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ABSTRACT. . Let H~ (w) be the Hardy spaces introduced in [3] defined for 
one-sided weights w, see [4], and a suitable one-sided maximal function for 
distributions on the real line. The purpose of this 'paper is to give a charac-
terization of the dual spaces of H~ (w) in terms of certain classes of weighted 
BMO of Lipschistz spaces. The method used here is similar to that of J. 
Garcia-Cuerva in [1] for HP(w) spaces, where w belongs to Aq classes of B. 
Muckenhoupt. For the case of w(x»o almost everywhere, the characterization 
obtained generalizes the one given in [1], see Theorem (2.4). 

1. NOTATIONS, DEFINITIONS AND PREREQUISITES 

Given a Lebesgue measurable set E C IR, we denote its Lebesgue measure by 
lEI and the characteristic function of E by X E. 

Let f be a measurable function defined on IR. The one-sided Hardy-Littlewood 
maximal functions M- f and 1\4+ f are given by 

11· x M- f(x) = sup h If(t)ldt 
h>O x-h 

l1 x+h 
and M+f(x)=suP -h If(t)ldt. 

h>O x 

As usual, a weight w is a measurable and non-negative function. If E c IR IS a 
measurable set, we denote its w-measure by weE) :::;; IE w(t)dt. 

A. weight w belongs to the class At, 1 ::; q < 00, if there exists a constant c 
such that 

( )

q-l 
1 xI. x+h I 

sup (h. f W(t)dt) h I w(t)-q=t dt ::; c , 
h>O }x-h . }x 
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for all real number x. We observe that w belongs to At if and only if M- w( x) ~ 
C w( x) holds for almost every x. 

Given w belonging At ' 1 ~ q < 00, we can define X-oo 2: -00 and Xoo ~ +00, 

such that 

(i) w(x) = 0 a.e. in (-00, x-oo ), 

(1.1) (ii) w(x) = 00 a.e. in (xoo, 00) and, 

(iii) 0 < w(x) < 00 for almost every x E (x-oo,x oo ) . 

We always have X-oo ~ Xoo. In order to avoid the. non-interesting case of X- oo = 

X oo , it is necessary and sufficient that there exists a measurable set E satisfying 
0< w(E) < 00. 

Let f be a measurable function with support contained in an interval I (I I~ot 

necessarily bounded). We shall say that f belongs to U(I, w), 0 < r ~ 00, 

if IlfIILr(I,w) = (J If(xWw(x)dx)l/T is finite. If I = m or w == 1 we simply 
write LT(W) or LT(1) respectively, and LT(m) shall be denoted by U. Given a 
positive integer I, we say that a function f belongs to L~(I, w) if f E U(I, w) 

and, if III < dist(x_ oo , 1), then we require f to have null moments up to the 
order 1- 1, i.e., J f(x )xkdx = 0 holds for every integer k, 0 ~ k ~ 1- 1. 

The following lemma contains the basic results for At weights and one-sided 
maximal functions that we shall need in this paper. 

Lemma 1.2. 

(i) Let 1 ~ ql < q2 < 00. If the weight w belongs to the class A~ , then it also 

belongs to At2 . 
(ii) Let 1 < q < 00. The one-sided Hardy-Littlewood maximal M+ is bounded 

on U ( w) if and only if w belongs to At . 
(iii) Given w E At, 1 ~ q < 00 for every a Em, the w -measure of the interval 

(a, 00) is equal to infinite. 

(iv) Let w E At, 1 ~ q < 00. Let Q < (3 be the end points of the bounded 
interval I. Then, the interval I with end points Q - III and Q, satisfies 

w(l) ~ Cw w( 1) 

where the constant Cw does not depend on I. 

A proof of (ii) may be found in [4]or in [2]. As for parts (i) and (iii) the proofs 
are easy. Part (iv) is an immediate consequence of (ii). 
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Let w belong to At, 1 :s; q < 00, and let X-oo be defined as in (1.1) for 
the weight w. As usual, Ca( IR) denotes the set of all functions with compact 
support having derivates of all orders. We shall denote by V( x -00, 00) the space 
of all functions in Ca( IR) with support contained in (x-oo , 00) equipped with 
the usual topology and by V' (x-oo , 00) the space of distributions on (x-oo , 00). 

Given a positive integer 'Y and x E IR , we shall say that a function 1jJ in Cc( IR) , 
belongs to the class <P -y( x) if there exists a bounded interval J tf; = [x,,8] containing 
the support of 1jJ such that D-Y 1jJ satisfies 

Let F be a distribution in V'(X_oo, 00). We define as in [3]the one-sided maximal 
function F.+.,-y, as 

(1.3) F.t,ix ) = sup{1 < I,1jJ > I: 1jJ E <P-y(x)} , 

for every x > X-oo. 

Fixed w belonging to At (1 :s; q < 00), a positive integer 'Y and, 0 < p :s; 1 such 
that CT+1)p 2:: q > 1 or CT+1)p > q if q = 1, the distribution F in V'(X-oo, 00) 
belongs to Ht-y( w) if the" p-norm" 

is finite. 

