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ABSTRACT.  Let HZ (w) be the Hardy spaces introduced in [3] defined for
one-sided weights w, see [4], and a suitable one-sided maximal function for
distributions on the real line. The purpose of this paper is to give a charac-
terization of the dual spaces of H} (w) in terms of certain classes of weighted
BMO of Lipschistz spaces. The method used here is similar to that of J.
Garcia-Cuerva in-[1] for HP(w) spaces, where w belongs to A, classes of B.
Muckenhoupt. For the case of w(z)>0 almost everywhere, the characterization
obtained generalizes the one given in [1], see Theorem (2.4).

1. NOTATIONS, DEFINITIONS AND PREREQUISITES

Given a Lebesgue measurable set E C IR, we denote its Lebesgue measure by
|E| and the characteristic function of E by X g.

Let f be a measurable function defined on IR . The one-sided Hardy-Littlewood
maximal functions M~ f and M™f are given by

_ B 1 rr + B l z+h
Mo fe) =sup o [ 1Ol and M) =sup g [ It

As usual, a weight w is a measurable and non-negative function. If EC IR is a
measurable set, we denote its w-measure by w(E) = [, w(t)dt.

A weight w belongs to the class A;, 1 < g < o0, if there exists a constant ¢
such that

1 [* 1 ot A
sup (—/ w(t)dt) (—/ w(t)"ﬁdt) <ec,
k>0 h z—h h z
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for all real number z. We observe that w belongs to A7 if and only if M~ w(z) <
¢ w(z) holds for almost every z.

Given w belonging A}, 1 < ¢ < 0o, we can define 2_o > —00 and T < +00,
such that

(i) w(z)=0a.e. in(—00,T_c),
(1.1) (i1) w(z) = oo a.e. in (T, 00) and,

(iii) 0 < w(z) < oo for almost every z € (z:_oo,a:oo) .

We always have z_oo < Too. In order to avoid the non-interesting case of T_oo =

Too, it is necessary and sufficient that there exists a measurable set E satisfying
0 <w(E)<oo.

Let f be a measurable function with support contained in an interval I (I not
necessarily bounded). We shall say that f belongs to L"(I,w), 0 < r < o0,
if || fller(rw) = (flf(a:)lrw(:c)da:)l/r is finite. If I = IR or w = 1 we simply
write L7(w) or L"(I) respectively, and L"(IR) shall be denoted by L". Given a
positive integer +y, we say that a function f belongs to LI([,w) if f € L"(I,w)
and, if |I| < dist(z_oo,I), then we require f to have null moments up to the
order v —1, i.e., ff(.r)a:kd:c = 0 holds for every integer k, 0 <k <y —1.

The following lemma contains the basic results for A} weights and one-sided

maximal functions that we shall need in this paper.

Lemma 1.2.

(i) Let 1 < q1 < g2 < oo. If the weight w belongs to the class A;"l , then it also
belongs to A;’z . .

(ii) Let 1 < ¢ < co. The one-sided Hardy-Littlewood maximal M* is bounded
on LI(w) if and only if w belongs to A} .

(iii) Given w € A;’ , 1< ¢ < oo for every a € IR, the w -measure of the interval
(a,00) is equal to infinite.

(iv) Let w € A;' , 1 <¢< o0 Lst a < B be the end points of the bounded
interval I. Then, the interval I with end points a — |I| and a, satisfies

w(I) < cw w(l)

where the constant c,, does not depend on I.

A proof of (i) may be found in [4]or in [2]. As for parts (1) and (3i1) the proofs
are easy. Part (iv) is an immediate consequence of (11).
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Let w belong to Af, 1 < ¢ < oo, and let z_ be defined as in (1.1) for
the weight w. As usual, C{°(IR) denotes the set of all functions with compact
support having derivates of all orders. We shall denote by D(z_o0,00) the space
of all functions in C§°(IR) with support contained in (z_o0,00) equipped with
the usual topology and by D'(z_e,0) the space of distributions on (z—c0,0).

Given a positive integer v and z € IR , we shall say that a function 9 in C§°(R),
belongs to the class ®.(z) if there exists a bounded interval Iy = [z, 8] containing
the support of 1 such that D7y satisfies

LDl < 1.

Let F be a distribution in D'(£_,00). We define as in [3]the one-sided maximal

M *
function FYj ., as

(1.3) Py (e) = sup{l < f,6 > | % € 84(2)} |
for every = > 7_o -

Fixed w belonging to A;*’ (1 < g < ), a positive integer v and, 0 < p <1 such
that (y+1)p > ¢ > 1 or (y+1)p > ¢ if ¢ =1, the distribution F' in D'(z-c0,0)
belongs to HY _(w) if the “p-norm”

o) 1/p
IFN a2 (w) = (/ F_T_,.Y(m)Pw(z)dx) ,

— o0
is finite.

In the sequel we shall suppose that w belongs to A:IF , 7 is a positive integer,
0 < p <1 and, that they satisfy (y+1)p>gifg>1lor (y+1)p>qif ¢=1.

Lemma 1.4. Let I C (£—o0,00) be an interval and let f belong to Ly(I).
‘Then for any-z > Z_o , We have

i (@) < exllflloo [MF X ()]

Moreover,
ez ) < crw Iflloo w(I)'/? .

