[B,(£,)(z") - £,(z")]g,, which by the
Remark of Lemma 3.2. and by [18] implies

B, (1)@ - )| <[|B,(A)) = 4] +[B.(£)) - £, 142 <
s(ko /ﬁ)[a)(f,;l/x/;)+w(f2;l/x/;)] < 2koco(f;1/\/;1_),n eN, ze R'(O,l), and the theorem
is proved.

Theorem 3.3. can be improved by the following result of Jackson-type.

THEOREM 34. If f(2)=£f(2q,+ £,(z")q,, z=2q, +2"q,€ R*(01) s
pseudoholomorphic on R*(0,1), then there exists a sequence of polynomials (P”( f )(z))n,
degree P,(z) <n, such that

lf(z P(f)@|sC-wf;1/n),¥ne N,ze R'(0),
where C>0 is independent of n and f.

PROOF. By [20], for any ge C[0,]={g: [O 1] - R; g continuous on [0,1]}, there
exists a polynomlal sequence of the form
) Plg Zg(k/n) sp.(x),ne N,xe R

k=0
where s, , are polynomials of degree <n with real coefficients, independent of g, such that
|e(x) - P,(g)(x)| < Calg;l/n), x e [01],ne N
with C > 0 an absolute constant.
Applying this last estimate, we get

lfl (z)- if, (k/n)-s,,(2)

k=0

<Col(f;1/n),z7€[0]],ne N

<Caof,;1/n),z”€[01],ne N.

f12)= 2 Sk )5, (2)
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Let us denote P Z ). Since

ap‘z"—( pql+apq2) [( g +( qz] ap z)’ q,+a (z ”)"qz,(al,e R),and
flkin)= f[(k/n)g, +(k/n)q,] = f,(k/n)g, + f,(k/n)q,, we casily get
€)) Ston (2) = Stn (z’)ql + Sk,n(zl)qZ )
and P,(f)(z) = B,(£,)(2)q, + P.(£.)(z)q, , 2= 79, + ", € R(0,)).
Therefore, by the Remark of Lemma 3.2 we obtain
1@ =)@ =[[B(A)) - £, + [P £ - £1(aal<
{21 - 1@+ R (£)) - R V2s(c VDol 1/ n)+ ol 1))
£2Ca)(f;1 / n), ze R’ (0,1), which proves the theorem.
REMARK. By [8, Theorem IV], the possibility of uniform approximation by

polynomials on izotropic rectangles charactherize the pseudoholomorphic functions. Then a
natural question arise: how can be approximated a function which is not pseudoholomorphic,

i.e. for example, if fis continuous of general form f(z) = P1(21 ,zz)qI + 1’2(2l ,zz)qz,
z=24q,+2,9, € R*(0,1)?
Firstly, we will introduce the following
DEFINITION 3.5. The functions f,(z) = (z1 ,zz)ql + P, ( ,)qz,
j_"z(z) =P (z2 ,Z, )ql + Pz( z,,z, )q2 will be called pseudoconjugates of the function f.
The expressions

=33 Ak g, +(i/m)ay) P by, (2)

k=0 j=0

Bﬁz’(f)(z,f)=iif—z[(k/n)q1 +(j7n)a,] poi(®)- p,,(2)

k=0 j=0
\

n n . .
where p, ,(2) =(k} Z(1=-2"%, p, (2 =[j)'zl(1—z)"_’, are called areolar polynomials of

the degree n of Bernstein-type.

REMARKS. 1). If we define the concept of areolar derivative of a function
fib->C, ,DcC, g*> =+1, by analogy with the classical complex analysis (see e.g.[17, p.
102)), i.e.

D(f)(2)=(1r2[(0urdx)(x, y)~(8v/2)(x, y)|+ (@ v/dx)(x, ¥) - (s ). Y]} =
(0 £102)(2), f(2)=u(x,y)+qv(x,y),z=x+qy, then it is not difficult to see that the
succesive areolar derivative of order n+1 of B"(f)(z,Z) and B"(f)(z,Z) is null, which

justifies the name of areolar polynomials of degree n.
2). Let z=2z,9, + 2,9, € C,. By Z=2,9, +z,9, and by (1) we obtain
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B,(l')(f ZZ[P k/nj/n)q,+P j/nk/ qz(I} 1-2)"*z/(1-3)""/ =

k=0 j=0

= iiﬁ(k/naj/”)Pn,k(z_l)Pn,_i(zz)}q I_ZZP Jink/n pnj(zl)pnk(ZZ)Jq

L k=0 j=0 =0 j=0

B(Z)(f) 2,7) = ii[}’ j/n k/n)q1 +Pz(k/n,j/n)qz](kIj}k(l—E)"—ij(l_z)n-j =

[S5 rimbinn (eloule) o S5 le .51, )

L k=0 j=0 k=0 j=0

ie. B“)(f)( zZ)=B?(f)zz)=B (P)(z,,zz)ql +B (P )(zl,zz)qz, where Bn(P)(zl,zz)
represents the usual Bernstein polynomlal of two real variables z,,z,.

