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PROPERTIES OF KLOOSTERMAN SUMS ON 

NUMBER FIELDS OF CLASS NUMBER ONE 

INES PACHARONI 

ABSTRACT. VIle study Kloosterman sums on number fields of class number one. 
In particular, we extend to Kloosterman sums over such fields, a decomposition 
formula due to Selberg in the classical case. 

1. INTRODUCTION 
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Let F be a number field with ring of integers O. If I is an ideal in 0, and 'l/J, i.{J 
are unitary characters of the finite abelian group 0/1, one defines the generalized 
Kloosterman sum (see [BM], §5) as 

S['l/J, i.{J,JJ = L 'l/J(x)i.p(x- 1 ). 

xE(O/I) * 

This includes in particular sums of the form 

S(r,r',c) = (1) 
aE(O I(e)) * 

where cEO, c i= 0, Tr = TrpIQ, r, r' E F\{O} satisfy Tr(rx), Tr(r'x) E OZ, \Ix E O. 
So S{r,r',c) = S[i.{Jrle,i.{Jr'le, (c)], where i.pq(Y) = e27riTr (qy). In the case F = Q, 
r, r', c E Z, equation (1) defines a classical Kloosterman sum (see [RW]). 

The purpose of this note is to study these sums and extend many properties, 
satisfied by classical Kloosterman sums, to the context of number fields of class 
number one. As a main result we will extend to this case the following identity: 

Theorem. If r, r' EO', cEO and (j is a generator of the different ideal of 0, 
then 

S(r,r',c) = 
(d)l(rc5,r'c5,e) 

In the case of classical Kloosterman sums (i.e. F = Q) this identity was stated 
(without proof) by Selberg ([SeJ). Kuznetsov ([KJ) gives a proof which uses his 
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sum formula and the multiplicative properties of the Hecke operators. Also, R. 
Matthes ([Mal) gives an elementary proof of this theorem. 

The restriction to number fields of class number one, is essential in the proof 
of the main thtiorem, because only in this situation, we may reduce the proof to 
the case in which c .. is a power oLa prime in O. On the other hand, the identity 
in the theorem makes sense in any number field, but it does not hold as stated, 
if 0 is not principal ideal domain. (For example, in Q[A]' with r = r' = 0 
and c = 2 - A.) However, there is a possible attempt of generalization of the 
theorem to arbitrary number fields, if we sum over the ideals dividing the ideal 
(r8, r'8, c) (not only principal ideals), and we take suit abIes characters. The general 
case is quite more complicated, and it will be the subject of a future publication. 

2. PRELIMINARIES 

Since we are assuming that the class number of F is one, any cEO decomposes 
uniquely (up to order and unit factors) as a product of irreducible elements in O. 

Notation. We shall recall some standard notation. Let c, dE Q we shall denote 
N(e) the norm of c. Then N((c)) = IN(c)l. As usual, the greatest common divisor 
of e and d will be denoted by (c, d). If I is a fractionary ideal of F, we write c == d 
(mod I) if c - dEl. 

Different ideal. The ideal 0' = {q E F I Tr(qx) E Z, "Ix E O} is a fractionary 
ideal of F, which coincides with the inverse of the different 'DF / Q . The different is 
an integral ideal, hence there exists 8 E Q such that 'DF / Q =80. Thus 0' = iO, 
therefore any rEO' can be written uniquely r = 7, with rl E O. 

Remark 2.1. We note that if c E O,e=/:. 0, and r,'r"' EO', then 8rr' EO'. 
Moreover, clr8 if and only if ~ EO'. 

Characters of OJ(c}. The characters of OJ(c) form a finite group, isomorphic 
to OJ(c), hence of order IN(c)l. 

If cEO,. rEO' i.{Jr / e : x f-+ e21l"iTr( 7'), defines a character on the abelian group 
OJ(c), which depends on the class of r mod cO'. We note that i.{Jr/e is the trivial 
character if and only if r E cO'. It is easy to prove that all characttirs of OJ(c) 
are of this form. 

