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Abstract 

The Picard's method for solving Y' = f (x, y) , y (xo) = Yo, is 
considered here for If (x, YI) - f (x, Y2)1 :::; 'P (IYI - Y21). It is shown 
that for rather general Osgood's functions 'P , the difference of two 
successive approximations converges at exponentially decreasing rate. 
An application to parabolic partial differential equations is given as 
well. 
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1 Introduction 
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In a landmark paper W. Osgood (1898) introduced a condition weaker than 
the well known Cauchy-Lipschitz one that guarantees the uniqueness of the 
solution of the initial value problem for a first order equation. Later, A. 
Wintner (1946) showed that Osgood's uniqueness condition implies the con-
vergence of the successive approximation on a sufficiently small interval. 
Later on, J. Lasalle (1949) extended Wintner's method to the case of the 
uniqueness condition for the solution given by P. Montel and M. Nagumo 
in 1926. Lasalle's method is essentially Wintner's but adapted to a different 
condition. One of the improvements introduced by Lasalle is the fact that the 
zero approximation can be chosen to be anyone but sufficiently small in Loo 
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norm. Lasalle and Wintner's papers raise questions concerning the speed of 
the convergence of the successive approximations. It is the aim of this paper 
to answer these questions for the cases of rather general Osgood's functions. 
In fact, we show that in cases such as r.p (t) = t Ilogtl,8 0 < f3 ::; 1, the differ-
ence of two successive approximations IYn+! - Yn I converges at exponentially 
decreasing speed. 

The result in this paper can be easily extended to the case of first order 
systems very much in the same way as Lasalle (1949). For such a generaliza-
tion we refer the reader to the paper by Lasalle . 

. We will deal with the equation 

Y' = f (x, y) 

with initial condition Y (xo) = Yo. f is a continuous function which verifies 
that If (x, yJ) - f (x, Y2)1 ::; r.p (IYI - Y2J), where a ::; x ::; band c ::; Y ::; d. 
r.p satisfies the modified Osgood's conditions below in 2.1. For the sake of 
simplicity we may assume that -a ::; x ::; a, -c ::; Y ::; c and Xo = 0, Yo = O. 
We consider the successive approximations 

x 

Yn+! (x) = J f (t, Yn (t)) dt 
o 

and study the modalit.y of convergence of 

for Ixl ::; {j and {j > 0 suitably small. Within that range we will have 

'(1) 

for n ;:::: no, for some no, r,O < r < I, and C a positive constant. Consider 
the auxiliary iteration 

x 

Zn+! (4) = J r.p (zn (t)) dt, 
o 

in general Wn ::; Zn. We study the speed of convergence to zero of Zn (x), 
which automatically will imply the result. 

In the final section we briefly indicate some other applications to parabolic 
partial differential equations. 
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2 Osgood's functions 

A real valued function <p is an Osgood's function if the following conditions 
are met: 

1) <p is non-negative continuous and monotone on (0,6), for some 6 > O. 
2) f; <p(~) = 00, for any t:, 0 < t: ~ 6. 

Remark 1 1) and 2) above imply immediately that limx __ o+ <p (x) = 0 and 
that i.p is non-decreasing. We will define <p (0) = o. 

2.1 Modified Osgood's condition 

Throughout this paper we shall be concerned with Osgood's functions of the 
type 

b 

i.p(t) =t JW~s) ds, 
t 

where b > 0 is a given constant. W is a non-negative continuous non-
decreasing function on [0, b], such that 

b J W ~s) ds =00. 

D 

b 
Notice that i.p (0+) = O. Occasionally we use the notation (Y (t) = f w(s) ds. 

. t 8 

From now on we will assume b ~ 1. 

Lemma 1 The function i.p satisfies the following properties: 

(i) There is some a, a> 0, such that <p (a) = a. 

