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ABSTRACT. Let S be an orthogonal polygon bounded by a simple closed curve with 
n vertices. If 4 ::::: n ::::: 7, then S is orthogonally convex. If 8 ::::: n, then S is expressible 
as a union of [n~4] sets, each starshaped via staircases. Similarly, for 4 ::::: n, c1( ~ S) 
is expressible as a union of [~] such starshaped sets. These results yield a staircase 
version of the "prison yard" problem, for ~. guards suffice to see the whole plane via 
staircase paths, with each path in S or in cl( ~ S). Finally, analogous results provide 
decompositions of Sand cl( ~ S) into orthogonally convex sets. 
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1. INTRODUCTION. We begin with some definitions. Let S be a nonempty 

set in the plane. Point x in S is a point of local convexity of S if and only if 

there is a neighborhood N of x such that N n S is convex. If S fails to be locally 

convex at q in S, then q is a point of local nonconvexity (Inc point) of S. Set S 

is called orthogonal if and only if S is a closed, connected set whose boundary is 

a finite union of segments (edges) and rays, each parallel to one of the coordinate 

axes. An edge e of S is a locally convex edge if and only if both endpoints of 

e are points of local convexity of S. Similarly, edge e is a dent edge if and only 

if both endpoints are Inc points of S n H, for H an appropriate closed halfplane 

determined by the line of e. For A a simple polygonal path in the plane whose 

edges [Vi-l, Vi] = Vi-l Vi, 1 :s; i :s; n, are parallel to the coordinate axes, A is called 

a staircase path if and only if the associated vectors [Vi-l, Vi] alternate between 

one (and only one) vertical direction and one (and only one) horizontal direction. 

For points x and y in S, we say x sees y (x is visible from y) via staircase paths 

if and only if there is a staircase path in S containing both x and y. The subset 

of S seen by x via staircase paths is the visibility set of x, and S is starshaped via 
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staircase paths if and only if for some point p of S, the visibility set of p is exactly 

S. Finally, set S is called horizontally convex if and only if for each x, y in S with 

[x, yl horizontal, it follows that [x, y] ~ S. Vertically convex is defined analogously. 

We say set S is orthogonally convex if and only if S is an orthogonal set which ,!!! 

both horizontally convex and vertically convex. 

There are many interesting results in convexity which involve the idea of visibility 

via straight line segments. Among these are a collection of guard problems, dis-

cussed at length in [10]. One example is the art gallery problem, which asks how 

many guards are required so that each point of a polygon A (the art gallery) is 

visible via a straight segment in A from at least one of the guards. (See Klee [8], 

Chvatal [3].) 

A second example, the prison yard problem, asks a similar question but stipulates 

that the guards be placed at vertices of polygon A and that they protect both the 

interior of A (the prison itself) and the exterior of A (the corresponding yard). 

(See Fiiredi and Kleitman [6].) Typically, the number of guards required is given 

in terms of the number of vertices of A. Here we attempt to adapt these problems 

to orthogonal sets, replacing the concept of visibility via segments with the notion 

of visibility via staircase paths. 

Some related work on orthogonal polygons appears III [2]. Moreover, result~ in 

[1] show that dent edges for orthogonal polygons behave much like Inc points for 

arbitrary closed connected sets in the plane. Here we extend this idea, using the 

dent edges of an orthogonal polygon S to decompose S into a union of sets which 

are starshaped via staircases. Further, just as a finite collection oflnc points may be 

used to decompose a closed connected set into a union of convex sets ([7]), the dent 

edges help to decompose orthogonal polygon S into a union of orthogonally convex 

sets. Since the locally convex edges for S are exactly the dent edges for cl( '" S), the 

results yield some predictable analogues for the complement of S as well. Finally, 

the results for S and its complement are combined to obtain a staircase analogue of 

the prison yard problem, again in terms of the number of vertices of the associated 

polygon. 