Remark 2.2. If c and 8 are prime to each other, any character of OJ (c) has the 
form i.{Jr/e, with rEO. 

By the orthogonality relations we have 

L e21l"iTr(~x) = { IN(c)1 
. 0 

xEO/(e) 

ifrEcO' 
ifr5t'cO'· 
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3. PROPERTIES OF KLOOSTERMAN SUMS 

Basic 'propetties~ In this subsection we list several elementary properties of 
Kloosterman sums. We will leave their verification to the reader. 

Lemma 1. Let r, r'E 0', c, u EO, c =F O,u a' unif Then 
(i) S(r,r', c) = 8(r',r,c). 

(ii) If </> denotes the Euler function of F, CEO, and r, r' E. cO', then 
8(r, r', c) = 8(0,0, (!)' =</>( c). 

(iii) Ifr~rl E cO', then 8(r,r', c) = 8(rl,r',c). 
(iv) 8(r,r',c) =S(ru,r'u;cu). 

Remark 3.1. Property (iii) says that the definition of 8(r, r', c) depends on the class 
ofr (mod cO'). 8(r, r', c) is not well defined as a fllllction ofthe ideal generated by 
c, for example, in F = Q[ iJ, we have 8(1,1,3) = 5 and 8(1, 1,3i) = 8(1,2,3) == 2 
(see §6). 
Remark 3.2. If 6 and c are prime to each other, then all Kloosterman~urn~ are,of 
the form 8(r,r',c) withr,r' EO, Moreover 8C~,,6rr',.c).= 8{I,rr',c).' 

Notation. We shall denote e(x) := e27riTr(q;). '" ': 

Lemma 2. Let r,r' EO', c, u EO; c =F 0, u·a unit~"Then 
(i) If s'E 0 is coprime to c, then 8(rs, r', c) = S(r, sr', c). 

(ii) S(r, r', uc) = 8(r,r'u-2,c) = 8{ru~1,r'u-\c). 
(iii) If (r6,c) = 1 then 8(r,r',c) = 8(i, 6rr', c). 

Proof. (i) 8(rs, r', c) = LXE(O/(c))* e(rsx+;'x:-l). If (8, c) = 1, and {x} is a syst~m 
of representatives of (OJ(c))*, so is {sx}, hence' S(~s,r',c) =I:'e(rx±'i'~s:i:~l) = 
8(r, sr', c). ' 

(ii) and (iii) are direct consequences of (i) and Lemma 1 (iv). 0 
Remarks 3.3. We note that (iii) does not depend on the choice of the generator 
of the i,deal 'DF / Q • Also, as a particular case of Kloosterman sums, we have the 
(generalized) Ramanujan sums 8(r, 0, c). These sums depend on the ideal (c) 
and not on c. 

Multiplicativity. For fixed r,r' EO', Kloosterman sums are not multiplicative, 
but have a similar important property. 

Lemma 3. Let rl,r2 E 0' and a,b E 0 with (a,b) = 1. Then 

8(r,rl, a)8(r,r2'b) = 8(r,r1b2 +r2a2,ab). 

Proof. 

8(r,rl,a)8(r,r2,b) = L L e((rx+rlx-1)ja+(ry+r2y-ljb)) 
xE(O/(a)) * YE(O/(b))* 

= L e((r(bx + ay) + r1bx-1 + r2ay-l)jab.) 
x,y 
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If x (resp. y) runs through a coprime systemofrepresentatives of Olea) (resp. 
0/ (b) ),' then z = bx +, ay runs through a coprime system of representatives of 
O/(ab). ' ", 

Let z-l be the inverse of z (mod abO). That is, ZZ-l = (bx + ay)z-l = 1 
(mod abO), hence b2z-1 == bx-1 ' (mod abO).' '.', .' , 

Similarly a2z-1 = ay-l (mod abO), hence r1bx-1+r2ay-:1- (r1b2+r2a2)z-1 E 
abO' and the lemma follows easily. 0 

Corollary 1. Let r, r' EO', a, b E O. If (a, b) = 1, thea there exist r1, r2 E 0' 
such that r' = r1b2 +rzaz (mod abO') and S(r,r',ab) = 8(r,rl,a)S(r,r2,b}. 

