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SINGULAR LIMITS AND THE “MESA” PROBLEM

J.E. BouiLLET, M.K. KORTEN, AND V. MARQUEZ

ABSTRACT: For ¢« € R, we discuss the "mesa” type limit of the one-phase Stefan problem
in enthalpic variables. This limit is the same as for the porous medium equation, and coincides
with the asymptotic limit when time tends to infinity of the soluition of the Stefan problem. We
discuss a degenerate diffusion problem where the dilTusivity is concentrated on the free boundary,
related to the limit when m — 0 in the porous medium equation. The solution to this diffusion
reaches in finite time a constant state, which turns out to be the same as in the first three cases:
a function 0 < us < 1, which coincides with the initial datum in a set which can be identified
by a variational inequality. We show an examle where for n > 1 the speed of the free boundary
describing the extinction of the zone u (@) > 1 tends to —oo as t — (.

We wish to honour the dear memory of our late teacher, advisor, and friend Julio E. Bouillet by
contributing to this volume with a paper - hitherto in preprint form - written jointly with him. We
kept the paper (see [BKM]) in its original form (including the dedication to Prof. Mischa Cotlar).
Since this paper has been written, many results have been obtained on the problem of singular
limits; we have added some references ([BI1], [BI2], [BBH], [I], [BKM], and [S1]); and the behaviour
of weak solutions to equation (1.3) has been extensively discussed ([AK], [K1], [K2]). However, we
think that the computations of this paper may still have some interest: as an application of the
results of section 4, concerning an elliptic-parabolic problem where the diffusion is concentrated
on the free boundary, one can find in [BE] a numerical method for the treatment of solutions
to diffusions of the type u; = (a(u))ze, in which @ is seen as a limit of a sequence of linear
combinations of step functions.

Dedicated to Professor Mischa Cotlar on his 75th. birthday.

1. INTRODUCTION.
The singular limit m — oo for solutions u = Um of

w = Ay ty), t>0
u(z,0) = ur(u) ‘ (1.1)

was studied by [CF], [FII], [EHKO], [S]. The limit uy, isindependent of ¢, equals 1 on a set that,
roughly speaking, contains the points where wur(z) > 1, and is equal to ur(z) (< 1) otherwise.

We shall restrict attention to one space dimension operators and initial values ur(x) , sufliciently
smooth, such that {z : u;(z) > 1} = (z1,z32) and, whenever necessary, u; € L!(R) . These
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“parabolic” operators, of a degenerate nature, are

A)
ut={m(u—l)+}”, zT€R,t>0; (1.2)

We obtain ue observing that , by re-scaling, it is equivalent to finding lim;_cu(z,t) for a
solution u(z,t) of ' '

U;={(u—'1)+}xz, t>0 .
u(z,0) = ur(z) . ’ : (1.3)

This [unction e is the sameas in (1.1).

B) The limit for the operator in (1.1) asm — 0% is u; = {sgn u}ss : We change variables to
give

uw={H(u—-1)}ez, t>0
u(z,0) = us(z) (1.4)

where Il is_the Ieaviside function.
We find the solution wy(z,t) = u(x,t) to this problem. Under our assumptions on wuj , there is
a tx > 0 such that

uo(z,t) = uolz,ts) , ot

and ug(z,t,) is the same singular limit found in (1.1) and (1.3).

In other words, the function wueo(z) is obtained instantly, as soon as ¢ > 0, as a solution of the
evolution operator u; = Poo()zz (Yoo is the limit of the graphs |u[™~'u as rn — oo, cf. [S]);
it is found as lim_oou(z,t) for wu(x,!) solution of (1.3), and is reached in finite time by the
solution of (1.4) (in some sense, (1.4) inherits the finite extinction time property of solutions to
(1.1) with m < 1). :

The singular limit us of (1.1) can be described by a variational inequality [CF]. We discuss the
variational inequalities - obtained via the Baiocchi transformation - for both (1.3) and (1.4). While
the variational inequalities, depending on ¢ as a parameter, are substantially the same for (1.1)
and (1.3), the inequality in (1.4) differs in the definition of the convex set K; for ¢ <t. .

We present also an example of (1.4) in /™ with radial symmetry that shows that for n > 1 the
speed of the free boundary describing ‘tlie extinction of the zone wur(Jz|) > 1 tends to —oo as

Lo t7 .

