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Symetrization of quasi linear parabolic problems

Chaouki ABOURJAILY
Philippe BENILAN (2

dedicated to the i‘nemory of Julio Bouillet

Abstract: We present a new method to obtain symetrization results for parabolic equation

in divergential form. This method applies for quite general quasilinear boundary value
problems.

1. Introduction.

In this paper we extend results of symetrization of parabolic problems first obtained
in the linear case by C. Bandle [Ba] under smooth assumptions. We first recall these
results to explain our extensions. We refer the reader to [D] for a general presentation of
thie symetrization of parabolic problem.

Consider the problem

ur= Y (aijug. )e. on Q=]0,T[x§
(Po) { B
u= 0 on ]0,T[xT ,u(0,.) =up on £

when € is a bounded open set in RV with boundary T', ug € L*(Q), ai; = aji € L=(Q)
satisfy the ellipticity condition

> et 216 on QxRN
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This problem is compared to the heat equation

Py

~

ve=Av on ]0,T{xQ

v=0 on ]0,T[x09, v(0,.)=up on §
where Q is the ball B(0, R) in R" such that | Q |=| 2 | ®) and for u € L}(Q) , u is the
spherical rearrangement of u defined on Q by

u(z) =g(Jz|) with g:]0, Rl— " non-dccreasing

such that | {u >k} |=|{ iu|>k}| for any £ > 0

Then the following has been proved:

Theorem 0. ( [Ba], [MR] ). Let u be the (weak) solution of (Py) and v be the solution
Of (P())

Then

(1) /B u(t)(z)ds < /B o, PO V() €0, T0, R

(0,) ~

Notice that in the parabolic case, one cannot compare directly the rearrangement of
u(t) with v(t) as it is the case for the elliptic problem

(E) —Z(aijuzi)zj =f on Q, u=0 on I'"

In the elliptic case indeed, if u is the solution of (E), then (see [Ba]) u < v on Q,

~

where v is the solution of

(E) ~Av=f onQ , v=0 ondf.

~ ~

This has been used by J.L.Vazquez in [V], together with non linear semi group theory in
L(Q), to obtain symetrization results for the problem

(P1) uy € Ap(u) on Q =]0,00[xR" , u(0,.)=up on RN

where ¢ is a maximal monotone graph in R with 0 € <p(0).
The proofs of the above results study the rearrangement u of a function u € H} ()
using the Polya inequality

M fEis a mesurable set in RV, | E | is the N-Lebesgue measure of E.



“ u ”Hl(Q) “u“HlQ)
and the isoperimetric inequality ( with perimeter in the sense of De Giorgi)
perimeter of { u >k } < perimeier of { |u |> &}

In this paper we propose a completly different approach based on studying the
distribution function

u'(k)=| {[u|>k} |,

or more precisely it’s integral

[ wes = (1) 1=k ez,

and using the Sobolev inequality

(S1) Anllull, e, < llgradulls Vu € D(Q)
where

L,
(2) Av = Nwl with wy =|B(0,1) |

Use of the distribution function u* instead of the spherical rearr angement 1 is explained

by the following elementary result on rearrangement ( see for instance [B- S] , [B-C] ).

Lemma 0. Let (21, By, u1),(Q2, B2, #2) be measure spaces with p1(Q1) = ,ug(Qz),
u; € L' (1), uz € L2(§) and u1, U2 be their rearrangement on Q= B(0,R) in RN with

| Q|= p:(Q:) . Then the followmg propertles are equivalent:

(#) /9 (lur | =k)*duy < /n (| ug | k)Y dpzs VE>0
(i8) qu . )ul(m)dm < /B o r)u~2(a:)da: vr €]0, R[

‘Then, since for the solution v of (Fy) , clearly v(t) = v(t) , conclusion (1) of theorem 0

may be as well stated:

— fo) vt z) — k)T dx x '.+
/Qu u(t,z) | ~k)*dz < /Q (v(t,2) — k)" de V(t,z) €)0, T[xI

~



Applying lemma 0 with N = 1, the properties (i) and (ii) are still equivalent to

(iii) /0 rgl,,,(s)dsg /0 rﬁg,*(s)ds Vr €]0, Ro|

where Ry = pi(€2;) and u, is the rearrangement on ]0, Rg[ of u , which is actually only
Ro

the inverse function of u* ; heace u,(s)ds and | (Ju| — k)* are conjugate convex
functions. In this scuse our method of symetrization api;ca.rs to be ” dual ” of the classical
one.