The constants ¢, and ¢, do not depend on f.

This lemma can be found in [3] as Lemma (3.2). Thus, as in [3] we have the
following definition of p-atom with respect to a weight w.
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A function a(z) defined on IR is called a p-atom with respect to w if there
exists an interval I containing the support of a(z), such that

(i) I is contained in (z—_c0,00) and w(I) < oo ,
(i) a(z) € LP(I) and,
(i) Nlalloo < w(D)™/7.

We shall say that I is the interval associated to the atom a(z).

The following theorems are of fundamental importance in the theory of the HY _(w)
spaces. Their proofs can be found in section 5 of [3].

Theorem 1.5. (Decomposition into atoms).  If F belongs to HY _(w), then
there exists a sequence {ax} of p-atoms with respect to w and a sequence {Ax}
of real numbers such that

F = Z)\k ak in D'(2-0n,0)

and,
llF ke (w) < DIl < el Fllhz

holds.

Remark 1.6. By Lemma (1.4) and Theorem (1.5) we have that the set D of
all functions f such that there exists an interval I C (2-c0,00) with w(J) < oo
and f € LP(I), is dense in HY _(w).

Theorem 1.7. Under the hypotheses of Theorem (1.5) and if, in addition, we
assume that T_o, = —oo, then the p-atoms {ax} in the decomposition can be
taken in such that way that the corresponding associated intervals are bounded
and therefore all the p-atoms in the decomposition have null moments up to the
order v —1.

Remark 1.8. If r_o = —00, by Lemma (1.4) and Theorem (1.7) we have
that the set D; of all functions f such that there exists a bounded interval
I C(2-00,00) with w(I) < oo and f € LP(I), is dense in HY _(w).

We shall denote [H_’,’,,.,(w)]‘ the dual space of H} _(w) formed by all the real
valued continuous linear functionals L with the norm

NIl = sup{IL(F)| : IFllag_quy < 1}-
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Let v be a positive integer and let P, be the linear space of all real polynomials
of degree less than . For any bounded interval I, we define the inner product
on P, by the formula

(P,Q)r = /]P(z) Q(z) dz .

Let {ek};’;é be an orthonormal basis of P, for the case when I = [0,1]. It is
easy to verify that for any I = [a,b], the polynomials
(1.9) ex,1(z) = 1|7/ ex((z — a)/|I1) 0<k<y-1

form an orthonormal basis of P., with the inner product ( +, +);. Given a function
f such that fX; € L', we define its orthogonal projection on P, as

y—1 b
(1.10) Pi(f)z) =) (/ f(y) ex,1(y) dy) ek,1(z) -
k=0 a
We observe that, by (1.9),
(1.11) sup |ek,7(z)| = 1|72 sup |ex(z)| < (:7,|I|—'/2 ,
z€l z€(0,1]

holds for every integer k, 0 < k <y — 1. Then, if fX; € L*, by (1.10) and
(1.11), we have that

(1.12) : |Pr(f)(@)} < exlif X tlloo

holds for every z € I, with a constant ¢, depending on v only.

We shall need a result that allows us to compare Pj(f) and P;(f). To be more
precise we state the following lemma.

Lemma 1.13. Let I C J be two bounded intervals such that |J| < 5|I|. Then,
if fX j € L', we have that

1PUS)(=) - Pa()(@)] < ﬁ /, \f - Py(f)ldz ,

holds for every z belonging to J .

Proof. Let {ex}]Zs be the orthonormal basis of the subspace P, defined above
and let {ex, 1};’_:_(1) be the orthonormal basis given in (1.9). Thus

Pi(f)(@) - Pr(f)e) = Pilf - Pa(Fa)
¥-1
=5 (17 - PateIewsds ) exrta).

k=0



Consequently, if z belongs to J we get
[Pr(f)(z) — Ps(f)(z)| <
y-—1
< [ 117 = PO dsllesXalles X o
k=0 '

By (1.11), we have |lex,1 X 1lloo < ¢,|I|7*/2. Moreover, since I C J and |J| <
5|I|, it follows that if z € J then |z—a|/|I| < 5, which implies that |lex,7 X 7]|oo <
[|71/2 supy, <5 lex(y)| < |I|=/2. Therefore, for every z € J we obtain

|Pr(f)(2) = Ps(f)(z)| < 7 eI /1 Ilf = Ps(£)I(s)lds ,
as we wanted to show. m |

We shall say that a function £, defined on (z_oo,Z0), belongs to BMO4(p, vy, w)
if for every interval I C (Z—e0,00) With w(I) < oo, we have

(i) £X 1 belongs to L,

(i) if |I| > dist(z—co0,) then [} |€(z)|dz < c w(I)'/? and,

(iit) if |I| < dist(z—co,]) then the orthogonal projection Pr(£) is well defined
and

ZW@%-H@X@uxscmnvw
holds.

