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Abstract: We present a new method to obtain symetrization results for parabolic equation 
in divergential form. This method applies for quite general quasilinear boundary value 
problems. 

L Introduction. 

In this paper we extend results of symetrization of parabolic problems first obtained 
in the linear case by C. Ban,lle [Ba] under smooth assumptions. We first recall these 
results to explain our extensions. VVe refer tIle reader to [D] for a general presentation of 
the symetri;mtion of parabolic problem. 
Consider the problem 

(Po) 
{ 11t = 

u= 

I:(aijUx.)x on Q =]O,T[xn . } 

° on ]O,T[xr ,u(0,.)=110 on n 
when n is a bounded open set in JRN with boundary r , Uo E Ll (fl.), aij = aji E LCXJ( Q) 
satisfy the ellipticity condition 
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This problem i1) compared to the heat equation 

Po 
� 

{ Vt = �v on ]0, T[x n 
� v = 0 on ]O,T[xD � , v(O , .) = � on n 

where n is the ball B(O, R) inlRN such that In 1=1 n I {I) and for u E LI(n) , u is the 
� � � 

spherical rearrangement of u defined on n by 

{ �(:v) = g (1 x I) with g :]O,R[-+lR+ non-decreasing 

such that I { � > k } 1=1 { 1 u I> k } 1 for any k � 0 
Then the following has been proved: 

Theorem O. ( [Ba] , [MR]). Let u be the (weak) solution of (Po) and vbe the solution 
of (Po). 

Then 

(1) { u(t)(x)dx :::; ( v(t)(x)dx V(t,r) E]O,T[x]O, R[ } B(O,r) � } B(O,r) 

Notice that in the parabolic case, one cannot compare directly the rearrangement of 
u(t) with vet) as it is the case for the elliptic problem 

(E) 
In the elliptic case indeed, if u is the solution of (E), then (see [Ba]) u:::; v on n, 
where v is  the solution of 

(E) 
� 

v = 0 on an. 

This has been used by J.L.Vazquez in [V], together with non linear semi group theory in 
£len), to obtain symetrization results for the problem 

(PJ) Ut E �!p(u) on Q =]0 , 00 [xJRN , u(O, .) = Uo on JRN 

where !p is a maximal monotonc graph inlR with 0 E !p(0). 

The proofs of the above results study the rearrangement � of a function U E .fJHn) 
using the Polya inequality 

(1) If E is a mesurable set in JRN, 1 E 1 is the N-Lebesgue measure of E. 
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II!: IIHJ(Sl) � lIuIIHJD) 
� 

and the isoperimetric inequality ( with perimeter in the sense of De Giorgi) 

perimeter of {!: > k } � perimei,er of { I u I> k} 

In this paper we propose a completly different approach based on studying the 
distribution function 

u'(k ) = 1 { I u I> k } I , 
or more precisely it's integral 

[00 u*(s)ds = [ ( I u(x) I-k )+dx , ik in 
and using the Sobolev inequality 

(S1 ) 

where 

(2) 
.l. 

AN = NWN with WN =1 B(O,l) I 

Use of the distribution function u* instead of the spherical rearrangeme�lt !: is explained 

by the following elementary result on rearrangement ( see for instance [B-S] , [B- C] ) . 

Lemma O. Let (n1,B[,{ld,(n2,BZ,{lz) be measure spaces with {ll(nd = {lz(Dz), 
Ul E £l(nd, U2 E LZ(Dz) arid Ul,UZ be their rearrangement on n = B(O,R) inlRN with 

� 

I � 1= {li(ni) . Then the following properties are equivaJent: 

( i) 

( ii) [ ul(x)dx � [ u2(x)dx Vr E]O,R[ i B(O,r) � J B(O,r) � 

Then, since for the solution v of (Po) , clearly vet) = vet) , conclusion (1) of theorem 0 
may be as well stated: 

� � 



4 

Applying lemma 0 with N = 1 , the properties (1) and (ii) are still equivalent to 

( iii) 

where Ro = /-ti(ni) and u. is the rearrangement on ]0, Ro[ of u , which is actually only 
no . . 

the inverse function 
,
of u* ; hE-.1ce· ! u*(s)ds and r (lui - k)+ are conjugate convex 

r �l . 
fUilctiolls. In this sense our method of symetri�atioll appears to be " dual" of the classical 
one. 

Notice also that the 80bolev inequality (81) with the best constant AN follows by 
the isoperimetric inequality such that , in' some sense, our method implicit ely use this 
inequality ( in a classical case ) . However, as we will see, without knowing the best 
constant, we will obtain some symetrization result; such result indeed, with our method, 
is only related to existcnce of somc 80bolev inequality. Also the method allows to handle 
as well quite general quasi linear problem. 