In the sequel we shall suppose that w belongs to At, 'Y is a positive integer, 
o < p ::s; 1 and, that they satisfy ('Y + l)p 2:: q if q > 1 or ('Y + l)p > q if q = 1 . 

Lemma 1.4. Let J C (x-oo,oo) be an interval and let I belong to L;;(J). 
Tben for any-x ?x~oo, we bave 

Moreover, 
IIIIIH~ . ..,(w) :s; C-y,w 1111100 w(I)l/P . 

. Tbe constants c-y and c-y,w do not depend on I. 

This lemma can be found in [3] as Lemma (3.2). Thus, as in [3] we have the 
following definition of p-atom with respect to a weight w. 
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A function a(x) defined on IR is called a p-atom with respect to w if there 
exists an interval 1 containing the support of a( x), such that 
(i) 1 is contained in (x-oo,oo) and w(1) < 00 , 

(ii) a(x) E L<:;'(1) and, 
(iii) Iiall oo ~ w(1)-l/p . 

We shall say that 1 is the interval associated to the atom a( x) . 

The following theorems are offundamental importance in the theory of the H~ .. i w) 
spaces. Their proofs can be found in section 5 of [3]. 

Theorem 1.5. (Decomposition into atoms). If F belongs to H~."'Y(w), then 
there exists a sequence {ak} of p-atoms with respect to w and a sequence {Ad 
of real numbers such that 

1Il 

and, 

holds; 

Remark 1.6. By Lemma (1.4) and Theorem (1.5) we have that the set D of 
all functions f such that there exists an interval 1 C (x _ 00, 00) with w(I) < 00 

and f E L<:;'(1) , is dense in H~."'Y( w). 

Theorem 1.7. Under the hypotheses of Theorem (1.5) anq if, in addition, we 
assume that X-oo = -00, then the p-atoms {ak} in the decomposition can be 
taken in such that way that the corresp"anding associated intervals are bounded 
and therefore all the p -atoms in the decomposition have null moments up to the 

order -:y -1. 

Remark 1.S. If X-oo = -00, by Leulma (1.4) and Theorem (1.7) we have 
that the set Dl of all functions f such that there exists a bounded interval 
1 C (x-oo, oo) with w(1) < 00 and f E L<:;'(1) , is dense in H~."'Y(w). 

We shall denote [H~."'Y(w)r the dual space of Ht..,(w) formed by all the real 
valued continuous linear functionals L with the norm . 

IILII == sup{IL(F)1 : IIFIIH~ . ..,(w) ~ I}. 



Let 'Y be a positive integer and let P-y be the linear space of all real polynomials 
of degree less than 'Y. For any bounded interval 1, we define the inner product 
on P -y by the formula 

(P,Q)J = 1 P(x) Q(x) dx . 

Let {ek} k:~~ be an orthonormal basis of P -y for the case when I = [0, 1]. It is 
easy to verify that for any I = [a, b], the polynomials 

(1.9) 

form an orthonormal basis of P-y with the inner product ( . , • )1. Given a function 
f such that f X I E Ll , we define its orthogonal projection on P-y, as 

(1.10) 

We observe that, by (1.9), 

(1.11) sup iek,l(x)1 = 111-1 / 2 sup iek(x)1 ~ (;..,111- 1/ 2 , 
.zEI zE[O,I) 

holds for every integer k, 0 ~ k ~ 'Y - 1. Then, if f X I E Loo, by (1.10) and 
(1.11), we have that 

(1.12) 

holds for every x E 1, with a constant C-y depending OIl 'Y only. 

We shall need a result that allows us to compare Pr(f) and PJ(f). To be more 
precise we state the following lemma. 

Lemma 1.13. Let Ie J be two bounded intervals such that PI ~ 5111. Then, 
if fX JELl, we have that 

holds for every x belonging to J. 

Proof. Let {ek} z:~ be the orthonormal basis of the subspace P -y defined above 
and let {ek,dZ:~ be the orthonormal basis given in (1.9). Thus 

PI(f)(X) - PJ(f)(x) = PI[f - PJ(f)](x) 

= E (1[f - PJ(f)](S)ek,I(S)dS) ek,I(x) . 
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Consequently, if x belongs to J we get 

IPI(f)(x) - PJ(f)(x) I ~ 
'1-1 

~ L 11(J -PJ(f)](s)1 dsllek,IXIiloo lIek,IXJlloo . 
k=O I 

By (1.11), we have Ilek,I X Ilioo ~ c~III-1/2. Moreover, since I C J and IJI ~ 
5111, it follows that if x E J then Ix-ai/III ~ 5, which implies that lIek,I X Jlloo ~ 
111-1/2 SUPlyI9Iek(y)1 ~ c~III-1/2. Therefore, for every x E J we obtain 

as we wanted to show .• 

We shall say that a function f, defined on (x-oo, xoo ), belongs to BMO+(p, 'Y; w) 

if for every interval Ie (x-oo,oo) with w(I) < 00, we have 
(i) fx I belongs to L1, 