The constant ¢ does not depend on the intervals I and the least constant ¢ for
which (ii) and (iii) hold, shall be denoted by ||€||ppmo.(p,v,w) -

Remark 1.14. Let £ belong to BMO4(p,7y,w) and let A belong to L3°(I),
where I C (2_o0,00) is an interval with w(I) < co. If |I| > dist(z_c0,I), by
the definition of BM O, (p,v,w), we have that

| / A(z)l(z)dz| < nAum‘/I (@) ldz < [[Allooll€ll B30, prmsyw (D)7 -

In the case that |I| <dist(z-0, ), since, By definition of L$°(I), the function A
has null moments up to the order v — 1, we get

/Auw@wz

- ‘ [ A@ta) - Proy@ies
< [l 4lloo /, lt(z) — Pr(0)(z)|dz

< 1 4lloollell 5 ros (rmyw (D)7
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Remarks.

(a) If there exists f > T_oo such that w((z-c0,)) < 0, then (BMO4(p,7,w),
Il - lBrO,(p,v,w)) 1 @ normed space.

(b) If we have that w((z-c,B8)) = oo holds for every f > z_o then
Il - |BMO4(p,v,w) I8 & seminorm. Indeed, ||¢|lpmo, (p.r,w) s €qual to zero
if and only if £ belongs to P., the set of all polynomials.of degree less than

7. Therefore defining, as usual, for ¢ belonging to BMO4(p,v,w)/P~ the
application

||£“BMO+(p,'y,w)/’P., = IIZ’||3M0+(p,'y,lv) )

where £ — ¢' € P,, we obtain the normed space (BMO4(p,v,w)/P,,
I lBMO4 (57,01 /P5) -

We shall say that a function £ defined on (z-o,Zoo), belongs to BMOF, (p,vy,w)
if for every bounded interval I C (z_o,00) with w(I) < oo, we have

(i) £X 1 belongs to L! and,

(ii) [, €(z) — Pr(£)(z)|dz < c w(I)!/P holds with a constant ¢ not depending on
the intervals I.

The least constant ¢ for which (ii) holds shall be denoted by ||€||pmor, (p,v,w) -

Remarks.
(a) The application ||+ ||BpmoF,(p,v,w) i @ seminorm and, as usual, it induces a
norm || - IIBMOF+(p v,w)/P, in the quotient space BM()F+(p,‘y,w)/'P

(b) If we have that w((z—co,8)) = 0o holds for every 8 > z_o , then the space
BMOF,(p,7,w) coincides with BMO.(p,v,w).

2. STATEMENT OF THE RESULTS

In this paragraph we state the results that characterize the dual space of HY _(w),
which is the purpose of the paper.

Theorem 2.1. Let w € A}, r > ¢, v a positive integer and 0 < p <1 such
that (y+1)p>qif ¢>1 or (Y+1)p>1 if ¢g=1. If L belongs to [H} _(w)]*
we have that

(i) if there exists B > T_o such that w((r-c,B)) < oo, then there exists a
unique £ belonging to BMO4(p,~,w) such that

L(f) = / Uz) f(z) do



holds for every f € LI(I,w) where I C (2-c0,00) is any interval with
“w(I) < co. Moreover,

“e”BMOJ,(p,'v,w) < cyrpwl L -
(i) if we have that w((z-c0,B)) = oo holds for every B > z_o, then there

exists a unique class £ belonging to BMO4(p,v,w)/P~ such that for any ¢'
belonging to £, we have that

L(f) = ] 0(z) f(z) dz

holds for every f € L'(I,w), where I C (z-o,00) is any interval with
w(I) < co. Moreover

1l BMO4(pviw) /Py S Cvirpwll Ll -

Theorem 2.2. Let w € A;I" , 7 a positive integer and 0 < p < 1 such that
(y+1Dp>qifg>1or (y+1)p>1if ¢g=1. Then, we have

(i) if there exists B > T_co such that w((z—c,B)) < 0o, given £ belonging to
BMO4+(p,v,w), the functional

L() = [ ta) fla) ds
is well defined on the dense set D (see Remark (1.6)) and,

IL]| < cpyyw 1l BMOL(p v w) -

(ii) if we have that w((2—c0,)) = 0o holds for every f > -0, given £ beIong—
ing to BMO.,.(p,'y,w)/P., and ¢' in the class ¢, the functional

L) = [ ¢ f(z) de
is well defined on the dense set D, L is independent of £' € ¢ and

IlL]| < Cp,-v.w“e“BMO+(p,'r.w)/7’w :

Theorem 2.3. Let w € A}, 7 a positive integer and 0 < p < 1 such that
(y+1p>qifg>1or(y+1)p>1if ¢g=1. Then, we have
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(i) if there exists B > T_o satisfying w((z-c0,B)) < 0o, then there exists
a bijective linear application i from [HY  (w)]* into BMO4(p,vy,w) such
that if i(L) = £, then

L) = [ #e) fa) da
holds for every f € D. Moreover,

allLll £ 1l BMo(p,v,w) < c2llLl| -

(ii) if we have w((¢—o0,B)) = oo holds for every 3 > z_o, then there exists
a bijective linear apphcatzon i from [H (w)]* into BMOF4(p,vy,w)/Py
such that if i(L) =¢ and € belongs to , then

L) = [ £@) f(a) da
holds for every f € D. Moreover,

al|lLll £ lllBmoF, (p,v,w)/P, < c2llL]| -

Theorem 2.4. Let w € A; , 7 a positive integer and 0 < p < 1 such that
(y+lp=2qifg>lor(y+1)p>1ifg=1. If z_o = —oo then the conclusions
of part (ii) of Theorem (2.3) hold for every f belonging to the dense set D, (sce
Remark (1.8)) even if there exists 8 such that w((—o0,f3)) < co.