Proof. Since (a,b) :;:::: 1, there exist 1\,rz E 0 such that r'o =hbz (mod aO) and 
r'o= rzaz (modbO), hence r1bz + rzaz = r'{) (mod abO) . Put r1 = hio and 
rz = rz/o, then r1,rZ E 0' and r' = r1bz +r2az (mod abO') 0 

Local properties. In this subsection we consider the Kloosterman sums 
S(r,r',pm), where p is a prime element in 0, and r,r' EO'. 

Lemma 4. In the above notation we have 

(i) Ifr,r' E pO', then S(r,r',p) = IN(p)I-l. 
(ii) If r ~ pO', r/E pO', then S(r, r',p) = -l. 

(iii) If r ~ pO', then S(r, r' ,p) = S( ~,orr', p). , 

Proof. If r' E pO', S(r,r',p) = S(r,O,p) = L:e(r;) where the sum IS over 
(O/(p))*. Thus, (i) and (ii) follow from the ortogonality relations. Part (iii) 
is a consequence of Lemma 2 (iii). 0 

Lemma 5. Let p be a prime in 0, r, r' EO' and m, n E N, m > n. Then 

Proof. If s (resp. t) runs through a system of representatives of O/{pm-n) Crespo 
(pm-n) / (pm) ), then s + t runs through a system of representatives of 0/ (pm) and 
s + t E (O/(pm))* if and only if s E (O/(pm-n)*. Furthermore; if (s,p) = 1 and 

, ss = 1 (pm), thus 

m 

(s +t)-l = I)-1)j+1 sjtj- 1 (mod pmO). 
j=l 
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Corollary 2. Let p be a prime in 0, m ~ 2, r, r' E 0' such that r (j. pO', and 
r' E pO', then 8(r, r',pm) = 0. 

Proof. Applying the previous lemma with n = 1, we have 

By the orthogonality relations, we have that each inner sum is equal to zero. 0 

Corollary 3. Ifr,r' E pO', and m ~ 2, then 8(r,r',pm) = IN(p)18(~, ~,pm-1). 

Proof. For any t, S E 0, e(rt+r'(-s-2 t )) = 1, since 2:, ~ EO'. Then, by Lemma 
p p p 

5 with n = 1, 8(1',1",pm) = L e(S + ~ S-l )IN(p)l, and the corollary 
sE(O/prn-l)* p 

follows. 0 

4. PROOF OF THE MAIN THEOREM 

Remark 4.1. The theorem can be seen as a generalization of the property stated 
in Lemma 2, (iii). 

Remark 4.2. The right hand side of the identity in the theorem is well defined, 
that is, it does not depend on the choice of the generator of (d). Indeed, if u E 0 
. ·t b L 2 ( .. ) 8( 1 orr' C) 8( 1 . orr' C) IS a unl, y emma 11, Ii' .d2u2' du = Ii' -;J,'F, d . 

We shall first give the statement and proof in the case when c is a power of a 
prime. 

Proposition. Letr,r',E 0 ' , andp prime in o. If (r8,r'8,pm) =pn, then 

n 

8(r,r',pm) = L IN(p)li 8(i, 0;;;' ,pm- j ) (2) 
j=O 

Proof. (i) If n = m, we have p:', ;:" EO', then 8(r,r',pm) = <jJ(pm) = IN(P) 1m -

IN(p)im - 1 . It follows from Corollary 2 that the summands with m - j ~ 2 equal 
zero, since or;;' E pO'. Hence the expression in the right hand side reduces to 

p 

IN(p)lm8(i, !~~, 1) + IN(p)lm-18(i, pg::~2 ,p) = IN(p)lm -IN(p)lm-1. 