(ii) if III;?: dist(x-oo,I) then II If(x)ldx ~ c w(I)1/p and, 
(iii) if III < dist(x-oo,I) then the orthogonal projection PI(f) is well defined 

and 

holds. 
The constant c does not depend on the intervals I and the least constant c. for 
which (ii) and (iii) hold, shall be denoted by IIfIIBMo+(p,'Y,w)' 

Remark 1.14. Let f belong to BMO+(p,'Y,w) and let A belong to L';(1), 

where I C (x_oo,oo) is an interval with w(I) < 00. If III;?: dist (x-oo,I) , by 
the definition of BMO+(p,'Y,w) , we have that 

In the case that III < dist (x-oo,I) , since, by definition of L';(I) , the function A 
has nullinJ,oments up to the order 'Y - 1, we get 

IIA(x)l(X)dxl = If A(x)[l(x) - PI(l)(X)]dxl 

~ IIAlioo l lf(x) - PI(l)(x)ldx 

~ IIAllooIII IIBMo+(p,'Y;ui)w(I)1/p . 



55 

Remarks. 

(a) If there exists (3 > X-oo such that w((x- oo ,(3)) < 00, then (BMO+(p",w), 

11'IIBMO+(p,1',w») is a normed space. 
(b) If we have that w( (x -00, (3)) . = 00 holds for every (3 > x -00 then 

lI'IIBMO+(p,1',w) is a seminorm. Indeed, IIRIIHMO+(p,1',w) is equal to zero 
if and only if R belongs to P 1" the set of all polynomials of degree less than 
,. Therefore defining, as usual, for l belonging to BMO+ (p", W )IP1' the 
application 

1I~IBMO+(p,1"w)/P.., = 1Ie'IIHMO+(p,1',w) , 

where R - e E P 1" we obtain the normed space (B M ° + (p, " w ) IP l' , 

II ·11 BMO+(p,1',w)/P..,). 

We shall say that a function R defined on (x- oo , xoo ), belongs to BMOF+(p, "U)) 

if for every bounded interval Ie (x- oo , (0) with weI) < 00, we have 

(i) R X I belongs to Ll and, 

(ii) II IR(x) - PI(R)(x)ldx ~ c w(I)I/p holds with a constant c not depending 011 

the intervals I. 

The least constant c for which (ii) holds shall be denoted by IIRIIHMOF+(p,1',w)' 

Remarks. 

(a) The application lI'IIBMOF+(p,1',w) is a seminorrn and, as usual, it induces a 
norm 1I·IIBMOF+(p,1',w)/P.., in the quotient space BMOF+(p", w )IP1' . 

(b) If we have that w((x- oo ,(3)) = 00 holds for every jJ > X- oo , then the space 
BM0F,'+(p",w) coincides with BMO+(p",w). 

2. STATEMENT OF THE RESULTS 

In this paragraph we state the results that characterize the dual space of Ht1'( w) , 

which is the purpose of the paper. 

Theorem 2.1. Let w E At ' r > q, , a positive integer and 0 < p ~ 1 such 

that (r + l)p ~ q if q > 1 or (r + l)p > 1 if q = 1. If L belongs to [Ht1'(w)]* 
we have that 

(i) if there exists (3 > X-oo such that w((x-oo , (3)) < 00, then there exists a 
unique R belonging to BMO+(p",w) such that 

L(f) = J l(x) f(x) dx 
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holds for every f E L~(I,w) where I c (x-co,oo) is any interval with 
- w(I) < 00. Moreover, 

Oi) if we have that w«x-co, (3)) = 00 holds for every (3 > x-co, then there 

exists a unique class l belonging to BMO+(p,'Y,w)/P-y such that for any £' 
belonging to £, we have that 

L(J) = j £'(x) f(x) dx 

holds for every f E L~(I,w), where Ie (x-co,oo) is any interval with 

w( I) < 00. Moreover 

Theorem 2.2. Let w E At, 'Y a positive integer and 0 < p ::; 1 such that 

('Y + l)p 2 q if q > 1 or ('Y + l)p > 1 if q = 1. Then, we have 

(1) if there exists (3 > X-co such that w«x-co , (3)) < 00, given £ belonging to 
BMO+(p, 'Y, w), the functional 

L(J)= j£(x) f(x) dx 

is well defined on the dense set D (see Remark (1.6)) and, 

IILII ::; cp,-y,w 11£IIBMo+(p,-y,w) . 