3. PROOFS OF THE RESULTS

Lemma 3.1. Let w € A+, ¥ > 1 an integer and, 0 < p < 1 such that
+l)p>2g>lor(y+l)p>g=1landr>qg>1o0rr>q=1. Let
I C (z-00,00) be an interval with w(I) < co and let f belong to LI(I,w).
Then f € HY ,(w) and

-1
v

1
”f”Hi,,(w) < ‘Cv.r.p,w"f”L'(l,w)w(I)"

Proof. Let a < f be the end points of I.
If max(z—_oo,a — |I|) < z, by definition (1.3), we have f} . (z) < M*f(z).
Then, by Hélder’s inequality and applying Lemma (1.2), we obtain

B

oo 8 o .
/ : fi(z)Pw(z)dr < (/ M* f(z) w(zx)d ) w(IUul)

max(z-o,a—|I|) —00

(3.2) < erpwll I g uwyw) %



If there exists z such that z_ < z < a —|I|, then f has null moments up to
the order v — 1 and the interval I is bounded. Let 1 belong to the class ®.(z)
and I, the interval associated with ¢ in this class. We have

<fo>= [ 10 [¢(t> AN ar] dt

8=0

We may assume that IhI,/, #0, then a —z < |Iy| and we get

< s> 1< 8= e [y

|II ¥+1 1
<o) 7 ol

Since for every z such that z_o < z < a — |I|, the one-sided maximal function
M* X 7 satisfies: '&‘% < Mt Xz), it follows that

. 1
f1 @) el xste™ o [0
Now, by Holder’s inequality and taking into account that w € A}, we have

1 , 1/
= [0l < Wl o ( [t i)
< Cr,w “f”L'(I,w) w(f).—l/r )

which implies that
F3 (@) < exmull fllir w7 X))
Then, by Lemma (1.2), we get
Q_I” * ' 1-E£
(33) [ ataPu@is < eqmpullf1 D'
By (3.2) and (3.3), this lemma is proved. =

Remark.  The estimation for the p-norm |f||g (w) in Lemma (1.4) also
follows from Lemma (3.1).

Lemma 3.4. Let w >0 and r > 1. Let I be an interval with w(I) < co.
Then, if gX; € L"(I,w) we have that gX; € L'(I,w). In particular, the
orthogonal projection Pr{gw) is well defined.
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The proof is an immediate consequence of Holder’s inequality.

Lemma 3.5. Let w € A'q" andr >2q¢>1orr>q=1. We assume that
I C (2—c0,00) is an interval satisfying the condition |I| < dist(z-oo,I). Then, if
f € L"(I,w) we have that f € L'(I). In particular, the orthogonal projection
Pr(f) is well defined.

Proof. © Let us observe the condition |I| <dist(z-o0,) implies that I is a
bounded interval and if we define I as in Lemma (1.2) it follows that w(I) > 0.
By Holder’s inequalitiy and the A} condition, r > 1, we get

/Ilf(w)ldm < (/1 |f($)|"w(z)dx>1/r (/Iw(z)_rwdm>1/r.

< crw ) | fllzr(r,uyw(@) ™" < 0o,

as we wanted to show. =

Proof of Theorem (2.1).

Part (i). We consider a sequence {fk}k>1 T oo, such that for every k > 1,
the interval Iy = (¢_o0, Bx) satisfies w(lx) < oo. In the case of W((Z-0o,Too)) <
0o, we take Bk = oo, k> 1. Given f € L"(Ix,w), by Lemma (3.1), we have

LA < TN a2 o)

1_
’ -<-‘ C‘Yrryp:w ”L“ ”-f“Lr(]kyw)w(Ik)P T

Therefore, L induces a continuous linear functional on L"(Ix,w). Then, by
Riesz’s Representation Theorem, there exists a unique g € L”(Ik, w) such that

L(f) = / £(z) gr(2) w(z) do

holds for every f € L"(Ix,w). The uniqueness of gx, implies that the restriction
gk+1|1, isequal to gi almost everywherein Ij ; then, there exists a unique function
g defined on (z_oo,Z00) such that for every interval I C (2-00,00) with w(I) <
00, we have

(3.6) 1 lg9(2)|" w(z)dz < oo and

(3.7 L(f) = [ f(z) g(z) w(z)dz,  forevery fe L"(I,w).