Throughout the paper, cl Sand bdry S will denote the closure and boundary, re-
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spectively, for set 8. The reader is referred to Valentine [11], to Lay [9], to Danzer, 

Griinbaum, Klee [4] and to Eckhoff [5] for a discussion of visibility via straight line 

segments and associated starshaped sets. 

2. A STAIRCASE ANALOGUE OF THE PRISON YARD PROB-

LEM. In [6], Fiiredi and Kleitman prove that if P is a nonconvex simple polygon 

with n vertices, [~] guards suffice to cover both the interior and the exterior of P. 

We will obtain a similar result for orthogonal polygons, using staircase paths. 

The following definition will be helpful. 

Definition. Let S be an orthogonal polygon bounded by a simple closed curve, 

and let S1, ..• , Sn be the vertices of 8, ordered in a clockwise or counterclock-

wise direction along bdry S. Similarly, define orthogonal polygon S' and vertices 

s~, ... ,s~. We say Sand 8' have the same edge arrangement if and only if, for an 

appropriate labeling of their vertices, 8 and 8' have the same Inc points. That is, 

Si is an Inc point for 8 if and only if s~ is an Inc point for 8'. 

Theorem 1. Let k and m be integers, 0 :s: m :s: k. Let 8 be an orthogonal polygon 

whose boundary is a simple closed curve with n vertices, n 2:: 4. If 8 has k dent 

edges, grouped into m collections of consecutive edges, then 8 has at least k + 2m + 4 

nondent edges. The bound k + 2m + 4 is best possible. Moreover, exactly k + 4 of 

the non dent edges are locally convex edges. 

Proof. We proceed by induction. If k = 0, then 8 is orthogonally convex, and it 

is easy to see that 8 has at least 4 edges, exactly 4 of which are locally convex. 

Similarly, if k = 1, clearly 8 has at least 7 nondent edges, exactly 5 of which are 

locally convex. To establish the result for general k and m, k 2:: 2, k 2:: m 2:: 1, 

assume that the theorem is true for natural number~ less than k. Furthermore, for 

this k assume that the result has heen proved for natural numbers less than m (if any 

exist). Finally, for k and m, suppose that the result holds for permissible natural 

numbers less than n (if any exist). Let 8 be an orthogonal polygon satisfying our 

hypothesis for k, m, and n. 

The vertices 8 may be labeled either in clockwise or in counterclockwise direction 

along bdry S by Va, V1, ... , vn.We assert that for an appropriate choice of Va and 
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for an appropriate order, VOVI is a nondent edge, VI V2 is dent, and VOVI is no longer 

than V2V3: Suppose that edge VI V2 is a dent edge of S .. Certainly one of the edges 

VOVl, V2V3 is no longer than the other, so without loss of generality assume VOVI is 

no longer than V2V3. If VOVI is not a dent edge, then our assertion is satisfied. If 
. . . . 

VOVI is dent, consider the remaining edge VnVO at Vo. Observe that it is shorter than 

VI V2· (See Figure 1.) If Vn Vo is dent, continue. Obviously not all edges of S can be 

dent, so in finitely many steps we reach a (first) edge not a dent edge. Renumber 

the vertices WI, W2, ..•.. ,Wn so that WOWI is not dent and WI W2 is dent. Observe that 

WOWI is shorter than W2W3. Therefore, we may assume that our original labeling 

Vo, VI, ..• , Vn produces the required properties. 

Vz 

Figure 1. 

For future reference, observe that since VOVI is not dent, one of its endpoints cannot 

be an Inc point for S. Since Vl'V2 is dent, VI is an Inc point. Thus Vo is not an Inc 

point, and VnVO cannot be a dent edge. Also observe that, relative to our ordering, 

VI V2 will be the first edge in one of the m collections of consecutive dent edges. 