(ii) if we have that w«x-co ,(3)) = 00 holds for every (3 > x-co, given l belong­

ing to BMO+(p,'Y,w)/P-y and £' in the class l, the functional 

L(J) = j £'(x) f(x) dx 

is well defined on the dense set D, L is independent of £' Eland 

Tbeorem 2.3. Let w E At, 'Y a positive integer and 0 < p ::; 1 such that 

( 'Y + l)p 2 q if q > 1 or ('Y + l)p > 1 if q = 1. Then, we have 
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(i) if tbere exists (3 > X-<Xl satisfying w«x-<Xl,(3») < 00, then there exists 

a bijective linear application i from [H~,-y(w)l· into BMO+(p,,,(,w) such 

tbat if i(L) = £, tben 

L(f) = J l(x) f(x) dx 

bolds for every fED. Moreover, 

(ii) if we bave w«x-<Xl' (3)) = 00 holds for every (j > X-<Xl, then there exists 

a bijective linear application i from[H~,-y(w)l* into BMOF+(p,,,(,w)/P-y 

sucb tbat if i(L) = 7 and l' belongs to 7, tlwn 

L(f) = J l'(x) f(x) dx 

bolds for every fED. Moreover, 

Theorem 2.4. Let w E At, "( a positive integer and 0 < p ~ 1 SUell tiJat 

("( + l)p ~ q if q > 1 or ("( + l)p > 1 if q = 1. If X -<Xl = - 00 then the conclusions 
of part (ii) of Theorem (2.3) hold for every f belonging to the dense set Dl (see 

Remark (1.8)) even iftbere exists (3 such that w((-oo,{J» < 00. 

3. PROOFS OF THE RESULTS 

Lemma 3.1. Let wE At, , ~ 1 an integer and, 0 < p ~ 1 such that 

("( + l)p ~ q > 1 or ("( + l)p > q = 1 and r ~ q > 1 or r > q = 1. Let 

I C (x-<Xl,oo) be an interval with w(I) < 00 and let f belong to L;(I,w). 

Tben f E H~,-y(w) and 

Proof. Let 0: < (3 be the end points of I. 

If max(x_<Xl'O: - III) ~ x, by definition (1.3), we have f.+,-y(x) ~ M+ f(x). 

Then, by Holder's inequality and applying Lemma (1.2), we obtain 
E. 

{<Xl f.+,-y(x)Pw(x)dx ~ (jll M+ f(XrW(X)dX) r w(l U I)l-~ 
Jmax(x_oo,Ot-II\J -<Xl 

(3.2) ~ cr,p,wllfll~r(l.w)w(l)l-~ . 
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If there exists x such that X-oo < x < a_~- III, then I has null moments up to 
the order , - 1 and the interval I is bounded. Let 'lj; belong to the class cI> 'Y( x ) 

and I", the interval associated with 'lj; in this class. We have 

We may assume that I n I", =1= 0, then a - x ::; 11",1 and we get 

I < I, 'lj; > I ::; IID'Y~lIoo 111'Y [II(t)ldt ,. if 

( III )'Y+1 1 [ 
::; c'Y a _ x . TIT if II(t)ldt . 

Since for every x such that. X-oo < x < a - III, the one-sided maximal function 
M+ X 7 satisfies: J~lx ::; M+ X J<x), it follows that 

No.w, by Holder's inequality and taking into account that w E At , we have 

1 [ 1 ([ ,) 1/r' TIT if II(t)ldt ::; IIIIILr(I,w) TIT if w(t)-r Ir dt 

::; Cr,w IIIllu(I,w) w(i)-1/r , 

which implies that 

Then, by Lemma (1.2), we get 

By (3.2) and (3.3), this lemma is proved .• 

Remark. . The estimation for the p-norm IIIIIHP (w) in Lemma (1.4) also + . ., 
follows from Lemma (3.1). 

Lemma 3.4. Let w ~ O· and r > 1. Let I be an interval with w(I) < 00. 

Then, if gXf E Lr'(I,w) we have that gXf E L1(I,w). In particular, the 

orthogonal projection PI(gW) is well defined. 
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The proof is an immediate consequence of Holder's inequality. 

Lemma 3.5. Let w E At and r ~ q > 1 or r > q = 1. We assume that 
Ie (x- oo , 00) is an interval satisfying the condition III < dist (x- oo , I). Then, if 
f E Lr(I, w) we have that f E L1(!). In particular, the orthogonal projection 
PI(f) is well defined. 

Proof. Let us observe the condition III < dist (x -00,1) implies that I is a 
bounded interval and if we define I as in Lemma (1.2) it follows that wei) > O. 
By Holder's inequalitiy and the At condition, r > 1, we get 

[ ( [ ) 1/7' ( [ ) l/r' 
iI If(x)ldx:::; iIlf(xWw(x)dx iI w(x)-r'/rdx 

:::; cr,w IIlllfIlU(I,w)w(I)-l/r < 00 , 

as we wanted to show .• 

Proof of Theorem (2.1). 
Part (i). We consider a sequence {.8kh;:::l i Xoo , such that for every k ~ 1, 

the interval h = (X- oo ,.8k) satisfies w(Ik) < 00. In the case of w((x-oo,xoo » < 
00, we take .8k = Xoo , k ~ 1. Given f E Y(h, w), by Lemma (3.1), we have 