Therefore, iet us denote B.' (f)( z)= B(”(f)(z Z)=B (f)(z z).

We can prove the

THEOREM 3.6. If f(z)= P(z,2,)q, +PB,(z,,2,)q, is continuous on R*(0,1) then for
allne Nandz=z,9,+2,9, € R’ (0,1) we have

|£(2)-B,(/)(z.2)| <4 o f:1/n)

PROOF. By a well-known Ipatov’s result (see e.g.[19, p.339]) we have
18,(B,)(z1,2,) - P.(z1,2,)| < 20( P31/ 1/ n), Vne Nz, 2, € [0] ke 12.

n

» Then, by Lemma 3.2 we get
If(z)—En(f)(Z,E)l :‘[Pl(zl’zz)"Bn(Pl)(ZnZz)]ql +[P2(Z|’Zz)—Bn(Pz)(ZnZz)]qz s
S”P,(z,,zz)—B,.(R)(zl,zz)l+|P2(z‘,zz)—B"(Pz)(zl,zz)n/\/—2_S4-a)(f;l/\/;),

which proves the theorem.
Using the polynomials given by (2), we can introduce

P(f)(z2) = ZZﬂ[k/ na, +(j/n)a,)s,.(2)s,,(2),

k=0 j=0
called areolar polonomial of degree n of DeVore-Szabados-type.

Then by (3) and reasoning as in the proof Theorem 3.6, we immediately obtain the

THEOREM 3.7. If f(2)=P(z2,,2,)q + B(2,,2,)4,, 2=24,+2,4,, is continuous on
R*(0,1) then

|f(z)—P;(f)(z,E) <Ca(f;1/n),Vne N,ze R*(01),
where C>0 is an absolute constant.

REMARKS. 1).Comparing, for example, Theorems 3.3 and 3.4 with the results
regarding the approximation by Bernstein-type polynomials in the classical complex analysis
(see e.g. [3], [12], [16], [23]) we see that they are essentially different.

2). Similar results with the Theorems 3.3 and 3.6 can be obtained if in the place of the
Bernstein polynomials we consider, for example, the Meyer-Konig and Zeller’s operator in
[15], or the Baskakov’s operator in [1], or the Szasz-Mirakyan’s operator in ([21].

3).By simple calculus we obtain

('9 En(f)/af)(z,i) =(¢9'Bn(1:’1)/322)(z|,22)‘q1 +(3 Bn(Pz)/azl)(z;’zz)'qz,
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where f(2) = B(z,,2,)-q,+ B,(z,,2,) - 4,» 2= 2,9, + 2,4, € R*(0,1).

Now, if P, and P, have continuous partial derivative of order one, then we
immediately get that (3 En( f ) /0 E)(Z,E) converges (when n — +oo) uniformly on R*(0,1) to
(0B 132,)2,2,) -9, +(0 P, /32 )(2,2,)-9,=(0 f 19 Z)(2), taking into account the
formulas for d P, /dz,, d P,/0dz,, in[7, chapter I, §6] and the formula for d f /d Z in the
Remark 1 of Definition 3.5.

Also, since by the standard technique in approximation by real Bernstein polynomials
we have

'(8 B,,(P,)/c?zz)(z,,zz)—(a P, /822)(21,22) < Cw(c? P, /Bzz;llw/;,l/\/;),
(28.(B)/32)(z.2)~(0 B 192)(z,,2,)| < Cald B, 19 251/ V11 Vi),

taking into account the Lemma 3.2 too, we easily get the estimate
(0B,(£)/9z)(z.2)- (27 132)c| s ca £ 13Z:1/ V), ze R'(01),ne N.
Thus, Remark 3 together with Theorem 3.6 represent a simple constructive solution

(containing even quantitative estimates) in the hyperbolic complex analysis, of a similar result
in the classical complex analysis [22].

4. INTERPOLATION

Firstly, we deal with the interpolation of pseudoholomorphic functions.

