Revista de la \ ‘ ' 143
Unién Matematica Argentina
Volumen 40, Nimeros 3 y 4, 1997.

A STAIRCASE ANALOGUE OF THE PRISON
YARD PROBLEM FOR ORTHOGONAL POLYGONS

MARILYN BREEN

University of Oklahoma, Norman, OK 73019, USA

ABSTRACT. Let S be an orthogonal polygon bounded by a simple closed curve with
n vertices. If 4 < n < 7, then S is orthogonally convex. If 8 < n, then S is expressible

as a union of ["—:4-] sets, each starshaped via staircases. Similarly, for 4 < n, cl(~ S)

is expressible as a union of [EP] such starshaped sets. These results yield a staircase

version of the “prison yard” problem, for % guards suffice to see the whole plane via

staircase paths, with each path in S or in cl(~ §). Finally, analogous results provide
decompositions of S and cl(~ S) into orthogonally convex sets.

1. INTRODUCTION. We begin with some definitions. Let S be a nonempty
set in the plane. Point z in S is a point of local convexity of S if and only if
there is a neighborhood N of z such that N N S is convex. If S fails to be locally
convex at ¢ in S, then ¢ is a point of local nonconvexity (Inc point) of S. Set S
is called orthogonal if and only if S is a closed, connected set whose boundary is
a finite union of segments (edges) and rays, each parallel to one of the coordinate
axes. An edge e of S is a locally convex edge if and only if both endpoints of
e are points of local convexity of S. Similarly, edge ¢ is a dent edge if and only
if both endpoints are Inc points of SN H, for H an appropriate closed halfplane
determined by the line of e. For A a simple polygonal path in the plane whose
edges [v;—1,v;] = v;_1v;, 1 <17 < n, are parallel to the coordinate axes, A is called
a staircase path if and only if ‘the associated vectors [vi—1,v;] alternate between
one (and only one) vertical direction and one (and only one) horizontal direction.
For points z and y in S, we say z sees y (z is visible from y) via staircase paths
if and only if there is a staircase path in S containing both = and y. The subset

of S seen by z via staircase paths is the visibility set of z, and S is starshaped via
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staircase paths if and only if for some point p of S, the visibility set of p is exactly
S. Finally, set S is called horizontally convex if and only if for each z,y in S with -
[#,y] horizontal, it follows that [z,y] C S. Vertically convex is defined analogously.
We say set S is orthogonally convex if and only if S is an orthogonal set which is

both horizontally convex and vertically convex.

There are many interesting results in convexity which involve the idea of visibility
via straight line segments. Among these are a collection of guard problems, dis-
cussed at length in [10]. One example is the art gallery problem, which asks how
many guards are required so that each point of a polygon A (the art gallery) is
visible via a straight segment in A from at least one of the guards. (See Klee (8],
Chvatal [3].)

A second example, the prison yard problem, asks a similar question but stipulates
that the guards be placed at vertices of polygon A and that they protect both the
interior of A (the prison itself) and the exterior of A (the corresponding yard).
(See Fiiredi and Kleitman [6].) Typically, the number of guards required is given
in terms of the number of vertices of A. Here we attempt to adapt these problems
to orthogonal sets, replacing the concept of visibility via segments with the notion
of visibility via staircase paths.

Some related work on orthogonal polygons appears in [2]. Moreover, results in
[1] show that dent edges for orthogonal polygons behave much like Inc points for
arbitrary closed connected sets in the plane. Here we extend this idea, using the
dent edges of an orthogonal polygon S to decompose S into a union of sets which
are starshaped via staircases. Further, just as a finite collection of Inc points may be
used to decompose a closed connected set into a union of convex sets ([7]), the dent
edges help to decompose orthogonal polygon S into a union of orthogonally convex
sets. Since the locally convex edges for S are exa,ctly.the dent edges for cl(~ S), the
results yield some predictable analogues for the complement of S as well. Finally,
the results for S and its complement are combined to obtain a staircase analogue of
the prison yard problem, again in terms of the number of vertices of the associated

polygon.

Threughout the paper, c1 S and bdry S will denote the closure and boundary, re-
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spectively, for sef S. The reader is referred to Valentine [11], to Lay [9], to Danzer,
Griinbaum, Klee [4] and to Eckhoff [5] for a discussion of visibility via straight line

segments and associated starshaped sets.