IL(f)1 :::; IILllllfIlH~,-y(w) 
1 1 

:::; C"r,p,w IILllllfllu(Ik,W)w(hF--;:· 

Therefore, L induces a continuous linear functional on LT(h, w). Then, by 
Riesz's Representation Theorem, there exists a unique gk E Lr' (h, w) such that 

L(f) = J f(x) gk(X) w(x) dx 

holds for every f E Lr(h, w). The uniqueness of gk, implies that the restriction 
9k+11Ik is equal to gk almost everywhere in h; then, there exists a unique function 
9 defined on (x-oo,x oo ) such that for every interval Ie (x_oo, oo) with weI) < 
00, we have 
(3.6) 
(3.7) 

JI Ig(xW' w(x)dx < 00 and 
L(f) = J f(x) g(x) w(x)dx, for every fEY (I, w) . 

Let us prove that .e = gw belongs to BMO+(p",w). Let I C (x-oo,oo) be 
an interval with weI) < 00 and dist (x- oo ,1) :::; III. The function f = 8g(£) X I 
belongs to U(I,w). Besides, by (3.7), Lemma (3.1) and taking into account that 
Ilfllu(I,w) :::; IIfllL<>ow(I)l/r, we have 

(3.8) 11£,dx = J.e f dx = L(f) :::; C"r,p,wII L llw(I)l/P • 
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Now, we assume that III <dist(x-co,I). By (3.6) and Lemma (3.4), the orthog-
onal projection PI (e) is well defined. The function f = 8g[e - PI(e)] X I belongs 
to U(I,w) and by Lemma (3.5) we get 

lie -PI(e)ldx = l[e - PI(e)]f dx 

= l[e - PI(e)][f - P1(J)] dx 

= 1 e[J - PI(J)] dx . 

Applying (3.7), Lemma (3.1) and (1.12), we obtain 

lie -PI(e)1 dx = L[(J - PI(J))XI] 

(3.9) S; IILII c-y,r,p,w II(J - P1(J))XIII uoow(I)l/p 

S; c~,r,p,w IILII w(I)l/p . 

From (3.8) and (3.9) it follows that e E BMO+(p; ,,(, w). 

Part (ii). Now, for every (3 > x-co, w((x-co , (3)) is infinite. This condition implies 
that x-co = -00. Let {adk2':l 1-00 and {(3dk2':l T Xco be two sequences such 
that for every k :::: 1, the interval Ik = (ak' (3k) satisfies w(Ik) < 00. If there 
exists a satisfying w((a, xco )) < 00, we take (3k = xco , k :::: 1. By Lemma 
(3.1), L induces a continuous linear functional on L~(h,w), which, by Hahn-
Banach, can be extended to Lr(h, w). By Riesz Representation Theorem, the 
extension is represented by a function 9 k belonging to L r' (I k, w). Suppose there 
exist functions gk and g~ in Lr' (Ik, w) such that 

J f(x) 9k(X) w(x) dx = J f(x) g~(x) w(x) dx , 

holds for every f E L;(Ik, w). We want to show that 9 = gk - g~ is equal to 
Pw- 1 almost everywhere in h, where P is a polynomial of degree less than "(. 
In fact, given f E Lr(h, w), the function [f - Ph(J)] X lk belongs to L~(h, w); 
then, using Lemma (3.4), we have 
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Thus, since Ik C (x-oo,x oo ) it follows that 9 = Plk~gW) a.e, in Ik. 

Taking into account that h = (ak' 13k) i (x- oo , xoo ), we can define a function 9 
on (x- oo , xoo ) such that for every Ie (x- oo , x oo ) with w(I) < 00, the properties 
(3.6) and 

L(f) = J f(x) g(x) w(~) dx, for every f E L~(I, w) 

also holds. 

In this part (ii), if we have an interval I with wei) < 00, then III < dist (x-oo, I) 
= 00 and arguing as in (3.9), it follows that R = gw E BMO+(p,'Y,w) .• 

Let f be a locally integrable function on (x- oo , (0) belonging to Ht'Y( w). For 
every integer n, we define the open set 

and we denote .its component intervals by In,i, i 2: 1, where In,l is, if there 
exists, the connected component that starts at x-oo , and In,l = 0 otherwise. In 
addition, for every i > 1 and j 2: 1 , we define functions "7n,i,j( x) 2: 0 belonging 
to Co( IR) such that 

. (3.10) (2: "7n'i,j(X)) 
j~l 

X I . (x) = X I . (x), n,l n,l 
i>l; 

and polynomials Pn,i,j(f) of degree less than 'Y, explicity given by the formula 

where {e~,i,j} r:;~ is an orthonormal basis of the subspace of L2( "7n,i,j X In,,) gen-
erated by 1, x, ... ,x'Y- l . From their definition, it follows that the polynomials 
Pn,i,j(f) satisfy 

J f(x) x 8 "7n,i,j(X) Xln,,(X) dx 

(3.11) = J Pn,i,j(f)(X)x8 "7n,i,j(X)Xln,,(X) dx, 0 ~ s < 'Y • 

For an explicit definition of the functions "7n,i,j see section 5 in [3]. 
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We recall that in the proof of Theorem (2.2) in [3]' (see (5.1)), for every i > 1 
and j 2: 1 , we obtained the estimate 

(3.12) sup IPn,i,j(J)(x)1 ::; c 2n , 
xEsupport( 'In, ',j) 

where the constant c is independent of nand f. 