As exarhple of the results we can obtain with our method, we give two statements: 

Theorem 1. Let n be any open set inRN, (J =]O,T[xn, a: (J xIRN+I -+RN be 
Cal'atheodory and satisfy 

a(t,x,k,,)., 2: 0:(lkDlel2 - F(t,x,k)., V(t,x,k,e) E (J xRN+I 

where 0:: R -+ ]0, oo[ is Holder continuous, F: (J x R -+ RN is Caratheodory and satisfies 

(4) sup IF(., k) E L2«(J) VR > 0 and div(kF(t,., k)) SO in V'(n) Vet; k) E]O , T[xlR 
Ikl::;n 

Let u E C([O,T[jLI(n))nLroc(]0,T[;Wi,2(H)) with a(.,u,gradu) E Ltoc(]0,T[jL2(n)) 
�� . 

(5) Ut = div a(., u, gradu) in V' (Q) . 
On the other hand let n be a ball B(O, R) eRN with Inl S Inl , Vo E LI(n) n LOO(n) 
with Vu = Vo and v be the solution of 

� 

(6) 
{ Vt = llcp(V ) on ]0, T[xn , 

v = ° on ]0, T[xan , v(O,.) = Vo on n 

where cp(v) = lv o:(k)dk. 

If 10 (Iuol- k)+dx S k(vO - k)+dx for any k 2: 0 ,  then 
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r (lu(t)l - k)+dx:::; r (v(t) - k)+dx V(t,k) E ]O , T[xW if! in 
While the proof we will give is new and quite simple, the result of theorem 1 is not 
surprising: however notice that we can handle parabolic equation (5) with first order, 
derivative in x like the equation 

(8) Ut + divF(., u) = 6.<p(u) 

with F : Q x JR -+ JRN Caratheodory satisfying (4). 
In Theorem 1, we have assumed that <p E CI(JR) with <p' > 0 on JR ; actually this 

can be relaxed and we may assllme that <p : JR -+ JR is only continuous non decreasing, 
according that the solution of (8) we consider is the limit of sufficiently smooth solutions 
to approximate problems. 

More important is that the method allows to relax in some sense the Dirichlet boundary 
condition 11. = 0 OIl ]0, T[ x r . As an example we state the following simple case: 

Theorem 2. Let n be a bounded open set in JRN with smooth boundary rand r + 
be a smooth closed set in r with positive superficial measure. There exists a constj:1llt 
e = e(n, r +) such that, if aij = aji E LOO(fl) satisfy the ellipticity condition 

2:>ij�i�j � e21�12 \1� E JRN , a.e.on D. , 

if <p: JR -+ JR is continuous non decreasing and odd ,  
i f  u E C([O, T[j LI(n» satisfies 

(9) 

{ <p(u) E L2(0, Tj W1,2(D.», <p(Ji-) = 0 on )0, T[xr + 

. J h u(( = J h L aij<p(u)x;(Xj V( E V()O, T[x(JRN\r +» , 

if n = D. and v is the solution of (6) with Vo = u(O) , 

then (7) holds. 

We will see that 

(10 ) e = AN sup{II(1I ---1L ; ( E V(JRN\r +) , r Igrad (I = 1 } LN-I (f!) , in 
In particular, if r + = r then, using isoperimetric inequality, e = 1 .  

'At the end of this introduction, w� want to explain how these results are, related to 
Julio Bouillet to whom this paper is dedicated. Actually we started with his very nice 
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paper [Bo J on comparison of heat flux for different diffusion laws. Julio Bouillet was 
considering a Stefan problem in one dimension 

(11 ) 

{ Ut = (a(u)ux)x on G = {(t,:;;)jO < x < set)} 
. Utt,8(t)) = Uo , (k(u)Ux)(t,8(t)) + AS(t) = J(t) on JO,T[ 

u( t, 0) = <pc t) non decreasing on [0, T[ 
u(O, x) = '1/J(x) non increasing on [O,oo[ j 

he proved that for tio, A, J, given, and two different data (at, <PI, '1/Jd, (a')., <P2, 'tP2) with 
ell � el2, <PI � <P'}., and '1/Jl � '1/J2 , the free boundaries 81 � 82 ; the proof was based £8(/) 
on studying the function . (u(t,x) - k)+dx. Using the same idea, the first author 

• 0 
cxtclldcd ill [AlJ the result. to Illore gelleral nOll liuear heat equation still ill one uilllcllsioll. 