2. PIECEWISE SMOOTH SOLUTIONS.

We note that in both (1.3) and (1.4) the function «(u) issuch that o’ =0 on intervals of values
of u . Therefore if a(u(z,t)) = constant is to hold for (z,t) in an open set, we must have
u(z,t) = 0 there. Moreover, for u(z,t) > 1 in (1.3) the eqn. reduces to u; = uzy . Thus
we are led to consider generalised solutions to u; = a(u)zy that are piecewise classical, i.e., are
obtained by juxtaposition of classical solutions along smooth curves, in a way similar to the fitting
of classical solutions along a shock discontinuity of a first order conservation law (for a particular

case, cf. [W]).:
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Furthermore, when o = H(u — 1) in (1.4) we will be forced to redefine oa(u(z,t)) when
u(z,t) = 1: we shall take H to be

Hu-1)=1 ifu>1,
=[0,1] ifu=1, (2.1)
=0 ifu<l,

and put, for all z,t >0,
U(z,t) € H(u(z,t)-1), .
ur = Usge (2.2)
thus if w(z,t) =1 on an open set we must have w,(x,) =0 there, and
Uzz =0

so U(z,t) must be linear in = for fixed ¢ .

Now if a piecewise classical, bounded function u(z,t) is a weak solution of u; = @(u)sq, u(z,0) =
uy , in the usual sense,

voecR@), [[ue= [[a@ e+ [urp@0) (2.3)

and uw=wu, inaball B((x0,t0),7) to the lelt of-a diflerentiable arc v, v =uqg in B {othe
right, taking a test function ¢ supported in B and integrating by parts give

[ o = ) dz = (a(u)e ~ (~atune)dt) =
[ (atws) = atuayes (2.4)
8
whence we obtain

(3) u, =uq [y = {l = constant} at (ze, to) ;

(id) { a(uy) = a(ug), and |

il vy = {z = constant} at (zq, to); (2.5)
a(ua)z = Q’(ud)a:

[ a(us) = ofug), and, e.g.
G ) = zee=Catuae) o] On %0 = 7(to) -

Ug—Ug

(ii) or (iii) imply that two classical solutions u, > 1, ug < 1 of wy = H(u — 1)zg
((1.4)) cannot join along a curve 7(t) , and that a region where u(z,t) = 1 is needed to let
U(z,t) € H(u(z,t) — 1) go from 1 to zero linearly for fixed t (cf. [B]).

3. PROBLEM (1.3), a(u)= (u—-1)*.
Solving L

Uy = {(u—1)+}1¢; y t>0
u(z,0) =ur(z), {z: ur>1}=(z1,22) (1.3)
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is accomplisiled by joining the solution u(z,t) = ur(z) for z ¢ [z1,z2] with a solution of the
heat equation, as follows .

(i) w=uz t>0,s(t)<z<d(t),

(i) u(z,0) = up(z), =1 <<z, (e ur(z)>1)

(iil) —ug(s(t)t,8) = (1 —ur(s(t)™)).s'(t), s(0)=z;, (3.2)

(iv) —ua(d(t)™,¢) = (1 —ug(d(t)*)).d'(t), d(0)==z2,

(v) w(z,t) = us(x) whenever x < s(t) or = >d(l).

We observe here that (3.2) (i-v) is a Stelan- problem with variable latent heat.

Clearly, s'(t) <0, d’'(t) > 0. The behaviour of, say, s(t) as t — 0% was studied by [HN], [N],
who found that

s(t) —z; = —kVT+ O(V) (8.3)
where £ depends on
o i)
up(27)

through a nonlinear equation.
As for the behaviour as ¢ — 400, notice that integration by parts and use of (3.2)(iii-iv) give

d(1) d(t) .
/ w(e, t)de = / ur(z)dz ; - (3.4)
s(t) s(t)

By comparison with
K.e—(@=z1)?/4(1+T)
—— ],
2r(t + 1)

for suitable &, 7> 0, one finds that lim,_cou(z,t) <1, and in particular lim_ eou(z, ) = 1
for s(o0) < & < d(00) : passing to the limit in (3.4) gives

d(o0)

d(o0) — s(00) = / us(z) dz (3.5)

3(c0)

and therefore d(co0) < 0o, s(00) > —oo if us(z) € LY(R).
From egs. (3.2) we also obtain

PR 0) PO
52/(:) cu(z,t)de = a/(t) zur(z)dze
3 - 3

Integrating in (0,7") and letting T — oo yields

d(e0)? = s(e0)? _ /"“”)x ui(e) de
2 (o) .
d
dico) 1 s(00) _ Ju) ur(2)dz 56
2 LS ur(z)da

In fact, (3.5) and (3.6) completely determine wueo(z) := linmy_cou(z,t) , as will be seen below (cf.