Taking into account the notations introduced above, for each integer n, we con-
sider the function gn(x) defined as 

(3.13) gn( x) = f(x) X co. n (x) + L L Pn,i,j(J)( X )1]n,i,j(X) X In,,(X) , 
i>1 j?,1 

which satisfies 

(3.14) a.e. in (x- oo , (0) , 

where the constant c is independent of nand f. 

Proof of Theorem (2.2). Let C belong to BMO+(p,"'(,w). For every bounded 
f\Inction f supported in an interval I = (a., (3) C (x.:.oo, (0) with w( I) < 00, we 
have that J IC(x)1 If(x)1 dx::; Ilflloo i IC(x) dx < 00 . 

Then, the linear functional L(J) = J C(x)f(x)dx is well defined on the dense set 
D (see Remark (1.6)). We want to show that L is a bounded functional and 
therefore that it can be extended to H~,.rC w). Since f E Loo, if M is large 
enough, then the set nM is empty and by (3.13), we have gM = f. Thus, 

M-l 

(3.15) f(x) = L [gn+l(X) - gn(x)] + gN(X) . 
n=N 

From the definition of gn, if follows that its support is contained in the union 
I U nn C (x- oo , (3). 

If C E BMO+(p,"'(,w) and w((x-oo,(3)) < 00, then e is integrable on (x- oo ,(3) 
and taking into account (3.14), we get 

M-l fJ fJ J fC dx = L 1 (gn+l - gn)C dx + 1 gNC dx . 
n=N X_ oo X- oo 

For the last integral on the' right hand side, we have 
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which goes zero for N tending to -00 . 

Now, let us suppose w«x- oo ,,8)) = 00. Then, the hypothesis w(l) = w«O',,B)) < 
00 implies that X-oo = -00 < 0' < ,8 < +00. By Lemma (1.4) if f belongs to 
L;;o(J), then we have 

On the other hand, it is easy to see that for x < (1, the following inequalities 

(3.16) 

hold. Thus, 

On = {x : 2n < f~(x)} c {x : 2n < c, Ilflloo[M+ \,(X)j'+l} 

C {" X < jJ,2n < 0, IIfll~ 4'+' [a _ ~I~ 21Ir+'} ~ I n . 

It can be verified without difficult that I n is either the (~mpty set or an interval 
with finite end points, where the upper end point is equal to ,B. Since I = (0', (1), 
then J U I n = Kn is a bounded interval. Besides, if n is negative enough then 
In :::> J and thereforeKn = I n. In conclusion, y" is supported in a bounded 
interval K n = (b,,8) with w( K n) < 00. We shall estimate the w -measure of K n 

for very negative values of n, i.e., when Kn = J". In virtu(' of the first inequality 
of (3.16) we have 

By Chebyshev's inequality, if s > 0 then 

Since the weight w satisfies the hypotheses we can a..o.;sume that w E A~ , with 
h + l)p > r > 1. Let s be a real number such that 0 < s < p and h + l)s = 
r > 1. Then 

j[M+ X [(x)]h+1)sw(x) dx ~ c""w w(l) , 

and thus, we obtain 

(3.17) 
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It is easy to verify directly that J 9N(X) XS dx = 0 for 0 ~ s < 'Y. In fact, adding 
in (3.11) for j ;::: 1 and i > 1, we have 

LL f f(x) XS 7]n,i,j(X) Xln.i(X) dx = 
i>l j?,l 

(3.18) = L L f Pn,i,j(f)(X) XS 7]n,i,j(X) Xln.i(X) dx , 
i>l j?,l 

In virtue of (3.12), since IPn,i,j(f)(X)7]n,i,j(x)1 ~ c 2n , Ui?l In,i = On (in this 
case: I n,l = 0) and On C Kn = (8, (3), where 8 is finite, then by Lebesgue's 
Dominated Convergence Theorem the right hand side of (3.18) is equal to 

On the other hand, taking into account that f belongs to Leo and that its support 
is a bounded set, by (3.10) and the Lebesgue's Dominated Convergence Theorem, 
the left hand side of (3.18) is equal to 

L L f f(x)X s 7]n,i,j(X)Xln,i(X) dx = L f f(X)X·Xln,i(X) dx 
.>1 J?l .>1 

= ( f(x)x S dx . 
Jn n 

Thus, 

f gn(x) XS dx = 1 f(x) x' dx + ( f(x) XS .dx = ff(X) XS dx = 0 
en n Jn n 

holds for 0 ~ s < 'Y . 