At this stage we realize that one can get result.s assuming only that <P2, -'1/J2 ace non 
decreasing, <PI, '1/Jl being any function. The extension to the N-dimensional case brought 
us to the method of symetrization uevelopped here and first presented in [A2J. 

This first contact with Julio Bouillet was later developped by a strong collaboration 
between him and the second author who wants to express, by dedicating this article, how 
much he has appreciated Julio Bouillet for mathematics and also how much he liked him 
for friendship. 
2. A general result. 

Let n be an open set inK, Q =]0, T[xn, Q be a ball B(O, R) inlRN with 0 < R S; +00 
and Inl :::; IQI , Vo E Ll (n) n LOO(Q) with Vo = Vo , and <P E Cl+f(JR+) with <p' > 0 in JR+. 
We consiuer the problem 

(12) 
{VI=6..<P(V) on O:.]O,T[XQ 

v = 0 on JO, T[xan 

v(O,.) = Vo on Q 
It has a unique solution v E C([O, T[; LI(Q)) n Cl,2(]0, T[ x Q) ; more precisely, vet, x) = 
get, Ix!) on ]O,T[><Q with 9 :]O,T[x[O,R[�JR+ satisfying : 

(13) 

ag 9 > 0 ,  -a 
< 0 on ]O,T[xJO,R[ 

'r 
8g . 
ar (t, 0) = 0 for t E]O, T[ 

if R < 00, lim g(t,1') = 0 for t E]O,T[ 
r--+R 

if R = 00 , 100 NI l 1 l' - g(t,1')d1' = -- Vo o NWN 'lR!' 
for t E]O, T[ 
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Let V be a closed subspace of VV1,2(D) containing V(D) j assume there exists a constant 
c > a such that 

( 14 )  

and that 

(15) ( E V => p(O E V Vp E 'Po 
where 'Po = {p E C1 (JR) j pea) = a ,p' 2:: a ,8UPP p' is compact and 0 ¢-. 8UpP p' }. 

We have the following general result: 

Theorem 3. Let U E C([O,T[j LI(D» n L;oc(]O, T[j V). Assume that 

( 16) { ! in j(lu(t)1) + c2 1
1 

IP'(IU(I)1) p'(lu(t)1) l'Vu(t)12 � 0 in V'(JO, T[) 

for any P E 'Po with j = fop(k)dk, 

where c is the constant in ( 14 ). If r (lu(O)1 - k)+ dx � �(vo - k)+ dx for any k 2:: 0 , in in 
then (7) holds. 

We will show in section 3 the relation between the equation (5) and the assumption 
(16). Let us here only give the proof of theorem 3 which relies on comparing the functions 

(17.) 

This will be done in three steps. 

Proof of theorem 3, step 1. 

Introduce the function r( t, k) defined on 

(18) G = {(t, k) ; t EjO, T[ ,0 < k < get, 0) = /IV(t)/iLoo} 
by 

(19) r = r(t,k) � g(t,r) = k 

This is well defined acco-:ding to (13). We have 

(20) 
{ V(t,k) = 0 for t EjO,T[, k � g(t,O) 

r(t,k) 
V(t,k) = NWN 

io 
rN-Ig(t,r)dr for (t, k) E G 
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Also by derivation in (17), we have 

(21) 
then 

(22) 

and 

(23) 

av ... 
ak (t;k) = -IB(O,r(t,k»)I= -wNr(t,k)N on OJ 

{ av . av 
ak E C([O, T}x 10, ooD, Ok' (t, k) = 0 for k � get, 0) 

. if R < 00 , lim 
a

a
V
k (t, k) = -Inl 

k-+O .' 

�V �V � 
ak2 E C(G) , ak2 = -NwNr(t, k)N-l Ok (t, k) > 0 �n G . 

On the other hand 

a
O� (t,k)= r a

av(t,x)dx= r . 6cp(v(t»= J B(O,r(t,k» t J B(O,r(t,k» 

= NWN[rN-i trcp(g(t, �)]���(t,k) = NWN cp'(k) �� (t, ret, k»r(t, k)N-l
' 

Using (21), (23) and 

we obtain the p.d.e. 