(ii) lim <p' (t) > l. 
t-+O+ 

There is some 6,0 < 6 ~ a, such that for t,O < t ~ 6, it holds 
that 

(iii)i.p' and (Yare decreasing, 

(iv) (Y (tn) ~ n(Y (b,,;;:l t), for all n = 1,2, ... 

(v) the quotient ;,<tl) = :Jtl) is bounded, and 

(vi)<p2ft) = ta2 (t) is increasing. 
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Proof. (i) holds because 'P (0) = 0, 'P (b) = 0 and 'P is concave. (ii) and (iii) 
follow from the representation 

'P' (t) = a (t) - w (t) = lb W (s ) ds - w (t) . 
t s 

(iv) We show the case b = 1, the others follow by considering the function 
iT (T) = a (bT) and the change of variable t = bT. Let a, (3, 0 < a, (3 ~ 1, 
then 

1 1 1 1 

J w (as) ds + J w (s) ds < J w (s) ds + J w (s) ds 
s s - s s 

(3 0: (3 0: 

a (a) + a (,8) . 

( ) ~ .. u(t) 1 t 0+ 
V <p'(t) = u(t)-w(t) ---+ ,as ---+ • 

(vi) it (ta (t)2) = a (t)(a(t) - 2w (t)) > o. 

2.2 Most common modified Osgood's functions 
It is straightforward to show that the following functions satisfy the modified 
Osgood's conditions: 

'Pk (t) = t (log (1/ t) )(31 (log log (l/t))f32 ... (log log log (1 /t) )(3" 

for some 0 ~ ,8i < 1, i = 1, ... , k - 1,0 < ,8k ~ 1, k = 1,2, .... These are the 
most common modified Osgood's functions. Observe that for all of them, the 
constant b satisfies that b ~ 1. 

3 Auxiliary lemmata 
From now on we will assume b ~ 1. The following lemmata are the technical 
tools for proving that Ilwnll ~ Crn for some r , 0 < r < 1, C a positive 
constant. Assume that 0 < t ~ I), where I) > 0 is as in Lemma 1. 
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L (( )n) A <p(xt+1 emma 2 'P >''P x ~ nb x ' for any >. ~ 1,n = 1,2, .... 

Proof. From 'P (t) = tfJ (t) and Lemma 1 ( iii), (iv) it follows that 

'P (>''P (xt) - >''P (xt fJ (>''P (xt) 

- >''P (xt fJ (>.xnfJ (x)n) 

< >''P (xt fJ (xn) 

< n~'P (xt (J (x) 

>. 'P (xt+1 
- n-

b x 

L x ()n 1 <p(:I:),,+l <p(X)n+1 _ 
emma 3 10 'P t dt ~ <p'(x) n+1 ~ n+1 ,n - 1,2, .... 

Proof. Lemma 1 (iii) and (ii) imply that 

r 'P (tt dt < r 'P (tt <p' (t) dt = _1_'P (xt+1 < 'P (xt+1 
Jo - Jo 'P' (x) 'P' (x) n + 1 - n + 1 

Lemma 4 There exists a positive constant C such that I: ~ dt ~ n~l 'P (x) n , 
,n = 1,2, .... 

'Proof. Lemma 1 (v)-{vi) and Lemma 3 give 

r 'P(tr dt 
Jo t 

_ r 'P (t)2 'P (tt-2 dt 
Jo t 

< 'P (X)2 r 'P (tr-2 dt 
x Jo 

'P(X)2 1 'P(xr-1 

< '-x-'P'(x) n-1 

C (-n < n_ 1'P x ) . 

Lemma 5 Let Zo be a non-negative function defined for Ixl ~ fJ, Zo (x) ~ 1], 
x 

fJ and 1] small enough. Suppose Zn+ 1 (x) = I 'P (Zn (t)) dt, then, 
o 
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o ~ Zl (x) ~X, 

o ~ Zn(X) ~ cn-2cp(X)", n = 2,3, ... , C > 1 a suitable 
constant. 