Going back to (3.15), we have that if l belongs to BMO+(p, 7, w) then 

J f(x)l(x) dx ~ LN [~r..+.(X) - g.(x)] + 9N(X)]l(X) dx, 

and, since l is integrable on K N , we get 
M-1 

f f(x)l(x) dx = L [ [gn+1(X) - gn(x)]l(x) dx + ( gN(x)l(x) dx . 
n=N JKN JKN 

If N i~ negative enough, then KN = IN and, from the fact that gN has null 
moments up to the order 7 - 1, for the last integral on the right hand side we 
have 

If 9Nl\ = liN 9Nl\ ~ liN gN[l- PJN(l)]dX\ 

~ c 2N [ Il(x) - PJN(l)(x)ldx ~ c 2NlIlIIBMo+(p,-y,w)w(JN)1/p 
JJN 
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which, in virtue of (3.17) is bounded by 

Since s < p 'it follows that 1 - sip> 0 and then the last expression goes to zero 
when N tends to -00. This proves that lim J gNl dx = 0, also in this case. 

N-+oo 
Therefore, we always have 

M-l J f(x)l(x) dx = 'E j[gn+l - gn)l dx. 
-00 

In the proofof Theorem (2.2), in section 5 of [3]' it was shown that 

gnH(X) - gn(x) = 'E An,;(x) + An,l(X) , 
;>1 

where the support of the function An,; are contained in the connected components 
In,; of On, IIAn,;lIoo :::; C 2n and, moreover, if i > 1 then J AnAx)xB dx = 
o holds for 0 :::; s < "y. Since On is contained in an interval with finite w­

measure ((x-oo,{:J) or I n) and, by definition, l is integrable on these intervals, 
the Lebesgue's Dominated Convergence Theorem and Remark (1.14) imply that 

Ij(gn+l - gn)l dxl = ~ j An,;(x)l(x) dx 

:::; c 2nlllIlBMo+(p,l',w) 'E w(In,;)l/p 

Then 

[ 

00 ] lip 
:::; c IllIIBMO+(p,l',w) ~ 2nPw(On) 

:::; C IllIIBMO+(p;I"~) IlfIIH~.~(w) , 
as we wanted to show .• 

Proof of Theorem {2.3}. We define the application i as i(L) = l, where l is - -the function associated to L in part (i) of Theorem (2.1), or i(L) = l, where l is 
the class associated to L in part (ii) of the same theorem. Since D is a dense set 
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III [Htl' ( W )]* , it follows that i is an inyective application. Taking into account 
Theorems (2.1) and (2.2) then Theorem (2.3) follows immediately .• 

For every non-negative integer n and every real number a > _2n+I , we define 
the interval " 

In,a = [_2n+I, a] . 

If a = _2n then, we denote by In the interval In,-2n = [_2n+I, _2n]. Moreover, 
given a function R. belonging locally to LI( -00, a], we denote the orthogonal 
projections PIn,a (R.) and PIn (R.) by Pn,a and Pn respectively. 

Lemma 3.19. Let w E At, 1 a positive integer and 0 < p :::; 1 sucb tbat 

C'Y+1)p 2:: q if q > 1 or C'Y+1)p > 1 if q = 1. Assume X_(X) = -00 and let a. and 
n sucb tbat lal :::; 2n and w((-oo, a)) < 00. If R. belongs to BMOF+(p, 1, w), 
tben 

(i) for every k > n, we have 

sup IPk+I(X) - Pk(x)1 :::; cl' 11R.IIBMOF+(p,l',w)Tk W(h+I,a)I/P 

xEIn,a 

and, 

(ii) sUPxE:In,a IPn+I(X) - Pn,a(x)1 :::; cl' 11R.IIBMOF+(p,l',w)2-n w(In+I,a)l/p . 

Proof. For lal :::; 2n and k > n, we have 

Then, by Lemma (1.13) and since h U h+I C Ik+I,a, we get 

sup IPk+I(X) - Pk(x)1 :::; 
xEIn,a 

< sup IPk+I(X) - Pk+l,a(x)1 + sup IPk+l,a(X) - Pk(x)1 
xEIk+l,a xEh+l,a 

Therefore 
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which is part (i) of the lemma. In order to prove part (ii), we observe that 
IIn+1,al ~ (5/2)IIn+ll and IIn+11 ~ 2IIn,al, thus IIn+1 ,al ~ 5lIn+ll and IIn+1 ,al ~ 
5IIn,al· Then, by Lemma (1.13) and since In+l U In,a C In+1 ,a, 

sup IPn+l(X) - Pn,a(x)1 ~ 
xEln,a 

as we wanted to show .• 

In order to prove Theorem (2.4) we need the following proposition. 