2. A STAIRCASE ANALOGUE OF THE PRISON YARD PROB-
LEM. In [6], Fiiredi and Kleitman prove that if P is a nonconvex simple polygon
with n vertices, [’23] guards suffice to cover both the interior and the exterior of P.

We will obtain a similar result for orthogonal polygons, using staircase paths.

The following definition will be helpful.

Definition. Let S be an orthogohal polygon bounded by a simple closed curve,
and let s1,...,8, be the vertices of S, ordered in a clockwise or counterclock-
wise direction along bdry S. Similarly, define orthogonal polygon S’ and vertices
81,...,8!,. We say S and S’ have the same edge arrangement if and only if, for an
appropriate labeling of their vertices, S and S’ have the same Inc points. That is,

s; is an Inc point for S if and only if s! is an Inc point for S’

Theorem 1. Let k and m be integers, 0 < m < k. Let S be an orthogonal polygon
whose boundary is a simple closed curve with n vertices, n > 4. If S has k dent
edges, grouped into m collections of consecutive edges, then S has at least k+2m+4
nondent edges. The bound k + 2m + 4 is best possible. Moreover, ezactly k + 4 of

the nondent edges are locally convez edges.

Proof. We proceed by induction. If k = 0, then S is orthogonally convex, and it
is easy to see that S has at least 4 edges, exactly 4 of which are locally convex.
Similarly, if k = 1, clearly S has at least 7 nondent edges, exactly 5 of which are
locally convex. To establish the result for general k and m, k > 2, k > m > 1,
assume that the theorem is true for natural numbers less than k. Furthermore, for
this k assume that the result has been proved for natural numbers less than m (if any
exist). Fina.liy, for k and m, suppose that the result holds for permissible natural
numbers less than n (if any exist). Let S be an orthogonal polygon satisfying our
hypothesis for k, m, and n.

The vertices S may be labeled either in clockwise or in counterclockwise direction

aloﬁ‘g bdry S by vg,v1,... ,vn. We assert that for an appropriate choice of vy and



146

for an appropriate order, vgv; is a nondent edge; v1v, is dent, and vov; is no longer
than vpvs: Suppose that edge vivs is a dent edge of S. Certainly one of the edges
vov;, vyvg is no longer than the other, so without loss of generality assume vgv; is
no longer than vavs. If wov; is not a dent ¢dge, then our assertion is satisfied. If
vov; is dent, consider fhe remaining eage vﬁbo at vg. bObs‘erve that it is sl;ortér thz_a.n
vivz. (See Figure 1) If v,vg is dent, continue. Obviously not all edgés of S can be
dent, so in finitely many steps we reach a (first) edge not a dent edge. Renumber
the vertices w1, ws, ... ,wy so that wow, is not dent and wyws is dent. Observe tha.t

wow; is shorter than wyws. Therefore, we may assume that our original labeling

vg,v1,... , VU, produces the required properties. .
V3
Vo Vn
Vl V2
Figure 1.

For future reference, observe that since vovy 1s not dent, one of its endpoints cannot
be a;n Inc point for S. Since vjvg is dent, v1 is an Inc point. Thus vp is not an Inc
point, and v,y cannot be a dent edge. Also observe that, relative to our ordering,
v1vy will be the first edge in one of the m collections of consecutive dent edges.

Let A be the rectangle determined by vertices vg,v1,v2, and let z be the fourth
 vertex of A, z € (vz,v3]. We may assume that (int A) U (v, z) is disjoint from S,
for otherwise, by adjusting lengths of appropriate edges of S, we could obtain an
orthogonal polygon having the same edge arrangement as S and having the required

property. There are several cases to consider.

Case 1. If neither v3 nor v, is an Inc point for S, proceed as follows. Since vg is
not an Inc point, we may assume that z = 'u3.. (See Figure 2.) Now consider the
orthogonal polygon T' = S U A. Observe that bdryT 1s a simple closed curve, that
edges vov1,v1v2,v2v3 for S are not edges for T, and that edges vnvp,v3v4 for S are

just subsets of edge vnvs for T. Further, edge v,vp will be nondent for S (since
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its endpoints are not Inc points) and edges vsvs for S and v,vs for T both will

be nondent (since neither v3 nor v, is an lnc point). Remaining edges will not be

affected.