§4).
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4. PROBLEM (1.4).

We discuss now the initial value problem

U(z,t) € H(u(z,t)=1), t>0,
u!:sz 1 t>.) ‘ (14)
u(x, ) =w(z), {z:w>1}=(z,22).

As u; =0 onopen'setswhere u>1 or u<1,and [u(z,t)p(x) — [urp(z) as t — 0%,
it is clear that u = us(z) for 2 # 21, = # 2, and small ¢ > 0 . Ilowever, regions where
u(z,t) > 1 and u(z,t) <1 cannot join along an arc v, due to the condition a(u,) = a(ug) of

right end-point z3 of {z : ur(x) > 1} , to fix ideas.

A region {(z,1) : s(t) < z < dy(t), t > 0, 52(0) = d(9) = zy} separates z < sp(t) where
(locally) u=wur>1,and U= H(u-1) =1, from {z > dy(t)} , where u=u; <1, and
U= H(u—1) =0 ; taking into account the region (where u =1 also) {(x,¢) : s1(t) < & <
di(t), t >0, 5(0) = d(0) =2}, we have a function U(x,t) , piecewise lincar in  , defined by

Uz, t)=0, z<s1(t)

:Eli(t%‘gz_tga bl(i)sﬁsdl(t) (UE].)
=1 y dl(t) << sz(t) (42)
&r— SQ(L)

- Sz(t)— dz(t) !
=0, da(t)<z

s2(t) <z <da(t) (u=1)

This expression for U holds as long as di(t) < sz(t) . The existence of a t. > 0 such that
di(t«) = s2(t«) implies U(z,t}) =0, and the evolution ends, giving u(z,t) = u(z,t.), ¢ > tx .
We obtain a system of differential equations for sa(t), dz(t) (and likewise for sy,d;) by satislying

(2.5)(iii):

f 1 1 _
Sz(t) = 1= u;(sz(t)) . dz(t) — Sz(t) (S 0) s 52(0) =x2, (43)
1 1

dy(t) =

1= us(dy(t)) " da(t) — sa(2) (20), d(0)=22. (4.3)

We pause now to consider some examples.

L

ur(z)=a>1, z€[-z,2],
=b<1,b>0, zé¢[-z,z]. (4.4)

In this case

—

d=-—v

1
T l-=ad-s' 1-bd-s'



) , 1 1 b—a i
<d—s>(dfs) =T;—b—T—_a:>d—s=\/ ((1-b)(1-a))‘

=s = >st)== 21-0) t
=T — e EEEre el
1 —a a—"b)a-1
-9 \/2(1 T @ 0@-1D
[ I Aa—1)
= d = . S () =y Ay Ly
1=-0 T ash (@a=0)(1 =0
Z(a (1= b)L X )
we see that s =0 when ¢ = L“—:;I)i_"—b;ﬁa,f =t..
At this time u(z,t) =1 on [—‘;—:—';:cl, g‘:—gazl] and u(x,t) =b <1 outside.
11
u;(a;) =—z+4+1; (4.5)
11 1 1 _ _
s'=—= g d—dd_‘s,s(l)—d(O)—O.
dd' —ss' =0=d= —s . It follows that
1/3 1/3
s(t) = — (gt) , d()= (%t)
L1I.
1¢1(a;)=—a;u-|;1, z<0, a>0,
=-bz+1, >0, b>0. (4.6)
1 i 1 1
r— = = =0.
ST wd-s’ d bdd—s's(.) d0) =1
bdd' — ass’ = 0 = /bd = —/as . The system becomes
s = -1 i Cod = 1 _1_
- a+vb) " s2 ] - a+Vh\ d2
o (%5%) 0 (2R%)
1/3 1/3
3 . 3
= s(t) = — Vb , d()= ( v/a )
aWat ) b(v/a+vh)

We observe that for smooth ur(z) , the “plateau” u =1 expands as ¢}/ | while for discontinuous
initial values the behaviour of the free boundaries resembles that of the self-similar solutions:
s,d~ V1 i

We note in passing the dependence of the speeds of s and d on the side derivatives of the initial
values uj(x) at points where wuy =1, reminiscent of (3.3).