Let us prove that £ = gw belongs to BMO4(p,v,w). Let I C (2-o0,00) be
an interval with w(I) < oo and dist(z—00,I) < |I|. The function f = sg(£)X 1

belongs to L"(I,w). Besides, by (3.7), Lemma (3.1) and taking into account that
£l 2r (1,0) < I fllzow(I)/7, we have

(3.8) [t|de = [ € f dz = L(f) < cqyyrpll Lllw(I)'/? .
I
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Now, we assume that |I| <dist(z_c,]). By (3.6) and Lemma (3.4), the orthog-
onal projection Py(¢) is well defined. The function f = sg[¢ — P1(£)]X | belongs
to L"(I,w) and by Lemma (3.5) we get

[1e=Proiaz = [1e- Prief o
I I
= [ e~ Puolis = Pi(1) e
= [ar-risnaa.
Applying (3.7), Lemma (3.1) and (1.12), we obtain

/1 1€ — Pr(0)] dz = L{(f - Pr(f)Xs]

SNLI exyrpy 10 = PrOOX ||z w(D)HP
<y I w(D)7P .

(3.9)

From (3.8) and (3.9) it follows that £ € BMO4(p,v,w).

Part (i1). Now, for every 8 > z_c0 , w((Z—c0,8)) is infinite. This condition implies
that z_o = —0o. Let {ax}s>1 | —oo and {Br}i>1 T T be two sequences such
that for every k > 1, the interval Iy = (ax, k) satisfies w(Ix) < oco. If there
exists a satisfying w((a,zw)) < 0o, we take fx = T, k£ > 1. By Lemma
(3.1), L induces a continuous linear functional on LI(Ix,w), which, by Hahn-
Banach, can be extended to L7(Iz,w). By Riesz Representation Theorem, the
extension is represented by a function gx belonging to L™ (Ix,w). Suppose there
exist functions gx and g} in L™ (Ix,w) such that

[ 1@) 91(@) wl@) dz = [ 1(2) gite) () de

holds for every f € LI(Ix,w). We want to show that g = gi — gr 1s equal to
Pw™! almost everywhere in I, where P is a polynomial of degree less than 7.
In fact, given f € L™(I,w), the function [f — P (f)] X 1, belongs to LI(Ix,w);
then, using Lemma (3.4), we have

0= ]] 1 = Pu(flgw ds

- [ 1= Puis) lo- 2w e

u

=/ f[g_M]wdz
I w
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Thus, since I} C (Z—oo,Zoo) it follows that g = &*-t(u—gl—"—l a.e. in [}.

Taking into account that Ij = (a;;,,@k) T (£—00)Too), We can define a function g
on (Z—co,Zoo) such that for every I C (-0, Zo0) With w(I) < oo, the properties
(3.6) and

L(f) = /f(:c) g(z) w(x.) dz, for every f € L7 (I, w)

also holds.

In this part (ii), if we have an interval I with w(I) < oo, then |I| < dist (x_oo,I)
= oo and arguing as in (3.9), it follows that £ = gw € BMO+(p,'y, w). =

Let f be a locally integrable function on (z_o,00) belonging to H £ ,(w). For
every integer n, we define the open set

Qn={z:2>2_«, fi(z)>2"}
and we denote its component intervals by I,;, i > 1, where I, is, if there
exists, the connected component that starts at z_.,, and In1 = 0 otherwise. In

addition, for every i > 1 and j > 1, we define functions 7, ;(z) > 0 belonging
to C§°(IR) such that

i21

(3.10) (Z nn,i,j(x)) Xr,:(z) =X, (z), i>1;

~and polynomials P, ; j(f) of degree less than v, explicity given by the formula

Paii(F@) =Y
k=0

( [ HOE 615(6) X1 (55 ) (2

where {e}’ i ps o is an orthonormal basis of the subspace of L?(nn,ij X1, ;) gen-
erated by 1,z,...,27"!. From their definition, it follows that the polynomials
Pn,i,j(f) satisfy

/f(m) z° Nnyij(z) X1, ,(2) do =
(3.11) = [ P )@ M) X1 () d, 05 <.

For an explicit definition of the functions 7, ; see section 5 in [3].
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We recall that in the proof of Theorem (2.2) in [3], (see (5.1)), for every 7 > 1
and j > 1, we obtained the estimate

(3.12) sup |Prij(f)(2)] < 2,

z€support(nn,i,j)
where the constant ¢ is independent of n and f.

Taking into account the notations introduced above, for each integer n, we con-
sider the function g,(z) defined as

(3.13) () = f(2) X eu(2) + Y D Paii(F)(@)n,ii (@) X 1,4(2) 5

i>1j>1

whick: satisfies

(3.14) lgn(z)] < c 2™ a.e. in (Z_c0,00) ,

where the constant ¢ is independent of n and f.

Proof of Theorem (2.2). Let £ belong to BMO4(p,v,w). For every bounded
function f supported in an interval I = (@, ) C (¢ _00,00) with w(I) < oo, we
have that ‘

/ (@) 1f(2)] de < || flloe /] (z) dz < oo .

Then, the linear functional L(f) = [£(z)f(z)dz is well defined on the dense set
D (see Remark (1.6)). We want to show that L is a bounded functional and
therefore that it can be extended to HY (w). Since f € L*°, if M is large
enough, then the set Qs is empty and by (3.13), we have gy = f. Thus,

M-1

(3.15) F(@) =Y [gnt1(2) = gal(2)] + gn(z) -

n=N

From the definition of g,, if follows that its support is contained in the union
ITuQ, C(2-00,f).