Notice also that the Sobolev inequality (SI) with the best constant Ay follows by
the isoperimetric inequality such that , in some sense, our method implicitely use this
inequality ( in a classical case ) . However, as we will see, without knowing the best
constant, we will obtain some symetrization result; such result indeed, with our method,
is only related to existence of some Sobolev inequality. Also the method allows to handle
as well quite general quasi linear problem.

As example of the results we can obtain with our method, we give two statements:

Theorem 1. Let Q be any open set in RN, Q =]0,T[(xQ , a : Q x RN*! — RN be
Caratheodory and satisfy ,

a(t,z, k,€).€ > a([kDIE]® - F(t,z, k). V(t,a,k,€) € Q x RV

where a : IR —)0, 00| is Holder continuous, F : @ x R — RV is Caratheodory and satisfies

(4) sup |F(.,k) € L*(Q)VR>0 and div(kF(t,.,k)) <0inD'(Q)V(t, k) €)0, T[xR
k<R '

Let u € C([0,T[; L' (Q2)) N L}, (J0, T[; W, () with a(.,u,gradu) € L% (]0,T[; L*(Q))
satisfy
(5) u¢ = div a(.,u,gradu) in D'(Q) .

On the other hand let § be a ball B(0,R) ¢ RN with |Q] < |§| , Vo € L](YNZ) N L°°(f~l)

with vy = vg and v be the solution of

~

©) {vt = Ap(v) on]0,T[x8, )

v=0 on]0,T[xd9 , v(0,.)=vy on

where ¢(v) =/ a(k)dk.
o

If/(|u0[ —k)tdz < /~(vg —k)*dz for any k > 0, then
Q Q .



(M) J ol -byde < /Q (v(t) = k)" de V(t,k) € 10, T[xIR"

Lo~

While the proof we will give is new and quite simple, the result of theorem 1 is not
surprising: however notice that we can handle parabolic equation (5) with first order.
derivative in z like the equation

(8) ue + divF(,,u) = Ap(u)

with F': Q x R — RN Caratheodory satisfying (4).

In Theorem 1, we have assumed that ¢ € C!'(I2) with ¢' > 0 on IR ; actually this
can be relaxed and we may assume that ¢ : IR — IR is only continuous non decreasing,
according that the solution of (8) we consider is the limit of sufficiently smooth solutions
to approximate problems.

More important is that the method allows to relax in some sense the Dirichlet boundary
condition u = 0 on ]0,T[xI' . As an example we state the following simple case:

Theorem 2. Let Q be a bounded open set in R" with smooth boundary I" and I'y
be a smooth closed set in I' with positive superficial measure. There exists a constant
¢ = ¢(2,T4) such that, if aij = aj; € L>®°({2) satisfy the ellipticity condition

D aijtit; 2 PP VEERY, a.eon Q,

if ¢ :IR — IR is continuous non decreasing and odd,

if u € C([0,T[; L*(R)) satisfies

o(u) € L*0,T;Wh2(Q)), ¢(u) =0 on J0,T[xT4

/Lu(t =//(.zzaij<,9(u)z,~c:j VCED(]O,T[X(RN\P+)) ,
if @ = and v is the solution of (6) with v = u(0) ,

then (7) holds.
We will see that

(9)

(10) e = Awsup{Cl, ey ) ¢ € DRMEL), [ lgrad ¢ =1)
. 1(Q) Q
In particular, if '+ =T then, using isoperimetric inequality, ¢ = 1.

At the end of this introduction, we want to explain how these results are related to
Julio Bouillet to whom this paper is dedicated. Actually we started with his very nice



paper [Bo] on comparison of heat flux for differeni diffusion laws. Julio Bouillet was
considering a Stefan problem in one dimension

= (a(u)uz): on G ={(t,2);0 <z < s(t)}
ult,s(8)) = o , (K(u)us)(t,(6)) + AS(t) = £(&) on 10, T]

11
(1) u(t,0) = ¢(t) non decreasing on [0, T

u(0,z) = ¥(z) non increasing on [0, 00| ;

he proved that for ug, ), f, given , and two different data (a1,¢1,%1), (a2, 92, 2) with
ay > az, @1 > g, and ¥ > ¥y , the free boundaries s; > s, ; the proof was based

s(t)

on studying the function / (u(t,z) — k)*dz. Using the same idea, the first author
extended in [A1] the 1'(:sult.t(()> more general non linear heat equation still in one dimension.
At this stage we realize that one can get results assuming only that ¢2,—%2 are non
decreasing, ¢;,1; being any function. The extension to the N-dimensional case brought |
us to the method of symetrization developped here and first presented in [A2].