Let g a,b] >R be and a <x<.<x,<b. It is known that the Lagrange
interpolatory polynomials L, (g)(x) of degree n-1 which satisfies L, (g)(x,) = g(x,), k =1,n,
is given by

) =Y(x) (0

~ where I, ,(x) are given by

lk,n(x) = (x"xl)-'~(x“xk—1)(x“xk+1)---(x “xn)/ (xk “x1)---(xk 'xk—l)(xk _xk+l)"'(xk _xn)'
Now, let f:R'(a,b) > C,,q’ =+l be pseudoholomorphic on R'(a,b), ie.

flz)= fl(zl)ql + £, (z2 )q2 ,Z2=2,q, +2,9,,Witha,be R,a<b, and

fi»f,:la,b] = R, continuous on [a,b).
Let us consider the complex Lagrange interpolatory polynomial

)@= 1) 1 ).
Obviously L(sf )( ) f (x,‘) k =1,n, and by simple calculus

P =| b hnle) o S o) ]q L))+ L)

Vz=2,9,+2,9,.
This implies

@ f@-L()D=[A(z)- L(#)z)la +[£(z)- LAz
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and taking into acount that for z, —x, # 0,k = 12,i=1n

TS N A M P 3

by simple calculus we obtain the following

R

n

THEOREM 4.1. [f we denote R,(f)(z) = f(z) - L,(f)(2), then

(f)(z)=(z—xl)...(z—x,,)[z,xl,...x,,;f], Vze R'(a,b) with Nq(z—x,.) #0, i=1,n, where

[z, XXy I ] denotes the divided difference of f at the points z,x,,...,X, € R'(a,b), (where if
a, € C, k =1,m are such that Nq(ak —ai) # 0 for k # i, then by definition

[t 7= 32 £() (@, — @) (@, ~ 1) =) - ~ ).

k=1
Now, let P,(x) be the Legendre’s polynomials of degree n and —1<x <..<x,<l,

where x" represent the zeros of £, (x).

THEOREM 4.2. Let f:R"(—l,l)—)Cq be pseudoholomorphic on R'(—l,l),

F(2)=1(z)q, +£,(z)0, . z=24, +2,0,€R°(<1,]). Let 7y:[a,b] — R(-11), y(a)=-1,
y(b) =1, be a rectifiable path and let us denote

®)

L()D=E f(5) b2 ne N
Then, }'I_I)EJ L,.()f\)(z)dz = J f(2)dz .

r - v

If moreover, the geometric image of 'y is the interval [-1,1] , then
2

lim | |£(2) - L,(£)=2)| dz=0.

n—)w[_l’l]

PROOF. By (4) and by [ 7, chapter IV] we get
0= { -2 o | Tt 2. s o

-1 -1
But by the classical theorem of Erdos and Turan [9] we have

},;nnj[fk(zk)—L”(fk)(zk)]zdpo, k=12.

" This obviously implies that

tim J[(z2) - 2, (7 et = 0, =T2

-1

and therefore lim [ £(2) - Z,(/)(2)}dz=0..

Y
Now, let ¥ be the path such that the geometric image of ¥ is the interval [-11]. By (4)

we obtain

@1, = (A - LAY +|a) - L)) ] 2= lenz) =

= E.(zl’zz)qx +F:l(zl,zz)q2, z=2q,%t2,q9;, € R'(—l,l).

Applying the definition of the integral for F,,(z, ,zz) on
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y(t)=[-11], te [a,b], since y(t)=y(t)q, +¥(t)q, , in [7.chapter IV] we
immediately get

J F"(zl,zz)arz=(1/r>-)-[Ilf,(yu))—Ln(fl)(ym)lzdym+J|f2<y(t>)—L"(fz)(ﬂt))!zdy(t)}=

=11
=(1/z)-[I|f1(u)-Ln( 7)) du+ J| £, - L, fz)(u)lzdu]———":f—)o,by ®).

The theorem is proved .
REMARK . In the case when f:R'(a,b)—)Cq ,a,be R,a<b, is of the form

f(2)=P(z,2,)q,+ P,(2,,2,)q, ,z€ R*(a,b) , with P, and P, continuous on R’(a,b), as in
Section 3 we can introduce the interpolatory areolar polynomials of Lagrange-type.

L(7)e2) = XX (v +3,0:) 1,21, () =
=22[P xk’x' ql+P(xj’xk qz]'lkn(z)'lj,n ; =
’{Xip xk’ , . Z) ,n zz}q LXZP x]’xk) kn(ZZ) l;n(zl)} 0%

k=1 j=1
where a < x; <...< x, <b and f,( )= P(z,,2,)q, + B(2,2,)q, » 2= 2,9, + 2,9, .
It is easy to check that L,,(f)(xp,xp) =f(xp), Vp=1,n.
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