Let A be the rectangle determined by vertices vo, VI, V2, and let z be the fourth 

vertex of A, z E (V2, V3]. We may assume that (int A) U (vo, z) is disjoint from S, 

for otherwise, by adjusting lengths of appropriate edges of S, we could obtain an 

orthogonal polygon having the same edge arrangement as S and having the required 

property. There are several cases to consider. 

Case 1. If neither V3 nor Vn is an Inc point for S, proceed as follows. Since V3 is 

not an Inc point, we may assume that z = V3. (See Figure 2.) Now consider the 

orthogonal polygon T = SUA. Observe that bdry T is a simple closed curve, tha.t 

edges VOVl,VIV2,V2VS for S are not edges for T, and that edges VnVO,V3V4 for S are 

just subsets of edge Vn V4 for T. Further, edge Vn Vo will be nondent for S (since 
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its endpoints are not Inc points) and edges V3V4 for 5 and Vn V4 for T both will 

be nondent (since neither V3 nor Vn is an Inc point). Remaining edges will not be 

affected. 

s 

Figure 2. 

Since in passing from 5 to T we lose dent edge VI V2 and do not acquue any new 

dent edges, T has k --1 dent edges. Moreover, since neither Va nor V3 is an Inc point 

for 5, edge VIV2 alone comprises one of the m groups of consecutive edges for S. 

Thus T has only m - 1 groups of consecutive edges. Observe that since k ~ 2, T 

has k - 1 ~ 1 dent edges, and m .- 1 ~ 1. We may apply our induction hypothesIs 

to T to conclude that T has at least (k - 1) + 2(m - 1) + 4 nondent edges. When 

we return from T to 5, we gain dent edge VI V2 and non dent edges VaVI, V2V3. We 
, 

lose nondent edge Vn V4 but gain nondents Vn Va and V3 V4. Hence 5 has k dent edges 

and at least 

(k - 1) + 2(m - 1) + 4 + 3 = k + 2m + 4 

nondent edges. 

Also by our induction hypothesis, since T has (k - 1) dent edges, T has exactly 

(k - 1) + 4 locally convex edges. Edges V n V4 for T and V3V4 for 5 are both locally 

convex or both not locally convex, according to whether or not V4 is a point of local 

convexity. Hence in returning from T to 5, there is a net gain of exactly one locally 

convex edge, contributed by VnVo, so 5 has exactly k + 4 such edges. This finishes 

the proof for Case 1. 

Case 2. If one of V3 or Vn is not an Inc point for 5, assume that Z #- V3 and hence 

z is strictly between V2 and V3. (See Figure 3.) Again consider the orthogonal 

polygon T = 5 u A, which is bounded by a simple closed curve. Observe that edges 

VOV1, VI V2 for 5 are not edges for T, and edge Vn Va for 5 is just a subset of edge VnZ 



for T. Edge V2V3 for 5 will be replaced by edge ZV3 for T. Moreover, Z will be an 

Inc point for 5, so edges V2V3 for Sand ZV3 for T will be both dent or both non dent . 

depending on whether or not Vs is an Inc point. Remaining e~ges are una:ffect~d. 

There are two subcases, determined by the classIfication of v". 

____ ovo 
z 

Figure 3. 

Case 20,. If Vn is not an Inc point (and V3 is an Inc point), then VnZ is not a dent 

edge for T. (See Figure 4.) Hence in passing from 5 to T) we lose dent edge VI V2, 

swap dent edge V2Vg for dent ZV3, and do not acquire any new dents, so T has k - 1 

dent edges. Moreover, since Va is not an Inc point for 5 but V3 is an Inc point, VIV2 

and V2Vg are first and second dent edges in a sequence of consecutive dents for S. 

In T, edge ZVg will be first in the corresponding sequence of dents for T, so T (like 

5) will have m collections of consecutive dents. Applying our induction hypothesis, 

T will have at least (k - 1) + 2m + 4 nondent edges. When we return from T to 

5, we replace non dent VnZ for T with nondent VnVa for 5 and replace dent ZVg for 

T with dent V2V3 for S. We gain nondent VaVI and dent VI V2. Hence 5 has k dent 

edges and at least 

(k - 1) + 2m + 4 + 1 = k + 2m + 4 

nondent edges. 
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z 

Figure 4. 