Proposition 3.20. Let w E At ' "j a positive integer and 0 < p ~ 1 such tlwt 

b + l)p :2: q if q > 1 or b+ l)p > 1 if q = 1. Assume X-co = -00 and that 

there exists (3 satisfying w((--oo, (3)) < 00. Then, given l E BMOF+(p,"j,w)/P'Y 
there exists a uniquefl E l belonging to B M 0 + (p, "j, w) such that 

Proof. Let' E BMOF+(p,"j,w) and b such that w((-oo,b)) < 00. Choose m 
such that Ibl::; 2m . By part (i) of Lemma (3.19), we have that for every k > m 

Then given i > j > m 

i-I 

sup IPi(X) - Pj(x)1 ::; L sup lPk+l(X) - Pk(x)1 
xElrn,b k=j xElm,b 

i-I 

::; c'Y II f IIBMoF+(p,'Y,w) L Tk w(Ik+l,b?/P 
k=j 

:s: c'Y IIfIIBMoF+(p,'Y,w) we( -00, b))l/P TJ+l . 

This implies that {Pk} k>m is a Cauchy sequence in the Banach space of the 
continuous functions on Im,b. Therefore there exists a polynomial P E P-y such 
that 

lim sup IP(x) - Pk(x)1 = 0 . 
k-co xElm,b 
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Thus, 

i b Ie - Pldx = f j Ie - Pldx + J:, ~+1 Ie - Pldx 
(Xl n=m+l In 2 

~ f j Ie - Pnldx + f J IPn - Pldx 
n=m+l In n=m+l In 

= I + I I + I I I + IV . 

Let us estimate I + III . By definition of BMOF+(p,l',w) and recalling that 
o < p ~ 1, we have 

I + III oS IlfIIBMOF+(p,",w) C~+, w(In)"P + W(Im,,)"') 

~ IleIIBMOF+(p,-y,w) w(( -00, b))l/P . 

Next, we shall estimate II. We have 

Using part (i) and (ii) of Lemma (3.19) with a = _2n , we get 
(Xl (Xl 

II ~ c~ IleIIBMOF+(p,-y,w) L 2n L 2- k W(Ik+l U ... U In)l/P . 
n=m+l k=n 

Since 0 < p ~ 1 , the double series on the right hand side is bounded by 

[.x:+, 2n'~t"%W(Ii)l 'I, 

< [.x:+, 2n't,W(Ii ).t T·r' 
oS c, [.x:+, 2n, t, 2- j 'W(Ii f' 
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Thus, 

Finally, let us estimate IV. We ha.ve 

1 !Pm,b - Pldx ~ f: f IPHI - Pkl dx + /, !Pm+l - Pm,bldx 
1Tn ,b k=m+l 1m ,'; • {m.b 

=A+B. 

Using part (i) of Lemma (3.19) with n = m and a = b, we get 

00 
A ~ c-y IIfllBMoF+(p,-y,w)IIm,bl L Tkw(IHI,b)I/P 

k=m+l 

and using part (ii) of Lemma (3.19), we have 

B- ~ C-y IIfllBMOF+(P,-y,w)IIm,bI2-mw(Im+l,b)I/P 

~ c~ IIfllBMOF+(p,-y,w) w« -00, b))l/P . 

Let us consider two different values of b, say band b' , and let P and pI the 
polynomials obtained above that satisfy 

and 
b' 

100 If - plldx ~ C w« -00, b' ))l/P < 00 . 

Then, if f3 = min( b, b' ), we have 

Thus, P - pI == 0 showing that there exists a unique P E 'P-y satisfying 

Taking fl = f- P we find.that f' E BMO+(p,"!,w) and 

IIt"IIBMO+(p,-y,w) ~ cp,-y II f IlBMoF+(lJ.·,.II') 

= cp,-y lIilIBMoF+(P.1. W )/P.., 
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as we wanted to show .• 

Proof of Theorem (2.4). If we have that w(( -00, ,8)) = 00 holds for every ,8 
then, since Dl = D, Theorem (2.3) coincides with Theorem (2.4). 

Now, let us assume that there exists ,8 satisfying w(( -00, ,8)) < 00. If L be-
longs to [H~,-y( w )]*, by part (i) of Theorem (2.3), we have that i(L) = £ E 
BMO+(p,,,(,w) and 

L(J) = J £(x)f(x) dx 

holds for every fED. If f belongs to the dense set Dl , then 

L(J) = J £/(x)f(x) dx 

holds for every £1 E £ E BMOF+(p,,,(,w)/P, , since £ - £I = P E 'P, and 
J f(x)P(x) dx = O. Then, we can define T(L) = l and, in virtue of part (i) 
of Theorem (2.3) we obtain that 

Thus, 

(3.21) 

By Proposition (3.20) given a class l E BMOF+(p, ,,(,W )/P" there exists a unique 
representarve £1 such that £1 E BMO+(p,,,(,w) and, 

(3.22) 

Now, by part (i) of Theorem (2.2), the functional 

L(J) = J l(x)f(x) dx , 

is well defined on the dense set D and, 

(3.23) 

Therefore, i(L) = £1 and, in consequence, T(L) = it = l showing that T is a 
surjective application. Moreover, in virtue of (3.21), (3.23) and (3.22) we have 
tha, 
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ThiS' finishes the proof. _ 
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