Proof. cp is a continuous function with cp (0) = 0, so for 11 > 0 sufficiently 
small, 

IX 

o ~ Zl (x) ~ I cp (1IZoID dt ~ x. 
o 

., Put C = ~' , where 0' is as in Lemma 4 and such that 0' > b. For n = 2, 
we use Lemma 3 to get 

x x 1 
o ~ Z2 (x) ~ I cp (Zl (t» dt ~ I cp (t) dt ~ "2CP (X)2 ~ cP (X)2 .. 

o 0 

Now, by induction on n, for n Z 2, 

Z IX 

o < zn+1 (x) == I cp{zn (t» dt ~ I 'P (cn-2cp(tt) dt 
o 0 

cn-2 IX cp (t)"+l 
< n--· dt 

b t o 

< cn-2 C' ()n+1 n---cp x 
b n 

_ on-lcp (x)"+1 , 

because of Lemmas 2 and 4. 

4 Rate of convergence of the successive ap­
proximations 

In order to analyze the rate of convergence of Wn , observe that 

IX Z 

W'HI (x) ~ I If (t, Yn+l (t» - f (t, Yn (t»1 dt ~ I cp (wn (t» dt. 
o 0 
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We will consider a different iteration. If we begin with small initial values, 
namely: 

Wo (x) $.1], 

we study the auxiliary iteration 
z 

for Ixl $. 6, 

Zn+l (x) = J It' (Zn (t)) dt, 
o 

where Zo = 1]. It is clear that WI $. Zl and, in general Wn $. Zn, which is a 
consequence of the monotonicity of <po Then it will be enough to prove the 
estimate (1) for Zn. It will be worth to notice that 

because of the concavity of <p, plus <p (0) = o. The next step will be to study 
the speed of convergence to zero of Zn (x), Ixl ::; 6 and to show that for Zn (x) 
the estimate (1) is valid. Indeed, from Lemma 5, there exists a constant 
C > 1 such that 0 $. Zn (x) $. C n - 2<p (xt. By the continuity of <p and the 
fact that <p(0) = 0, for any r, 0 < r < 1, there is some 6',0 < 6' $. 6, for 
which C<p (x) $. r, for Ixl $. 6'. 

Thus, we have proven the following theorem: 

Theorem 6 Let f be a continuous functions on the rectangle R = [-c, c] x 
[-d,d]. Suppose that 

for Ixl$. c,IYil $. d, i = 1,2, where <p verifies the modifieA Osgood's condi­

tions stated in section 2.1. Then, the successive approximations 

z 

YnH (x) = J f (t, Yn (t)) dt, 
o 

IYol $. 1],1]> 0 sufficiently small, satisfy 

for some r,O < r < 1, some C large enough and Ixl $. 6, for some positive 

6. 
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5 An application to partial differential equa­
tions 

Consider the following parabolic partial differential equation 

Ut=~u+F(u,x,t), U(x,O) = O. 

Assume that F is a continuous function that satisfies 

where IIIL!; is an ad-hoc norm in the space variables and i.p is a modified 
Osgood's function as in section 2.l. 

Let K (x, t) be the usual L1 fundamental solution! and implement the 
iterations 

t 

Un+1 (x, t) = J fa"" K(x - y, t - T) F (un (y, T), y, T) dydT, 
o 

Uo is chosen to be Co in R m with small Loo norm. Then I\Un+1 -'- unllx , which 
is a function of t, satisfies that 

t 

IIUn+l - unllx S; J llfa", K (x - y, t - T) (F (un, y, T) - F (un_I, y, T)) dy IL dT 
o 

t 

< jllF (un,., T) - F (un-I," T)llx dT 
o 

t 

< J'P (liun - un-Illx) dT. 
o 

With a similar procedure as the one employed before, by choosing Uo 
suitably small in the appropriate ad-hoc norm, it follows that 

for 0 S; t < {;, some {; > 0 and some r, 0 < r < 1. 

1 As it is well known, B. Frank Jonffi has constructed fundamental solutions that are 
not of the usual type. 
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