Also by induction, T has exactly (k -1) + 4 locally convex edges. Returning from T 

to S we lose no locally convex edges and gain the locally convex edge VnVo, giving 

S exactly k + 4 such edges. 

Case 2b. If Vn is an Inc point, then VnZ will be a dent edge for T. Since VnVO is not 

dent for S, in passing from S to T we lose dent edge VIV2 and gain dent edge VnZ, 

leaving T with k dent edges. Unfortunately there are yet two more possibilities, 

determined by the classification of vertex Va. 

In case Va is an Inc point, then V2Va is a dent edge for S, so VI V2 and V2Va belong to 

the same collection of consecutive dents in S. (See Figure 5.) In T, edge -zva leads 

th~ corresponding sequence, so Thas m collections of consecutive dents. However, 

T has two fewer edges than S, so by our induction hypothesis, the theorem must 

hold for T. Thus T will have at least k + 2m + 4 nondent edges. Returning from 

T to S, we lose dent VnZ and gain nondent VnVO. We gain non dent VOVI and dent 

VI V2. We lose dent ZVa and gain dent V2Va. Thus S has k dents and at least 

k + 2m + 4 + 2 = k + 2m + 6 

nondents. (This is 2 more than we needed.) 



ISO 

Figure 5. 

Also, T has exactly k dent edges and, by induction, exactly k d- 4 locally convex 

edges. There is no change in locally convex edges when we pass from T to S, so S 

has exactly k + 4 such edges as well; 

Finally, in case V3 is not an Inc point, then V2V3 is non dent for S, so VIV2. alone 

comprises one of the m sets of consecutive nondent edges in S. (See Figure 6.) In 

T, ZV3 is nondent, so T has only m-1 sets of consecutive non dent edges. Applying 

our induction hypothesis, T has at least k +2(m -1) + 4 non dent edges. When we 

return from T to S, we lose dent VnZ, gain non dent VnVo, gain nondent VOVlr and 

gain dent VIV2. We lose non dent ZV3 to gain nondent V2V3. Hence S hask dents 

and at least 

k + 2(m -1) + 4 + 2 = k + 2m + 4 

nondents. 

z 

Figure 6. 
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Also by induction, T has exactly k + 41?cally convex edges. Thereis no change in 

these edges when we return from T to S, so S has exactly k + 4 such edges, also. 

This ·finishes the argument in Case 2. By induction, the theorem must hold for all 

suitable k and m. 

It is easy to see that the result in Theorem 1 is best when k = m = O. To see that 

it is best for k, m ~ 1, consider the following example. 

Example 1. For k ~ 1, k ~ m ~ 1, letkl, ... , k m be m natural numbers whose 

sum is k. Construct orthogonal polygon Shaving k dent edges and k.+ 2m + 4 

nondent edges as follows: Begin with nondent edge e as base. Above e (and following 

e) place edges in this sequence: 3 nondents, k1 dents, k1 + 2 nondents, k2 dents, 

k2 + 2 nondents, ... , k m dents, k m +2 nondents. This produces 2::1 ki = k dent 

edges and 4 + 2::1 (ki + 2)== 4 + k + 2m nondent edges. Notice that exactly k + 4 

of the nondent edges are locally convex. 

Figure 7 illustrates the construction for k = 8, m = 3, using k1 = 3, k2 = 4, ks = 1. 

kl = 3 

e 

Figure 7. 

Theorem 2. Let S be an orthogonal polygon whose boundary is a simple closed 

curve with n vertices, n ~ 4. If 4.~ n ~ 7, then S is orthogonally convex and hence 

starshaped via staircases. If n ~ 8, then S is expressible as a union of [n4"4] (or 

possibly fewer) sets, each starshaped via staircases. 