(ii) If n = 0, then (r8,p) = 1 or (r'8,p) = 1. Hence by Lemma 2 (iii), 
8(r,r',pm) = 8(i,8rr',pm), and this coincides with the expression in the right 
hand side of (2). 
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(iii) If 1 :s; n < m, by Corollary 2 all summands with j < n, are zero. Hence 

n 

L IN(p)liS(i, ;;;' ,pm-i) = IN(p)lnS(i, ;;: ,pm-n). (3) 
i=O 

On the other hand, by Corollary 3, we have 

Since (;n8, ;~8,pm-n) = 1, expressions (3) and (4) coincide by Lema 2 (iii). 0 

We now give the proof of the main theorem in the general case. Since we are 
assuming that the class number of F is one, any cEO decomposes uniquely (up 
to order and unit factors) as a product of prime elements in O. If c is a power of 
a prime in 0, the identity in the theorem has been already proved. By induction 
on the number of distinct primes in the factorization of c, we may assume that the 
theorem holds for coprime integers a, bE 0, and prove the result for c = abo 

By Corollary 1, there exist rl, r2 E 0' such that r l b2 +r2a2 == r' (mod cO') and 
S(r,r',c) = S(r,rl,'a)S(r,r2,b). We denote Ml = (r'8,rl 8,a), M2 = (r8,r28,b). 
Hence 

S(r,r',c) = LIN(dl)IS(i, 6~~1, ~) L IN(d2)IS(i, 6~~2, ;2) 

(dtllM1 (d2 )IM2 

and by the multiplicativity of Kloosterman'sums we have 

= L 

It . t th t 6rT1 b2 + 6rr2 a2 - 6rr' ( d CO') IS easy 0 see a d2 d2 d2 d2 = (d d )2 mo ad .. 12 21 12 12 
Furthermore, any divisor of (r8, r'8, c) is of the form d l d2 , with d l a divisor of 

Ml and d2 a divisor of M 2 , hence 

S(r,r';c) =L L IN(dl d2 )IS(i, (d~r;:)2' d 1
Cd2) 

(d1)IM1 (d2)I M2 

L IN(d)IS(i,~,~) 
(d)l(r,r' ,c) 

o 
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5. SOME CONSEQUENCES 

In this section we will apply the above results to prove other useful properties 
of Kloosterman sums in our context. 

Corollary 4. Let r,r' E 0, and (b,c) = 1, then 

S(r,r',c) = L IN(d)1 S(l, :;;', ~). 
(d)l(r,r',c) 

Proof. The identity follows from the theorem and Lemma 2 (i). 

On any number field F the Moebius function is defined as follows. If I is an 
ideal in 0, and I = pr1 ... p~k its factorization into prime ideals, let 

{ 0 if 3j : rj > 2 
JL(I) = -

(_l)k if rl = ... = rk = 1. 

Proposition. S(-~, 0, c) = JL(c). 

Proof. By the multiplicativity of Kloosterman sums, if c = ab with (a, b) = 1, then 
S(~,O,c) = S(~,O,a)S(~,O,b). 

We have proved that S(~,O,p) = -1 and S(~,O,pJ) = 0, if j ~ 2. 
If (c) = (Pl·· . Pk) where the Pj are distint primes in 0, then 

o 

S(~,O,c) = II S(~,O,Pj) == (_l)k. 
j 

As a consequence we obtain some generalizations of useful identities which hold 
for classical Kloosterman sums. 

Corollary 5. If CEO, rEO', then 

cjJ(c) = L IN(d)IJL(~) 
(d)l(c) 

S(r, 0, c) = L IN(d)IJL(~) 
(d) I (rc5,c) 
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6. AN EXAMPLE: F= Ql[ i] 
In this section we consider Kloosterman sums over the ring of Gaussian integers. 

Let F = Ql [ i ], 0 = Z [ i]. The different ideal is generated by 2, hence any element 
in 0' is of the form 1') t 1'2 with ri E Z. 

(i) We choose c = 1 +i; this is a prime in 0, with norm 2. A set of representatives 
of 0/(1 + i) is {O, I}, thus 

/. ~ 

8(r,r',1 + i) = e21nTr ( l+i) = 8(r + r', 0,1 + i). 

Let r = 1') t 1'2 E 0' , then Tr( l~i) = (rl + r2)/2 and 8(r, 0,1 + i) = (-ly1 +1'2. 
Thus 

8(~,0, 1 +i) = -1, 8(0,0,1 +i) = 1. 