V3=Z

\Z

1 V) s
Figure 2.
Since in passing from S to T we lose dent edge v1v2 and do not acquire any new
dent edges, T has k-1 dent edges. Moreover, since neither vo nor vs is an Inc point
for S, edge v1vy alone comprises one of the m groups of consecutive edges for 5.
Thus T has only m — 1 groups of consecutive edges. Observe that since k > 2, T
has k —1 > 1 dent edges, and m — 1 > 1. We may apply our induction hypothesis
to T to conclude that 7' has at least (k — 1) + 2(m — 1) + 4 nondent edges. When
we return from T to S, we gain dent edge v1v2; and nondent edges vov1,v2vs3. We
lo;e nondent edge v,v4 but gain nondents v,vo and vgvs. Hence S has k dent edges
and at least

(k—1)+2m—-1)+4+3=k+2m+4
nondent edges.
Also by our induction hypothesis, since T has (k — 1) dent edges, T has exactly
(k — 1) + 4 locally convex edges. Edges vnvs for T and v3vs for S are both locally
convex or both not locally convex, according to whether or not v4 is a point of local
convexity. Hence in returning from T to S, there is a net gain of exactly one locally
convex edge, contributed by vnvp, so S has exactly k + 4 such edges. This finishes
the proof for Case 1.

Case 2. If one of v3 or v, is not an Inc point for S, assume that z # v and hence
z is strictly between vy and ws. (See Figure 3.) Again consider the orthogonal
polygon T = SU A, which is bounded by a simple closed curve. Observe that edges

vgv1,v1v3 for S are not edges for T', and edge vnvo for S is just a subset of edge vz
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for T. Edge vpv3 for S will be replaced by edge zvg for T'. Moreover, z will be an
Inc point for S, so edges vav for S and zvs for T will be both dent or both nondent,
depending on whether or not w3 is an In¢ point. Remaining edges are unaffected.

There are two subcases, determined by the classification of vy,.

V3

Vl V2
Figure 3.

Case 2a. If v, is not an Inc point (and v is an Inc point), then v,z is not a dent
edge for T'. (See Figure 4.) Hence in passing from S to T, we lose dent edge viv2,
swap dent edge vyvs for dent zvs, and do not acquire any new dents, so T has k —1
dent edges. Moreover, since vg is not an Inc point for S but v3 is an Inc point, v1v
and vyvg are first and second dent edges in a sequence of consecutive dents for S.
In T, edge zvs will be first in the corresponding sequence of dents for T', so T' (like
S) will have m collections of consecutive dents. Applying our induction hypothesis,
T will have at least (k — 1) + 2m + 4 nondent edges. When we return from T to
S, we replace nondent v,z for T with nondent v,vo for S and replace dent zvg for
T with dent vov3 for S. We gain nondent vgv; and dent v;vz. Hence S has k dent

edges and at least

(k—1)+2m+4+1=k+2m-+4

nondent edges.
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V3
va : Vo z
V] V2

Figure 4.

Also by induction, T has exactly (k—1)+4 locally convex edges. Returning from T'
to S we lose no locally convex edges and gain the locally convex edge v, v, giving

S exactly k + 4 such edges.

Case 2b. If vy, is an Inc point, then v,z will be a dent edge for T'. Since v,vg is not
dent for S, in passing from S to T we loée dent edge v1v2 and gain dent edge v,z,
leaving T' with k dent edges. Unfortunately there are yet two more possibilities,
determined by the classification of vertex vs.

In case v3 is an Inc point, then vyv; is a dent edge for S, so v;vy and vavs belong to
the same collection of consecutive dents in S. (Sée Figure 5.) In T', edge zvs leads
the corresponding sequence, so T' has m collections of consecutive dents. However,
T has two fewer edges than S, so by our induction hypothesis, the theorem must
hold for T. Thus T will have at least k + 2m + 4 nondent edges. Returning from
T to S, we lose dent v,z and gain nondent v,vy. We gain nondent vgv; and dent

v1vs. We lose dent zv3 and gain dent vavz. Thus S has k dents and at least
k+2m+44+2=k+2m+6

nondents. (This is 2 more than we needed.)
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— Y3

Vo ‘ Vo

V1

v2

Figure 5.
Also, T has exactly k dent edges and, by induction, exactly k 4 4 locally convex
edges. There is no change in locally convex edges when we pass from T to S,s0 S

has exactly k + 4 such edges as well.