Proof. We assume that S has k dent edges, grouped into m collections of consecutive 

edges,O ~ m~ k. IT k = 0 then by [1, Lemma 1], S is orthogonally convex and 

hence ~tarshaped via staircases. 
\ 
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For the remainder of the proof, assume that m ?:: 1. Then S has at least k + 2m + 4 

nondent edges, so n ?:: k + (k + 2m + 4) ?:: 8. By [1, Theorem 2], for each point x 

of S there is at least one dent edge D of S such that x sees (via staircase paths in 

S) every point 6f D. Hence if we choose one point p of S from each dent edge, the 

corresponding visibility sets Sp will satisfy the theorem. 

For 1 ::; i ::; m, let G i denote the corresponding collection of consecutive dent edges 

of S, where Gi containski edges. In case each ki is odd or each ki is even, only 

minor notational changes are needed in the argument, so for simplicity, suppose 

that both odd and even k/s appear. For convenience of notation, assume the G i 

sets have been labeled so that k1 , ... ,k/ are odd and k/+1 , .. . ,km are even, for 

some fixed 1, 1 ::; 1 ::; m - 1. For each ki, select a set of alternq,ting endpoints from 

the corresponding dent edges so that for each edge, exactly one endpoint is chosen. 

Clearly kitl points suffice when ki is odd and ~ points suffice when ki is even. In 

all, we select 

t ki; 1 + i~' ; ~ ~ (t,ki + I) k+l k+m =--<--2 2 

points. (If all ki's are odd, we select k~m points, and if all k/s are even, we select 
k . H 2" pomts. owever, 

n ?:: k + (k + 2m + 4) = 2k + 2m + 4 

so n44 ?:: k~m. We have chosen a set P of at most [n44] points. Since each 

dent edge contains a member of P, the corresponding collection of visibility sets 

{Sp : p in P} will satisfy the theorem. 

It is interesting to note that Theorems 1 and 2 above may be adapted to produce 

the following results. 

Theorem 3. Let j and t be integers, 1 ::; t ::; j. Let S be an orthogonal polygon 

whose boundary is a simple closed curve with n vertices, n > 4. If S has j locally 

convex edges, grouped into t collections of consecutive edges, then S has at least 

j + 2t - 4 non locally convex edges. The bound j + 2t - 4 is best possible. 

Proof. It is easy to see that every orthogonal polygon bounded by a simple closed 

curve has at least 4 locally convex edges. Moreover, such an orthogonal polygon 
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has exactly 4 such edges if and only if it is orthogonally convex. For j = 4 and 

n > 4, it is not hard to show that S has at least 2t non locally convex edges, so the 

formula holds. 

For j 2 5, set S must be nonconvex and therefore must have at least one dent edge. 

We will apply the argument in Theorem 1. Observe that most of that argument 

depends on the features of the orthogonal curve A which defines set S, not on the 

fact that S is the bounded region determined by A.If we let U be the closed 

unbounded region determined by A, then dent edges for U correspond to locally 

convex edges for S, and locally conVex edges for U correspond to dent edges for S. 

This duality allows us to apply the inductive proof in Theorem 1 to region U. The 

only changes will be in the opening paragraph, when we begin the induction. If 

j = 5 and t = 1, it is easy to see that set S has at least 3 non locally convex edges. 

The rest of the argument follows the argument in Theorem 1, with -4 replacing 

+4 in the formula. 

It is easy to find examples to show that the result in Theorem 3 is best for j = 4. 

For j 2 5, S has at least one dent edge, and the result is best by Example 1 of this 

paper. 

Theorem 4. Let S be an orthogonal polygon whose boundary is a simple closed 

curve with n vertices, n 2 4, and let U = cl( '" S). Then U is expressible as a 

union of [nt4] (o'r possibly fewer) sets, each starshaped via staircases. In case S 

is orthogonally convex. U is a union of 2 such starshaped sets. 