(24) 

with N' = N�l . 

ag' ar '" 
ar (t, ret, k» ak (t, k) = 1 on G , 

lit = _ cp'(k)'\�(-Vk)ffr 
Vu on G 

This equation (24) is interesting by itself and has been used in [B-B] to obt.ain sharp 
estimates on the solution v of (12). Actually we will use it under a more classical form 
of parabolic cquation: set 

(25) 
thcn V satisfies 

(26) on G 
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Proof of theorem 3, step 2. 
We now study the function U(t, k). Let p E C1(JR) with pi � ° , per) = ° for r :::; ° , 

per) = 1 for l' � 1 , and set. j,,(r) = iT p(n$)ds. We st.udy the approximation of U: 

U,, (t,k) = f j,,(Ju(t)J- k)dx . in 
It is clear that oU" 

= _ f p(n(Ju(t)J- k»)dx ok in 
o;�, = n 11 pl(n(Ju(t)J- k)dx 

are continuous functions on [0, T[x [0, 00[. Now, by (16) 

O�n � _nc2 f (/(Iu(t)l) pl(n(Ju(t)J- k)) JVu(tWdx in fi(]O, T[x]O, oo[) ut in 
For a.c.t E]O, T[ and any k E]O,oo[ , according to (14) and (15), one has 

ANJJp(n(Ju(t)J- k»)JJLN'(n) :::; en f p'(n(Ju(t)J- k») JVu(t)Jdx , ill 
and then for j.t(t, k) � ° 
2AN j.t(t, k)( min v/) JJp(n(J(u(t)J- k))JJLN' :::; 

[k,k+-!.] 

2n l <p1(JU(t)J )  pl(n(Ju(t)J- k) c JVu(t)Jj.t(t, k)dx :::; 

nc2/ <p1(JU(t)J) p'(n(Ju(t)J-k) JVu(t)J2dx+ll(t,k)2( max <pl)n f p'(n(Ju(t)J-k))dx. ill [k,k+-!.] ill 
In other words, for any function j.t E Lroc(]O, T[ x ]0, oo[), j.t � ° , one has 

(27) 

As n -+ 00, 

Un(t, k) -+ U(t, k) in C([O, T[x[O, oo[) 
. . ' . oU JJp(nCJu(t)J- k) JJrN' -+ J{Ju(t)J > k}J = - ok Ct, k) in L:oc([O, T[x[O, oo[). 

Then, at the limit in (27), we get 

( ) oU 2 102U I oU)-L .  I(] [] [) 28 at :::; j.t <p oP - 2)..Nj.t<p (-8k N' In V 0, T x 0,00 ; 
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thiH is well defined uud jUHtified for uny function J1. E C(]O, T[ x]O, ooD since U(t, 1.:) being 
a2 

convex ill k, ak� is u 110n negative Radollllleasurc onjO,T[xjO,oo[. 
Proof of theorem 3, step 3. 

According to steps 1 and 2, the fum:tions U' and V are respectively subsolution and 
solution of the same parabolic equation; since·by aSsumption U(O, k) :::; V(O, k) for any 
k � 0, one think to use parabolic maximum principle. However, due the lack of regularity, 
we have not see how to use a classical result. For this reason, we will prove directly the 
comparison U :::; V in our situation, using stro�gly the convexity with respect to k. 
Notice first that as a consequence of (16), U( t, k) is non increasing with respect to 
t E [O,T[. 

As classical, let 

. W(t,k) = e-1(U(t,k) - V(t,k» E C([O,T[x[O,oo[) 

and assume sup W > O. Using W(O, k) :::; 0 and Wet, k) :::; e-tU(O, k) �o as k � 00, 
there exists (t,k) E]O, T[ X [0, oo[ such that 

(29) W(t,k) = max W>O . - -
[0,11 x[O,oo[ 

The derivatives 
a: (t, k+) and 

aa� (t, k-) exists for any (t, k) E]O, T[x]O, 00[ , and since 

av aw aw 
ak E C(]O, T[x]O, ooD we have ak (t, k+) � ok (t, k-)i then 

(30) 
aw aw 
ak (t,k+) = ok (1,1£-) = 0 if 1£ > O. 

It follows, using notations of step 1, that 

o :::; 1£ < y(t,O) ; 

. au aw otherWIse, we would have ok (t, 1£+) = ei ok (t, 1£+) = 0 and Wet, k) = e-!U(t. 1£) = o. 
We show that 1£ > O. In the case R = oo,we have V(t,O) = V(O, 0) � U(O, 0)  � U(t,O) 

and t.hen vV(t,O) :::; o. Consider now the quse R < 00 i we may assume R > (�)# , 
WN 

since if the theorem is true for any such R, it will be true at the limit for R = (jgl)fr . WN 
( for E > 0, consider a problem (12) with fi = B(O, R + E) which solution converges to v 
as E � 0) . Then we have 

such that k > O. 
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So 

(31) (Lk) E G 

Instead of using (28) involving measure, we will use (27) for the approximation Un 
of U. Set Wn = e-/(U" - V). Clearly Wn � W uniformly on [0, toj x [O,oo[ for any 
to EjO,T[, and we may choose (t,k) such there exists (tn,kn) E [O,T[x[O ,oo[ sl-ch that 

For n large we will have (tn, kn) E G. On G , VV" is bounded variation with respect to t 
and twice continuously differentiable with respect to k. Using (27) and (26) with f-l given 
by (25), \ve have 

(32) 

0 :::; lim inf 
Wn(tn,kn)- W,,(t,kn) < 

1-.+1;; t - tit -

Using (30), I { lu(t)1 = k } I = ° and then 

II p(n(lu(tn)l- kn» II��' � I { luWI > k } I = -Vk(t, k) as n -t 00 . 