Finally, in case g is not an Inc point, then vv3 is nondent for S, so wivy alone
comprises one of the m sets of consecutive nondent edges in S. (See Figure 6.) In
T, zvg is nondent, so T has only m —1 sets of consecutive nondent edges. Applying
our induction hypothesis, T has at least k +2(m — 1) + 4 nondent edges. When we
return from T to S, we lose dent v,z, gain nondent v,vp, gain nondent vov1, and
gain dent v1v;. We lose nondent zvg to gain nondent vyvs. ‘Hence S has k dents

and at least

E+2m—-1)+4+2=Fk+2m+4

nondents.

v3

Vn l Vo

Vi

V2

Figure 6.
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Also by induction, T has exactly k + 4 locally convex edges. There is no change in
these edges when we return from T to S, so S has exactly k + 4 such edges, also.
This finishes the argument in Case 2. By induction, the theorem must Lold for all

suitable k£ and m.

It is easy to see that the result in Theorem 1 is best when k& = m = 0. To see that

it is best for k, m > 1, consider the following example.

Example 1. For k > 1, k.Z m > 1, let ky,...,k, be m natural numbers whose
sum is k. Construct orthogonal polygon S having k dent edges and k + 2m + 4
nondent edges as follows:‘ Begin with nondent edge e as base. Above e (and following
e) place edges in this sequence: 3 nondents, k; dents, k; + 2 nondents, ko dents,
ky +2 nondents, ... ,kn, dents, k,, + 2 nondents. This produces 27;1 k; = k dent
edges and 4 + E:’;l(ki +2) = 4 + k 4 2m nondent edges. Notice that exactly k +4
of thé nondent edges are locally convex.

Figure 7 illustrates the construction for k = 8, m = 3, using k1 = 3, k2 =4, k3 = 1.

k1=3 kp=4 k3=1

| g

Figure 7.

Theorem 2. Let S be an orthogonal polygon whose boundary is a simple closed
curve with n vertices, n > 4. If 4 < n <7, then S is orthogonally convez and hence
starshaped via staircases. If n > 8, then S is expressible as a union of ["T_‘}] (or

possibly fewer) sets, each starshaped via staircases.

Proof. We assume that S has k dent edges, grouped into m collections of consecutive
edges, 0 < m < k. If k = 0 then by [1, Lemma 1], S is orthogonally convex and

hence starshaped via staircases.



152

For the remainder of the proof, assume that m > 1. Then S has at least k+2m +4
nondent edges, so n > k + (k + 2m +4) > 8. By [1, Theorem 2], for each point z
of S there is at least one dent edge D of S such that = sees (via staircase paths in
S) every point of D. Hence if we choose one point p of S from each dent edge, t(ﬁe
corresponding visibility sets S, will satisfy the theorem.

For 1 < i < m, let G; denote the corresponding collection of consecutive dent edges
of S, where G; contains k; edges. In case each k; is odd or each k; is even, only
minor nov‘tgtionakl changes are needed in the argument, so for simplicity, suppose
that both odd and even k;’s appear. For convenience of notation, assume the G;
sets have been labeled so that ki,...,k; are odd and kit1,... ,km are even, for
some fixed I, 1 <1< m — 1. For each k;, select a set of alternating endpoints from

the corresponding dent edges so that for each edge, exactly one endpoint is chosen.

Clearly k‘;’ 1 points suffice when k; is odd and %‘ points suffice when k; is even. In

all, we select
1

k;+1 AL k; 1 i k+l k+m
Z 5 +Z§'=§(;ki+i)=—2—f 2

i=1 i=1+1

points. (If all k;’s are odd, we select kgﬂ points, and if all k;’s are even, we select

% points. However,

n>k+(k+2m+4) =2k +2m +4

so 2t > Eim  We have chosen a set P of at most [1‘—4_—5] points. Since each

dent edge contains a member of P, the corresponding collection of visibility sets
{Sp : p in P} will satisfy the theorem.
It is interesting to note that Theorems 1 and 2 above may be adapted to produce

the following results.

‘Theorem 3. Let j and t be integers, 1 <t < j. Let S be an orthogonal polygon
whose boundary is a simple closed curve with n vertices, n > 4. If S has j locally
convez edges, grouped into t collections of consecutive edges, then S has at least

j + 2t — 4 non locally convez edges. The bound j + 2t — 4 1s best possible.