If £€ BMO4(p,v,w) and w((z-c0,)) < 0o, then ¢ is integrable on (r_oo,B)
and taking into account (3.14), we get

gnldz .

oo

M-1 .8 B
/fedx= > / (gn+1—gn)€dx+/
n=N T_oo ' r_

For the last integral on the right hand side, we have

‘ / gnt do

B
<coV / 0] dz < ¢ 2V 10l 5310 (pror (2 —cor B
T—oo : : .




which goes zero for N tending to —oo .

Now, let us suppose w((z—co,8)) = co. Then, the hypothesis w(I) = w((a, 8)) <
oo implies that z_o = —00 < a < # < +00. By Lemma (1.4) if f belongs to
L (I), then we have

f1(@) < ey [Iflloo[M* X f(2)]" .

On the other hand, it is easy to see that for z < 3, the following inequalities

1] <Mtx(z)<4 1]

1
3.16 - —_— —_————
(3.16) 2 a—z+2|I| T a-—ux+ 2|

hold. Thus,
Qn={z:2" < fi(z)} C{z:2" < ¢y || flloc|MT X (z)]"*"}

I| y+1
. on o 4‘7+1 __l____ — Jn .

It can be verified without difficult that J, is cither the empty set or an interval
with finite end points, where the upper end point is equal to 8. Since I = (a, 3),
then TU J, = K, is a bounded interval. Besides, if n is negative enough then
Jn D I and therefore K, = J,. In conclusion, g, is supported in a bounded
interval K, = (6,8) with w(K,) < co. We shall estimate the w-measure of K,
for very negative values of n, i.e., when K, = J,. In virtue of the first inequality

of (3.16) we have
Jn C{z:2" < cy ||flloo 8 [MT X ()"} .

By Chebyshev’s inequality, if s > 0 then
w(7n) < ey lfl1% 27 [IMF X (@) u(z) da

Since the weight w satisfies the hypotheses we can assume that w € A}, with

(y+1)p>r>1. Let s be a real number such that 0 < s < p and (y+ 1)s =
r > 1. Then

/[M+ X 1(z)) " D0(z) dr < ¢y g w(l),

and thus, we obtain

(3.17) W(Jn) < Cyow 1fll5e 27™° w(I) .



It is easy to verify directly that [gn(z) z* dz =0 for 0 < s < 7. In fact, adding
in (3.11) for § > 1 and ¢ > 1, we have

ZZ/f(x) z° Nnij(z) X1, (7)) do =

i>1 j>1

(3.18) = ZZ/P,,,,-‘,,‘(f)(z) € nij(z) Xp, (2) dz, 0<s<7.

' i>1 j>1

In virtue of (3.12), since |Pr i ;j(f)(2)1n,i,j(2)| < ¢ 2", U;sy In,i = Qn (in this
case: Ip,1 = 0) and Q, C K, = (6,8), where ¢ is finite, then by Lebesgue’s
Dominated Convergence Theorem the right hand side of (3.18) is equal to

/= [ZZPn,z-,Af)(x)nn,i,j(x)xz,,,..m} da

i>1j>1

On the other hand, taking into account that f belongsto L and that its support
is a bounded szt, by (3.10) and the Lebesgue’s Dominated Convergence Theorem,
the left hand side of (3.18) is equal to ‘

» / (@) i (@)X o(2) dz = 3 / f(z)z*X;, () da

i>1 j>1 i>1

=/ f(z)z® dz .
Qn
Thus,

/gn(z) z dz = / f(z) 2° dz +‘/ f(z) z2° de = /f(:t:) z°dz =0
cSn Qn
holds for 0 < s < 7. '
Going back to (3.15), we have that if £ belongs to BMO4(p,7,w) then
M-1
/f(z)f(f) dz = / [Z [gn+1(2) — gn(2)] + gN(f'»‘)] (z) dz ,
KN Ln=N ‘
and, since £ is integrable on Ky, we get
M-1
[t de= Y [ lonn(e) - gn@lle) do+ [ on@)t(e) do
‘ n=N YK~ Kn

IfN %g negative enough, then Ky = Jy and, from the fact that gy has null
moments up to the order 4 — 1, for the last integral on the right hand side we

/ngl = / 9N£~ =
JIn

<c2” [ e) = Pon(O@lde < <2 WllsmoypnmreIn)?
N

have

/J gnle— Pry(O)ds
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which, in virtue of (3.17) is bounded by
¢ ANO=IP) | flelp (17 .