. [PW" . -I [PUn , fJ2V . ,  . Smce Dkz(t,,,kn) = e n ( Dk2 (tn,kn) - Dk2 (tn ,kn» :::; 0, we obtam at the lnmt 

in (32), ° < Wet, k) :::; ° , a contradiction 0 

Relnark . With the same proof, but some more technical arguments, one could 
a) replace (12) by a more general equation 

VI = div (o{v, !Vv\)Vv) 

b) have the space V defil�ing the boundary conditions be dependant on t EjO, T[ ; in 
this case (14) will involve a constant e(t); 

c) have (16) replaced by a more genera! form 

:t in j(lu(t)\) + in p'Clu(t)\)J(t, u(t), IVu(t)l) :::; ° 

where J ( t,k , s) is convex in sand sa.tisfies 

J(t, k , s) 2 a( lkl, c ( t)s) e(t?s2 
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3. Proofs of Theorems 1 and 2. 
We now give the proofs of theorcms 1 and 2 as examples of application of Theorem 3. 

Proof of theorem 1 : 

We apply t.lWOl'ClIl 3 with V = vVol,2(n) which l;at.isfies 05) und (1'1) with G = 1. We 

have only to show that. , under aSl;umptionl; of theorem 1, the function u satisfics (IG). 
Since u E L;oc(]O, T[; V) and 

Ut = div a(., u, gradu) E L7oc(]0, T[; V') , 

we have for any p E Po , L j(lul) E W1d;(]0, T[) and 

It L j(lu(t)1) = < p(lu(t)l)signu(t), u'(t) >v,v' = 

- r a(t,.,u(t),gradu(t))p'(lu(t)l)grad-�(t) :::; .In 
- r 'P'(lu(t)l)p'(lu(t»)lgradu(tW + r p'(lu(t)I)F(t, ., u(t»)gradu(t) for a.e. t E (0, T) . � .In 

U sing assumption (4) 
L p'( IWF(t, ., O·grad� < ° V� E V(n) 

and then approximating u(t) E wi ,2(n) , one has 

1 p'(lu (t)I)F(t , . , u(t)).gradu(t) :::; ° for a.e. t E (0, T) 

and u satisficl; (IG) 0 

Proof of theorem 2 . 
Let V be the closure in Wi ,2 (n) of {�!n ; � E V(lR N \ r + ) } . Due to the smoothness 

assumptions on rand r + , V = {u E WI, (n) ; u = ° on r +} . It is clear that V satisfies 
(15) and (14) with c given by (10). 

Let assume first that 'P E CHE(lR) with 'P' > ° and u E LOCI ( Q). Then vo = u(O) E L=(n), 
and thc conclusion holds if we verify that u satisfies (16). This is clear, since by (9) and 
the regularity on 'P, u E L2(0, T; V), Ut E L2 (G, T; V') and 

It 1 j(lu(t)1) =< p(lu(t)l)signu(t), u'(t) >V,V' = 

- r p'(lu(t)l)'P'(u(t)) L aij aa
u(t) a

a
u(t) :::; - I c2p'(lu(t)l}p'(u(t»)lgradu(tW . .In x, Xl .ln . �, 

Let now 'P, u be general as in the theorem. Let 'Pn E CHE(lR) with 'P;. > ° \uch that 
'Pn --+ 'P E C(lR) and UO,n E LOCI(n) such that Uo.n --+ u(O) E LI (n) . There exists a unique 
solution Un °E C([O, T[; LI (n)) of ( 9) corresponding to 'Pn with un(O) = UO,n ; it is clear 
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that Un E LOO( Q) and Un -> U in C([O, T[j Ll (n)). In the same way if v" is the solution of 
(6) eorresponding to c.pn and VO,71 = UO,r" sinee UO,n -} u(O) E Ll (�) , we have Vn -> v in 

C([O , T[j Ll(n)). It is dear then, at the limit in (7) for (Un, vn ), that (7)hold8 for (u, v) <) 
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