Proof. To begin, we assert that for x in U, x sees via staircases in U all points 

of some locally convex edge of S: Let V be a rectangular region whose interior 

contains S U {x}, and let W = cl(V '" S). Then W is an orthogonal polygon, so 

by [1, Theorem 2], x sees via staircase paths in W all points of some dent edge of 

W. However, the dent edges of Ware exactly the locally convex edges of S, so the 

assertion is established. 

To prove Theorem 4 when S is orthogonally convex, recall that S has 4 locally 

convex edges, say el, e2, ea, e4, labeled in a clockwise direction along bdry S. Choose 

one endpoint PI of 'e1 and one endpoint Pa of ea. It is easy to show that U is the 

union of the corresponding visibility sets Sel, Sea. 
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For S not orthogonally convex, n ~ 8. We assume that S has j locally convex edges, 

grouped into tcollections of consecutive edges, 1 ::; t ::; j. Following the argument in 

Theorem 2, we choose a set of alternating endpoints from each collection, obtaining 

a set of at most i¥ points, with one point chosen from each locally convex edge. 

By Theorem 3, n ~. j + (j + 2t - 4), so nt4 ~ i¥. We have a set of at most 

[nt4] points, and by our preliminary assertion above, the corresponding visibility 

sets satisfy the theorem. 

Theorems 2 and 4 yield the following staircase analogue of the "prison yard" prob-

lem. 

Theorem 5. Let S be an orthogonal polygon whose boundary is a simple closea 

curve A with n vertices. Guards, placed at vertices of S, can see points of the plane 

via staircase paths, with each path either in S or in cl( "" S). When S is orthogonally 

convex, 2 guards suffice to see all points of the plane. In general, no more than f(n) 

guards suffice, where 

f(n) = { !;-2 when 4 divides n 

otherwise. 

Proof. Observe that n is always even and n ~ 4. If S is orthogonally convex, then 

(by Theorem 4) 2 guards suffice for cl( "" S). Clearly, either of these can guard 

S as well, so we need only 2 guards in all. If S is not convex, then n ~ 8. By 

Theorem 2, [n4"4] guards suffice for S, while by Theorem 4, [nt4] guards suffice 

for cl( "" S). In case 4 divides n, this gives n4"4 + nt4 = ~ guards in all. Otherwise, 

this gives n4"6 + nt2 = n;-2 guards in all. Hence in general we need no more than 

f( n) guards, and the theorem IS proved. 

3. A DECOMPOSITION INTO ORTHOGONALLY CONVEX SETS. 

In [7], Guay and Kay prove thatfor S closed and connected and Q its corresponding 

set of Inc points, if S "" Q is connected and Q has exactly k members, then S is 

expressible as a union of k+ 1 convex sets. Here we use the dent edges of orthogonal 

polygon S to obtain an analogous result .. 
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Theorem 6. Let 5 be an orthogonal polygon whose boundary is a simple closed 

curve. If 5 has k dent edges, k ~ 0, then 5 is expressible as a union of k + 1 (or 

possibly fewer) orthogonally convex polygons. The bound k + 1 is best possible. 

Proof. We proceed by induction on k. If k = 0 then 5 is orthogonally convex by [1, 

Lemma 1]. To establish the result for general k, assume that the result has been 

established for whole numbers less than k, where k ~ 1. Let 5 be an orthogonal 

polygon satisfying our hypothesis and having k dent edges. Assume that the vertices 

of 5 are labeled Va, ... ,Vn in clockwise direction along bdry 5, wit~ VI V2 a dent 

edge of 5. Let w be the boundary point of S closest to VI such that VI E (w, V2). 