This first contact with Julio Bouillet was later developped by a strong collaboration
between him and the second author who wants to express, by dedicating this article, how

much he has appreciated Julio Bouillet for mathematics and also how much he liked him -
for friendship.

2. A general result.

Let € be an open set in RN, Q Q =]0,T[x, {2 be a ball B(0, R)in RN with 0 < R < +o0
and |Q] < |9, vo € L* () N L®(Q) with vy = vo and ¢ € C*¢(R*) with ¢' > 0 in R*.

We consider the problem

= Ap(v) on @ =]0,T[x%
(12) v=0 on ]0,T[xd9
v(0,.) =vo on

It has a unique solution v € C([0, T[; L*()) N C12(]0, T[x L) ; more precisely, v(t,z) =
g(t, |z|) on ]0,T[x§ with g :)0,T'[x[0,R[— R* satisfying :

g>0 <0 on ]0,7T[x]0, R[

dg
* or
994,0)= 0 for t€]0, T
ar"’ ’

(13) ‘
if R< oo, lim g(t,r) =0 fort€]0,T]

1
if R=o00 / g(t,r)dr = —— vy for t €]0, T
Nwn Jrv



Let V be a closed subspace of W1+2(§) containing D(§2) ; assume there exists a constant
¢ > 0 such that

(18 AWl g S cllorad sy ¥ €VNLAR) N LX)
and that
(15) CeV =p)eV VpePy

where Py = {p € C}(RR) ; p(0) =0 ,p' >0 ,supp p' is compact and 0 ¢ supp p' }.
We have the following general result:

Theorem 3. Let u € C([0,T[; L*(Q)) N L?,.(J0,T[; V). Assume that

” { G [ 3u@D+ ¢ [ o) #uoD [P <0 i Do, 7D

for any p € Py with j = [ p(k)dk,

where ¢ is the constant in (14). If / (Ju(0)| — k)*dz < /~(vo —'k)+d:c for any k > 0,
Q Q .
then (7) holds.

We will show in section 3 the relation between the equation (5) and the assumption
(16). Let us here only give the proof of theorem 3 which relies on comparing the functions

(17) Uk = [ ()] - B de, ViR = [0 = k¥

This will be done in three steps .

Proof of theorem 3, step 1.

Introduce the function r(t, k) defined on

(18) G ={(t,k); t €)0,T(,0 <k < g(t,0) = [lo(t)]| o= }
by .
(19) r=r(tk) < g(t,r) =k

" This is well defined according to (13). We have

V(t,k) =0 fort €]0,T], k> g(t,0)
(20) r(t,k) '
V(t, k)= NwN/ rN=lg(t,r)dr for (t,k) € G
0 .



Also by derivation in (17), we have

av

(21) oy —(t, k) = =|B(0,r(t, k))| = —ri(t,k)N on G
then

av

€ ([0, T]x 10, 00); X (1, k) = 0 for & = g(2,0)

ok ok
(22)

if R< oo ,,113?) Ez(t,k) = —lQ'
and ‘ .

2V oV N_y OF '

(23) S € C(@) o —Nuwnr(t, k) % —(t, k) > 0 on G .
On the other hand
oV

tk / tmda:—/ Ap(v(t)) =
Ot( )= B(0,r(,k)) at( ) B(0,r{t,k)) Ploth)

= Nuy[rV=1 Zeg(t, MIZe® = Nuy ¢ (k) (t r(t, k))r(t, k)N !
Using (21), (23) and

g o, .. .~
E(t,r(t,k))%(t,k) =1 onG,

we obtain the p.d.e.

' 2 (_ %
(24) Vi = _¥ (k))‘z‘v/( Vi) on G
kk

: _ N
w1thN'—7V71~.