Proof. It is easy to see that every orthogonal polygon bounded by a simple closed

curve has at least 4 locally convex edges. Moreover, such an orthogonal polygon
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has exactly 4 such edges if and only if it is orthogonally convex. For j = 4 and
n > 4, it is not hard to show that S has at least 2¢ non locally convex edges, so the
formula holds.

For j > 5, set S must be nonconvex and therefore must have at least one dent edge.
We will apply the argument in Theorem 1. Observe that most of that argument
depends on the features of the orthogonal curve A which defines set S, not on the
fact that S is the bounded region determined by A. If we let U be the closed
unbounded region determined by A, then dent edges for U correspond to locally
convex edges for S, and locally convex edges for U correspond to dent edges for S.
This duality allows us to apply the inductive proof in Theorem 1 to region U. The
only changes will be in the opening paragraph, when we begin the induction. If
J=>5and t =1, it is easy to see that set S has at least 3 non locally convex edges.
The rest of the argument follows the argument in Theorem 1, with —4 replacing
+4 in the formula.

It is easy to find examples to show that the result in Theorem 3 is best for j = 4.
For j > 5, S has at least one de;nt edge, and thé result is best by Example 1 of this
paper.

Theorem 4. Let S be an orthogonal polygon whose boundary is a simple closed
curve with n vertices, n > 4, and let U = ¢cl(~ S). Then U is expressible as a
union of ["—Ii] (or possibly fewer) sets, each starshaped via staircases. In case S

is orthogonally convez. U is a union of 2 such starshaped sets.

Proof. To begin, we assert that for z in U , T sees via staircases in U all points
of some locally convex edge of S: Let V be a rectangular region whose interior
contains S U {z}, and let W = cl(V ~ S). Then W is an orthogonal polygon, so
by [1, Theorem 2], = sees via staircase paths in W all points of some dent edge of
W. However, the dent edges of W are exactly the locally convex edges of S, so the
assertion is esta};iished.

To prove Theorem 4 Whé‘n S is orthogonally convex, recall that S has 4 locally
convex edges, say e1, s, es, es, labeled in a clockwise difection along bdry S. Choose
one endpoint p; of e; and one endpoint pg of e3. It is easy to show that U is the

union of the corresponding visibility sets Se;, Ses.
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For S not orthogonally convex, n > 8. We assume that S has j locally convex edges,
grouped into ¢ collections of consecutive edges, 1 < ¢t < j. Following the argument in
Theorem 2, we choose a set of alternating endpoints from each collection, obtaining
a set of at most ZI% points, with one point chosen from each locally convex edge.
By Theorem 3, n 2 J+(F+2t—4), so —'1'— > t. We have a set of at most
["'+4] points, and by our preliminary assertion above, the corresponding V181b1hty

sets satisfy the theorem.

Theorems 2 and 4 yield the following staircase analogue of the “prison &a.rd” prob-

lem.

Theorem 5. Let S be an orthogonal polygon whose boundary is a simple closea
curve X with n vertices. Guards, placed at vertices of S, can see points of the plane
via staircase paths, with each path either in S or in cl(~ S). When S is orthogqndlly
convez, 2 guards suffice to see all points of the plane. In general, no more than f(n)

guards suffice, where

5 when 4 divides n
n

s otherwise .

Proof. Observe that n is always even and n > 4. If S is orthogonally convex, then _
(by Theorem 4) 2 guards suffice for cl(~ §). Clearly, either of these can guard
S as well, so we need only 2 guards in all. If S is not convex, then n 2 8. By
Theorem 2, [ ] guards suffice for S, while by Theorem 4, ["+4] guards suffice
for cl(~ S). In case 4 divides n, this gives 272 + %% = 2 guards in all. Otherwise,
this gives "T_G + 2}1"—2- = "ze ~2 guards in all. Hence in general we need no more than

f(n) guards, and the theorem is proved.

3. A DECOMPOSITION INTO ORTHOGONALLY CONVEX SETS.

, In [7], Guay and Kay prove that for S closed and connected and @ its corresponding
set of Inc pomts if S~ @i is connected and @ has exactly k members, then S is
e_q;pres31ble as a union of k+1 convex sets. Here we use the dent edges of orthogonal

polygon S to obtain an analogous result.
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Theorem 6. Let S be an orthogonal polygon whose boundary is a simple closed
curve. If S has k dent edges, k > 0, then S is expressible as a union of k+1 (or
possibly fewer) orthogonally convex polygons. The bound k + 1 is best possible.