Since s < p’it follows that 1 — s/p > 0 and then the last expression goes\ to zero
when N tends to —oo. This proves that A}iin [ gn€ dz = 0, also in this case.
—00

Therefore, we always have

. M-1 ‘
In the proof of Theorem (2.2), in section 5 of [3], it was shown that.
gn+1(z) — gn(z) = Z Zn,i(x) + Zn,l(w) »
i>1

where the support of the function Zn,,- are contained in the connected components
Ini of Qn, || Anllec < ¢ 2" and, moreover, if i > 1 then f,:f",,-(z)m’ dz =
0 holds for 0 < s < . Since Q, is contained in an interval with finite w-
measure ((Z_oc0,8) or J,) and, by definition, £ is integrable on these intervals,
the Lebesgue’s Dominated Convergence Theorem and Remark (1.14) imply that

‘/ gn+1_gn Ed-'l"

Z/ ni(2)l(z) dz

i2>1

< ¢ 2|8l MO (prvw) D w(Tni)' 7

i>1
<c znlw“BMoJr(PmW)w(Qn)l/p

Then

\/fédx g;

(o] 1/p
< c bl BMO4(p,v,w) [Z 2"pw(Qn)]

/ (gnt1 — gn )l dz

—o0
<ec “€”BMO+(p,"/,U;) ”f“H‘jr,,(w) J

as we wanted to show. m

Proof of Theorem (2.8).  We define the application i as i(L) = £, where £ is
the function associated to L in part (i) of Theorem (2.1), or (L) = 7, where lis
the class associated to L in part (ii) of the same theorem. Since D is a dense set



in [HY (w)]*, it follows that ¢ is an inyective application. Taking into account
Theorems (2.1) and (2.2) then Theorem (2.3) follows immediately. =

For every non-negative integer n and every real number a > —gnt1 , we define
the interval <
Ino=[-2""q] .

If @ = —2" then, we denote by I, the interval I,, _on = [—2"+! —2"]. Moreover,
given a function £ belonging locally to L!(—o0,a], we denote the orthogonal
projections Pr, ,(¢) and Py, (£) by Pp, and P, respectively.

Lemma 3.19.  Let w € A;" , 7 a positive integer and 0 < p < 1 such that
(y+1)p>qifg>1or (y+1)p>1if g=1. Assume z_o = —00 and let a. and
n such that |a| < 2" and w((—00,a)) < co. If £ belongs to BMOFy(p,7,w),
then

(i) for every k > n, we have

Sup |Pry1(z) = Pi(2)] < ey 1l BMOF, (p,70)2 w(Ips1,0)'?

and,

(ii) sup,er, , |Pa+1(2) = Pra(2)| < ¢y [l BMOF,(p,v,w)2 7" w(Int1,0)/? .
Proof. For |a|] < 2" and k > n, we have
[ Tet1,a] < 51Tk < 5|Tk41] -

Then, by Lemma (1.13) and since I U Ix41 C Ig41,0, We get

sup |Pri1(e) — Pi(z)] <

TClin,a

< sup  |Piya(e) — Pryra(2)| + sup  |Prt1,a(e) — Pr(e)]
z€lx41,a z€lkt1,a

< ey 9~ k-t / |£ — Prgi,oldz + cy 2k / |€ — Prt1,0ldz

T4t Tk

3 - [ :

< ey 2 | — Piy1,0ldz .
2 Iky1,0

Therefore

A 3 _
sup |Prya(z) — Pi(z)| < 567 2 “ Nl symor, pwywTk+1,a)

xGIn,a
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which is part (i) of the lemma. In order to prove part (i), we observe that
|In+1,a| < (5/2)|In+1| and |In+1| < 2|In,ai, thus ‘In+1,a| < 5|In+1| and IIn+1,a| <
5|I5,4|. Then, by Lemma (1.13) and since In41U Ine C Inti,a,

sup IPn+1($) - Pn,a(-'lf')‘ <

zeln,a

S C-Y‘In.*_]l_l / |( - Pn+1’a|d.f + C,Yl.[nyalﬁl / iE - Pn+1,a|d$
In.+1

n,a

S Cy 2_'"/ |€ — Prny1,eldz
In+1 “

w MIOO

< EC'Y IlellBMoF+(p,y,w) 2_n 'LU(In+1,a)l/‘B

b
as we wanted to show. m

In order to prove Theorem (2.4) we need the following proposition.

Proposition 3.20. Let w € A;I* , v a positive integer and 0 < p <1 such that
(y+p>qifg>1or (y+1)p>1if ¢g=1. Assume z_o = —oo and that
there exists ( satisfying w((-—o0,)) < co. Then, given ¢ € BMOFy(p,7,w)/Py
there exists a unique ¢ € £ belonging to BMO4(p,~,w) such that

”el||BMO+(p,7,w) < Cpy He“BM0F+(pmw)/7’w :

Proof. Let "€ BMOF,(p,v,w) and b such that w((—o0,b)) < co. Choose m
such that |b| < 2™. By part (i) of Lemma (3.19), we have that for every k > m

sup |Prt1(z) — Pr(z)| < colllllBMOF, (p,v,w) 27F w(Iy41,8)' 7

z€EIm»
Then given 1 > j > m

-1

sup |Pi(z) — Pj(z)| SZ sup |Prt1(z) — Pr(z)l

z€Im,b k=j z€Im b
) i—1
"<— C'Y ||EI!BMOF+(p,—y’w) Z 2—k w(Ik-*-l,b)‘/P
k=j
< ¢y el BMOF, (p,7,w) wé(—oo,b))l/P 9~i+l

This implies that {Px}x>m is a Cauchy sequence in the Banach space of the
continuous functions on I, ;. Therefore there exists a polynomial P € P, such
that '

hm sup |P(z)—

-—*OOIE m,b
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Thus,

b 0 b
/ |6~ Pldz= ) / |£—P|d:c+/ |¢ — P|dz
—o0 I, —2m+!

n=m+1
< ) / € — Pldz + Y ] |P, — P|dz
n=m+1 In n=m+1 In
+/ |£—Pm,b|dx+/ | Py — Pldz
Im,b Im,b
=I+II+1I1+1V.