This equation (24) is interesting by itself and has been used in [B-B] to obtain sharp

estimates on the solution v of (12). Actually we will use it under a more classical form
of parabolic equation: set

A=V

(25) Vier

€C(G);

then V satisfies

(26) Vi=p? ¢ Ve =2y 1 @' (=Vi)¥ on G



Proof of theorem 3, step 2.
We now study the function U(t,k). Let p € C}(R) with p' > 0, p(r) =0forr <0,
p(r) =1lorr > 1, and sct j,(r) = / p(ns)ds. We study the approximation of U:
g
U.(t, k) = /Ijn(|u(t)| —k)dz .
S

It is clcar that

ou, » _ -
T = - [ ulluce)] - k)
0*U,

- "l = E)ds
S = [ Fdluo] = )
are continuous functions on [0, T[x [0, oo[. Now, by (16)

OU" ) 2 [ 1ol 2 . ! |
ot < =ne® [ (lu(t)) #/Cullu(t)] = k) IVu(®)Pds  in (0, T[]0,

For a.c.t €]0,T[ and any k €]0, 00 , according to (14) and (15), one has

M ((®)] = D)y < en [ #n(lu(o)] = B) [Vu(t)lde
and then for u(t, k) > 0
2 e K)( gmin, #) IO = Kl <
20 [ /(O P (O] = ) ¢ [Fu(olnct, b)do <
ne? [ (1= 8) [Fu(0)de-+ae, 7 o w [ (ol -k

In other words, for any function p € L}, (]0,T[x]0,00[), # = 0 , one has

U, 2 U,
ot [k k+ 1) ¥ ok2

(27)
2Anp( min " )|lp(n([u{t)] = k)|l in D'(J0, T[x]0, oof).
[k k+ 1] ‘
As n — oo,
Un(t, k) — U(t, k) in C([0, T[x[0, o0[)
Ip(n(lu(®)] = DI = [{lu()] > k}| = —i%(t k) in Li,([0, T[x [0, oof).

Then, at the limit in (27), we get

oU U L
(28) o S S = 2pe! (-——)N in D'(]0, T[x]0, 0o[);
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this is well defined and justified for any function o € C(]0, T'[x]0, oo[) since U(t, k) being
2

convex in k, —=—- is a non negative Radon measure on ]0, T'[x]0, oof.

7 Ok?
Proof of theorem 3, step 3.

According to steps 1 and 2, the functions U and V are respectively subsolution and
solution of the same parabolic equation; since by assumption U(0,k) < V(0, k) for any
k > 0, one think to use parabolic maximum principle. However, due the lack of regularity,
we have not see how to use a classical result. For this reason, we will prove directly the
comparison U <V in our situation, using strongly the convexity with respect to k.
Notice first that as a consequence of (16), U(t,k) is non increasing with respect to
te[0,T.

As classical, let

W (t,k) = ' (U(t, k) — V(8 k) € ([0, T[x0, oo[)

and assume supW > 0. Using W(0,k) < 0 and W(t, k) < e"'U(0,k) — 0 as &k — oo,
there exists (¢, k) €]0, T[x[0, oo[ such that

(29) W(t,k)= max W >0

[0,2]x[0,00]

The derivatives %—Vg-(t, k+) and %‘%}—(t, k—) exists for any (t, k) €]0,T[x]0, o[ , and since
ov

ow ow
a5 € C(]0, T[x]0,00[) we have W(t’lﬁ_) > —b—g(t,k—), then

ow ow L
Srbkt) = (k=) =0 ifk>0.

(30) g

It follows, using notations of step 1, that

0<k<y(t0);

otherwise, we would have %%(L, k+) =et %(t,&—}—) =0and W(t, k) =e tU(t, k) =0.

We show that & > 0. In the case R = oo, we have V(¢,0) = V(0,0) > U(0,0) > U(¢,0)

and then W(t,0) < 0. Cousider now the case R < oo ; we may assume I3 > (—)1W )
w
M)#

~ WN
( for € > 0, consider a problem (12) with = B(0, R + €) which solution converges to v
as € — 0) . Then we have

since if the theorem is true for any such R, it will be true at the limit for 12 = (

O (1,04) = (@~ [{ju(®)] > 0}])) >0

such that & > 0.
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So
(31) (k) eG

Instead of using (28) involving measure, we will use (27) for the approximation U,
of U. Set W, = e (U, — V). Clearly W, — W uniformly on [0,%0] x [0, 00[ for any
to €]0, T, and we may choose (¢, k) such there exists (tn,kn) € [0, T[x[0, 00 si:ch that -

W (tnyk )—‘[ Whn ) (tnakn) - (I,.,]_C_) .