Proof. We proceed by induction on k. If k = 0 then S is orthogonally convex by [1,
Lemma 1]. To establish the result for general k, assume that the result has been
established for whole numbers less than k, where k > 1. Let S be an orthogonal
polygon satisfying our hypothesis and having k dent edges. Assume that the vertices
of S are labeled wvg, ... ,v, in clockwise directicn along bdry S, with viv; a dent
edge of S. Let w be the boundary point of S closest to v1 such that v; € (w,v2).
It is easy to see that the segment [w, v2] separates S into two orthogonal polygons:
Certainly bdry S consists of two curves A\; and Ay, where A; follows bdry 5 (in a
clockwise direction) from v; to w and Ay follows bdry S (in the same direction) from
w to vy. Then A; U[w,v;] is a simple closed curve bounding orthogonal polygon S1,
| while Ay U [v1,w] is a simple closed curve bounding orthogonal polygon S;. Clearly
S1US; =S,
For i = 1,2, edge e of S; will be a dent edge for S; if and only if either e is a denf
edge for S or e contains v;v; as well as one other dent edge for S. (See Figure
8.) Letting k; represent the number of dent edges of S;, i = 1,2,, it follows that
ki + ky = k — 1. By applying our induction hypothesis to each set S;, S; is a
union of ki~+ 1 orthogonally convex polygons, i = 1,2. Hence S is a union of
(k1 + 1) + (k2 + 1) = k + 1 such polygons, finishing the induction and completing
the proof of the theorem. |

w Vl V2

Figure 8.
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To see that the result is best, simply modify the set in Figure 8 to a set with k dent
edges, k > 0.

Corollary. Let S be an orthogonal polygon whose boundary is a simple closed curve
with n vertices, n > 6. Then S is a union of -”2_—4 (or possibly fewer) orthogonally
convez polygons. In case no two dent edges of S are consecutive, then S 1s a union

of & orthogonally convez polygons, and 3 1s best.

Proof. If S has no dent edges, then S is orthogonally convex. If S has k dent edges,
k > 1, then by Theorem 1, n > k + (k + 6) = 2k + 6. Hence n—;i >k + 1, and by
Theorem 6, S is a union of —"2;4- (or possibly fewer) orthogonally convex polygons.
In case no two dent edges of S are consecutive, then by Theorem 1, n > k + (k +
2k +4) = 4k +4. Hence § > k+1, and S is a union of 7 orthogonally convex sets.
Again, the set in Figure 8 may be modified to show that § is best. (To begin,

remove the extreme east and west rectangles.)
Theorem 7 provides an analogue of this result for cl(~ S).

Theorem 7. Let S be an orthogonal polygon whose boundary is a simple closed
curve. If S has j locally convez edges, j > 4, then U = cl(~ S) is ezpressible as a

union of j (or possibly fewer) orthogonally convez sets. The bound j 1s best possible.

Proof. Assume that bdry S is ordered in a clockwise direction, and let Ry, Ra, R;,
R4 be rays, directed north, east, south, west, respectively, which follow this order
and whose corresponding lines support set S, with R; NS a locally convex edge of
S for each 7, 1 < i < 4. Then (U?=1 Ri) U (bdry $) divides U into four closed sets
Ui, 1 < i < 4, each bounded by two consecutive rays and a subset of bdry S. (See
Figure 9.)
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Ry Y1 Ry
Uy S U,
- R3
Ry Uy
Figure 9.

The remaining j — 4 locally convex edges of S become dent edges for ‘these corre-
sponding sets U;. Letting j; denote the number of dent edges of U;, 1 < i < 4, the
argument in Theorem 6 may be adapted appropriately to show that U; is a union of
Ji+1 orthogonally convex sets. Hence U is a union of E;-i:l(ji +1) = Zle Jit4=
(j —4) +4 =7 (or possibly fewer) orthogonally convex sets.

To see that the bound j is best, modify the set in Figure 8 to a set with j locally

convex edges, j > 4.

Corollary. Let S be an orthogonal polygon whose boundary is a simple closed curve
with n vertices. Then U = (~ S) is a union of 22 (or possibly fewer) orthogonally
convez sets. In case no two locally convezr edges of S are consecutive, then U is a

union of %ﬁl— orthogonally convez sets, and "TH 1s best.

- Proof. The argument is like the proof of the Corollary to Theorem 6. It uses

Theorems 3 and 7 and (once again) the example in Figure 8.
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