(ii) We now let c = 2. A set of representatives of 0/(2) is {O, 1, i, 1 + i}. The 
units in this ring are {I, i}, and 1. 1 = 1 (mod 2), i. i = 1 (mod 2). 

All Kloosterman sums associated with 2, are of the form 8(r; 0, 2), with rEO', 
since 8(r, r', 2) = e( 1'~rl) + e( 1'i~1'li) = 8(r + r', 0, 2). 

If r = 1') t 1'2 E 0', then 8(r, 0, 2) = (-ly1 + (_1)1'2. Therefore 

{ 
2 if rl = r2 = ° (mod 2) 

S(r, 0, 2) = -2 if rl = r2 = 1 (mod 2) 
° if rl t= r2 (mod 2) 

Since, 8(r,r',c) depends on the class ofr (mod cO'), (see Lemma 1) all possible 
values of Kloosterman sums are 

8(~, 0, 2) = 0, 8(~, 0, 2) = 0, 8(0,0,2) = 2, 8( 1¥, 0, 2) = -2. 

(iii) 3 is prime in 0, with N(3) = 9,0/30 is a field with 9 elements, and a set 
of representatives of this field is 

R = {O, 1, 2, i, 2i, 1 + i, 1 + 2i, 2 + i, 2 + 2i}, 

all non zero elements are invertible and 

1.1=1 (3),2.2=1 (3), i.2i=1 (3) 

(1 + i). (2 + i) = 1 (3), (1 + 2i). (2 + 2i) = 1 (3). 

Remark. Since 3 is coprime with 2 and Dp / Q = 20, all Kloosterman sums asso-
ciated with 3, are of the form 8(r, r', 3) with r, r' E 0, and they depend on the 
class of r (mod 30). 
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For example if r ~ 30,3 is coprime with 2r, and 8(~,2r,3) = 8(2,2r,3) 
8(1, 4r, 3) = 8(1, r, 3). 

It is not difficult to evaluate these sums. If r, r' E 30, then 8(r, r', 3) 
8(0,0,3) = 8 = N(3) - 1. In this case (r, r', 3) = (3) and 

8(r, r', 3) = 8(1,0,3) + 98(1, ~' , 1). 

If r ~ 30 and r' E 30, 8(r, r', 3) = L:xER-{O} e21l"iTT(rx)j3 = 8(1,0,3), thus we 
have 

8(1,0,3) = 2 + 3 e21l"i2j3 + 3 e21l"i4j3 = -1. 

Ifr,r' ~ 30, we have 8(r,r',3) = 8(1, 1"T', 3), since 3 is coprime with r. The 
Kloosterman sums of the form 8(1, r, 3) take the values 

/ 

8(1,0,3) = -1, 
8(1, i, 3) = -1, 
8(1,1 + 2i, 3) = -4, 

8(1,1,3) = 5, 
8(1,2i,3) = -1, 
8(1,2 + i, 3) = 2, 

8(1,2,3) = 2, 
8(1,1 + i, 3) = -4, 
8(1,2+ 2i, 3) = 2 

To conclude we will verify the main theorem, with c = 2. Let r = r) t r2 E 0', 
we have 

8(r,0,2) = L N(d)8(~,0,~) 
(d)I(2r,2) 

2 it is not prime in 0, and the decomposition into primes ideals is 2 = (1 + i)2. 

If (2r, 2) = 2 i.e. rEO, we have 

8(~, 0, 2) + N(1 + i) 8(~, 0,1 + i) + N(2)8(~, 0, 1) = 2( -1) + 4 = 2 = 8(r, 0, 2). 

If (2r,2) = (1 + i), that is rl == r2 == 1 (mod 2), the theorem gives 

N(1) 8(~, 0, 2) + N(1 + i)8(~, 0,1 + i) = -2 = 8(r, 0, 2). 

If (2r,2) = 1, i.e. rl ¥;r2 (mod 2), then N(1)8(~,0,2) = ° = 8(r,0,2) 
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