It is easy to see that the segment [w, V2] separates 5 into two orthogonal polygons: 

Certainly bdry 5 consists of two curves }.1 and A2, where Al follows bdry 5 (in a 

clockwise direction) from VI to wand A2 follows bdry 5 (in the same direction) from 

w to VI. Then /\1 U [10, VI] is a simple closed curve bounding orthogonal polygon 8 1 , 

while >"2 U [Vl'W] is a simple closed curve bounding orthogonal polygon 52. Clearly 

51 U 52 = 5. 

For i = 1,2, edge e of 5i will be a dent edge for 5i if and only if either e is a dent 

edge for 5 or e contains VI V2 as well as one other dent edge for 5. (See Figure 

8.) Letting ki represent the number of dent edges of 5i, i = 1,2" it follows that 

kl + k2 = k - 1. By applying our induction hypothesis to each set Si, Si is a 

union of ki + 1 orthogonally convex polygons, i = 1,2. Hence 5 is a union of 

(kl + 1) + (k2 + 1) = k + 1 such polygons, finishing the induction and completing 

the proof of the theorem. 

w 

Figure 8. 
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To see that the result is best, simply modify the set in Figure 8 to a set with k dent 

edges, k ~ o. 

Corollary. Let S be an orthogonal polygon whose boundary is a simple closed curv:e 

with n vertices, n ~ 6. Then S is a union of n~4 (or possibly fewer) orthogonally 

convex polygons. In case no two dent edges of S are consecutive, then S is a union 

of ~ orthogonally convex polygons, and :t is best. 

Proof. If S has no dent edges, then S is orthogonally convex. If S has k dent edges, 

k ~ 1, then by Theorem 1, n ~ k + (k + 6) = 2k + 6. Hence n~4 ~ k + 1, and by 

Theorem 6, S is a union of n~4 (or possibly fewer) orthogonally convex polygons. 

In case no two dent edges of S are consecutive, then by Theorem 1, n ~ k + (k + 

2k + 4) = 4k + 4. Hence ~ ~ k + 1, and S is a union of ~ orthogonally convex sets. 

Again, the set in Figure 8 may be modified to show that :t is best. (To begin, 

remove the extreme east and west rectangles.) 

Theorem 7 provides an analogue of this result for cl( ~ S). 

Theorem 7. Let S be an orthogonal polygon whose boundary ~s a simple closed 

curve. If S has j locally convex edges, j ~ 4, then U = cl( ~ S) ~s expressible as a 

union of j (or possibly fewer) orthogonally convex sets. The bound j is best p~ssible. 

Proof. Assume that bdry S is ordered in a clockwise direction, and let R 1 , R 2 , R 3 , 

R4 be rays, directed north, east, south, west, respectively, which follow this order 

and whose corresponding lines support set S, with Ri n S a locally convex edge of 

S for each i, 1 :S i :S 4. Then (Ut=l Ri) U (bdry S) divides U into four closed sets 

Ui, 1 :S i :S 4, each bounded by two consecutive rays and a subset of bdry S. (See 

Figure 9.) 
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R2 

U2 

Figure 9. 

The remaining j - 4 locally convex edges of S become dent edges for these corre-

sponding sets Ui. Letting ji denote the number of dent edges of Ui, 1 ::; i ::; 4, the 

argument in Theorem 6 may be adapted appropriately to show that Ui is a union of 

ji + 1 orthogonally convex sets. Hence U is a union of 2:;=1 (ji + 1) = 2:;=1 ji + 4 = 

(j - 4) + 4 = j (or possibly fewer) orthogonally convex sets. 

To see that the bound j is best, modify the set in Figure 8 to a set with j locally 

convex edges, j 2:: 4. 

Corollary. Let S be an orthogonal polygon whose boundary is a simple closed curve 

with n vertices. Then U = ('" S) is a union of nt2 (or possibly fewer) orthogonally 

convex sets. In case no two locally convex edges of S are consecutive, then U is a 

union of nt4 orthogonally convex sets, and nt4 is best. 

Proof. The argument is like the proof of the Corollary to Theorem 6. It uses 

Theorems 3 and 7 and (once again) the example in Figure 8. 
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