,L,,]x[() oof

For n large we will have (tn,ks) € G. On G , W, is bounded variation with respect to ¢
and twice continuously differentiable with respect to k. Using (27) and (26) with u given
by (25), we have

(32) )
0 S llmmf Wn( n ") — Wﬂ(t kn)
iy t— tn
N » ‘ ! 6 Uu
Wn(tny krl)+€ N(tna n) ([’»V.I,Ikl,l,nl )( 2 (fn,k )
&V )
| orz G kn) = 2,\Nu(tn,kn)([k max, ¢ "(llp(n(lu(t )| — k)l = (= Vi) (tns k) F7)

Using (30), | { |[u(¢ )=k} | =0 and then

| p(n(lu(tn)l = kn)) HIETI:I’ = | {|[u@®)| > & } | = —Vi(t, k) asn—oo.
2 A 2
Since %(t,l,k y=e i ( (tn,lcn:) g V( tn,kn) ) <0, we obtain at the limit

Ok? Ok? ok?
n(32),0 < W(t, k) <0, a contradiction ¢

Remark . With the same proof, but some more technical argumentb one could
a) replace (12) by a more general cquation

ve = div (a(v, |Vv|)Vv)

b) have the space V defiring the boundcary conditions be dependant on ¢t €]0,7 ; in
this case (14) will involve a constant ¢(¢);

¢) have (16) replaced by a more genera! form

G | 30D+ [ Fu@naeun, vuo) <o
Q Q
where J(t,k,s) is convex in s and satisfies

T(t,k,s) 2 a(lkl,e(t)s) c(t)*s®
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3. Proofs of Theorems 1 and 2.

We now give the proofs of theorems 1 and 2 as examples of application of Theorem 3.

Proof of theorem 1 :
We apply theorem 3 with V = W, '?(Q) which satisfics (15) and (14) with ¢ = 1. We
Lave only to show that, under assumptions of theorem 1, the function u satisfies (16).
Since u € L?,.(]0,T[; V) and
= div a(.,u,gradu) € L (0, T[;V") ,

we have for any p € Py , / J(lu)) € W1 (10, T[) and
Q

loc

& [ () =< p(u(®)Dsignu(®),u'(®) >y, =
= [ atts.sut,gradu()p (u(e))gradutt) <
- A @' (Ju@®)Dp'(|u(t))|gradu(t)|* + /{; P (lu@®))F(2,.,u(t))gradu(t) for a.e. t € (0,T) .

Using assumption (4)

/Q P(EDF(t, . €).grade < 0 VE € D(Q)

and then approximating u(t) € WOI'2(Q) , one has

/ P ([u@®))F(t, ., u(t)).gradu(t) <0 for a.e. t € (0,T)
Q
and u satisfies (16) o

Proof of theorem 2 .

Let V be the closure in W12(Q2) of {%ﬂ i € € DIRN\T'4)}. Due to the smoothness
assumptionson Fand Ty , V = {u € W4(Q); u=0on 4} . It is clear that V satisfies
(15) and (14) with ¢ given by (10).

Let assume first that ¢ € C*+¢(IR) with ¢’ > 0 and v € L*°(Q)). Then vy = u(0) € L=(2),

and the conclusion holds if we verify that u satisfies (16). This is clear, since by (9) and
the regularity on ¢, u € L?(0,T;V),us € L%(0,7;V') and

j(lU(t)l) =< p(lu(®)))signu(t),u'(t) >v,» =

/ PIOD ) T et i < = [ oy uloradulo)

Let now ¢, u be general as in the theorem. Let ¢, € C'*¢(R) with ¢/, > 0'such that
Yn — ¢ € C(IR) and ug,, € L(§) such that ug,n — u(0) € L(Q). There exists & unique
solution u, € C([0, T[; L}(R2)) of (9) corresponding to ¢, with u,(0) = ug,, ; it is clear
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that un, € L®(Q) and u, — u in C([0, T'[; L*()). In the same way if v, is the solution of
(6) corresponding to ¢, and vg,, = ug n, since 'LL() n = u((]) eL! (Q) , we have v, — v in

C([0,T[; L*(R2)). It is clear then, at the limit in (7) for (un, vn), that (7) holds for (u,v) o
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