Let us estimate I + IIT . By definition of BMOF4(p,7,w) and recalling that
0<p<1, wehave

IT+1III< ||£||BMOF+(p,‘y,w) ( Z w(In)l/P + w(Imyb)l/P>

n=m+1
< ||l BMOF4(p,v,w) w((—o00,b))!/? .
Next, we shall estimate II. We have

II1 < Z 2/} | P41 — Px|dz .

n=m+1k=n

Using part (i) and (ii) of Lemma (3.19) with a = —2", we get

oo o0
II< C"Y ||£||BMOF+(,,’%W) Z A Z 2_k w(Ik_H U...u In)l/p .

n=m+1 k=n

Since 0 < p < 1, the double series on thé right hand side is bounded by

[ 00 k+1 1r
> 2”?22-’“’210(1]-)}
k=n j=n

n=m-+1

r 1/p
SN w(Iy) Y 2"‘1’}
7 1

Ln=m+1 j=n k=j—1 .

1/p
Cp [ Z 2""22_”’10([]‘)}

IN

IN

n=m+1 =n

. i/p
=c,[ 3 27Pu(l) Y 2""}

j=m+1 n=m+1

j=m+1

1/p
Sc;{ > w(Ij)} < chw((—00.5)'7* .
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Thus,

IT < ¢y €l Bror, o) wl(=00,6)'/7 .
Finally, let us estimate IV . We have

/ |Pm,b—-P|d1‘ S Z / IPk+1 —Pk|d$+ / [Pm+1 —Pm’bld.'l?
Im,b k=m+l Im b «

=A+B.

m,b

Using part (i) of Lemma (3.19) with n =m and a = b, we get

o ]
A < ey 1l BmoF, (v Imsl Y 27 w(Tkgr,6)'/?
k=m+1

< el BmoF, (p,v,w) w((—o0,b))/?
and using part (i1) of Lemma (3.19), we have

B‘ < Cy HZHBMOF+(p,-y,w)|Im,b|2—mw(lm+l,b)l/p

< Cty ”e“BMOF.}.(p,'y,w) w((—ooab))l/p .

Let us consider two different values of b, say b and ¥, and let P and P' the

polynomials obtained above that satisfy

b
/ |6 — Pldz < ¢ w((~o00,b))!/? < oo

-0
and

bl
/ |6 — P'|dz < ¢ w((—o00,b'))'/? < oo .

— 00

Then, if § = min(b,b'), we have

Y b b
/ lP—P’|dz§/ |€‘—-P|dm+/ |¢ — P'|dz < oo .

Thus, P — P' = 0 showing that there exists a unique P € P, satisfying

) ,
[ 1= Pldz < o Nllmmor, nim wli=e0.6)7
Taking ¢' = £ — P we find that ¢' € BMO4(p,v,w) and

”E'”BM0+(pmw) < Cpy IléllBM()FJ,(p-‘,.ur)

= cpy el BMOF,(p.r.w) /P,
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as we wanted to show. m

Proof of Theorem (2.4). If we have that w((—00,B)) = co holds for every S
then, since D; = D, Theorem (2.3) coincides with Theorem (2.4).

Now, let us assume that there exists B satisfying w((—o0,8)) < co. If L be-
longs to [HY (w)]*, by part (i) of Theorem (2.3), we have that (L) = £ €
BMO+(p77,w) and

L(f) = /Z(:L‘)f(:c) dz
holds for every f € D. If f belongs to the dense set D, then

L(f) = / ¢(2)f(z) dz

holds for every ¢ € £ € BMOF;(p,v,w)/Py, since £ — £ = P € P, and
f f(z)P(z) dz = 0. Then, we can define (L) = £ and, in virtue of part (i)
of Theorem (2.3) we obtain that

€l BMOFs (101 /Py = el BMOFL(7,0) < el BMOL(p7.) S c|| Ll -

Thus,
(3.21) E(L) || BMOFy (v, /Py < €l -

By Proposition (3.20) given a class ¢ e BMOF,(p, 7,@)/ P., there exists a unique
representative £ such that £' € BM O+(p,v,w) and,

(3-22) ”e,”BMO+(p,'1,w) < €p,y "e"BMOF+(P"Y»w)/P7 :

Now, by part (i) of Theorem (2.2), the functional

1) = [ @) de
is well defined on the dense set D and,

(3.23) IZI| < eppyw €11 BMOL (57,0 -

Therefore, (L) = £' and, in consequence, L) =20 = 7 showing that 7 is a
surjective application. Moreover, in virtue of (3.21), (3.23) and (3.22) we have
that _ _ :
alli(D)|BMoF.(prw) /Py < IL|| £ c2ll€'llBMOF, (p,v,w)/Py

= || L) BMOF, (p,v,w) /Py -



n

This finishes the proof. =
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