Inspection of the ODE system (4.3) yields a first integral

d(t)
d(t) — s(t) = /m wi(2) de 4.7
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which compares with (3.4), (3.5): it actually means conservation of mass, as before. Conservation
of the first moment furnishes another first integral, as in (3.6): in fact,

' d(t)
/:L"U(JJ, ) de = / avul(;u)da:—f—/ @ dx, say.
‘ {u(z,)=ui(2)} s(1)

d 2 <2 d(t)
But / vdp = LM —s () _ d(t) +s(t) /
s 2 2 s(t)

urdzx

from above. Now integration by parts in f;:(:)) zus(z)de gives the same expression, hence

/Jr w(z, t)de = /;L'u[(a:)da:,

ond O -5 =/d<’)

zur(z)de . (4.8)
2 ®

A “pictorial” way of finding wu(z,t.) employing these integrals is the following, which
hints at the possibility of discussion of initial values giving rise to many “mesas” as well: Put
F(z) = f:ul(r)dr . Assume, for simplicity, usr > 0, {z : ur > 1} = (21,22) . F(z) isa
monotone increasing function that has slope 1 at 2 = 2; and z = a3 . Consider the tangent
lines to F at these poiuts, and the portion of the graph of F contained between these parallel
lines. The evolution from wu;(z) proceeds by moving the lower line upwards from (zy, F(x1)) ,
and the upper line downwards from (2, F'(z2)) , keeping their slope. The evolution ends at a
certain position where the two lines meet, dividing portions of F(z) that cut equal area above
and below the said line of unit slope.

5. THE VARIATIONAL INEQUALITIES CORRESPONDING TO PROBLEM (1.3).

Let u(z,t) be the solution to the following problem:

ur = (a(u))ze in Rx (.0,00)
uly=0 = ur in R (1.3)
where a(u) = (u— l)"' .

We want to obtain the set {z : limi_ou(x,t) = 1} from the solution to a variational inequality.
Using the Baiocchi transformation we define a function w as follows:

w(z,t) = /0 a(u(z, 7))dr iq R x (0,00);

then w(z, ) =0 if 2 <s(t) or x> d(t); besides, w(x,t) >0 and wgy(x,1) = u(z,t) — ur(x)
if s(1) <z <dt). Infact,if d(0) <z <d(l)

t
w(z,t) = /d RGO
then '

we(z,t) = /d_l( )(a(u)),(:c, T)dT
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and

wm‘(-’c;t):/ ) (a(w))za(z, 7)dT = (a(u))e(2, d™*(2))-(d71)'(2)

d=1(=)

= [, T+ N - w2

= u(z, 1) — u(z,d”}(z)) + 1 — ur(z)
= u(z,t) —us(a).

The proof is similar in the case s(t) <z < d(0).
Let us see that
li ,)=0.
oy e

As u; € L}, ({u>1}) we have

¢ d(r)
/ / ui(§,7)dédr — 0, if z — d(t)” ,
d-(z)Jz

but

Y AL Lot e
‘/_‘(x)/z uy (€, T)dE dT = ‘/d—l(x)'/z (a(u))zx (€, T)dé dT

=/ (a(u)),(d(r),r)dr—-/ (a(u))z(z, 7)dT
d d=(z) ‘

—l(z)
and

” :
/ (e(u))z(d(7), T)dr — 0, if z—d(t)”
d-1(z)
because we are assuming that d is sufficiently smooth. Then
i
/ o (e(u)e(z,T)dT— 0, if z—d(t)”
d-i(z)
that is what we wanted to prove.
In the same way we can see that
lim  wg(z,t)=0.
z—s(t)t R
As u(z,t)—1>0 if s({) <z < d(t) we can write
u(z,t) — ur(z) = (u(z, t) — )T +1 - us(z)

(we shall use this decomposition below).
We define a family of functions {w'}s50 as

wh(z) = w(z,1), z€eER, t>0,
and consider an interval, bounded by (3.5), (=M, M) such that
—M < s(00) < s(t) < d(t) < d(o0) < M.
In (-M, M), w* isa C' function

wi=0 in [-M,s{t)]uld(), M],
w'>0, and
(W' =@ =1 +1—u in (s(2),dt)),
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where u'(z) = u(z,t), t > 0. It is easy to see that w' is “the” solution to the following problem:
Find w* € K such that

I A;(‘w')'(v —uty

> /M (w=1-@W-DNv-uv)VWwek,t>0 (5.1)
-M

where K = {ve H}(-M,M) : 0 <v}.
If w, € K satisfies

M M
/ wi(v— 0x) > / (ur =1)(v-—wy) YveK . (5.2)
-M -M w
then w' < w, ;in fact, if we consider v = —(w! —w,)* + w! and v = (w' —w.)* + w' as test

functions in (5.1) we obtain

M , M
- [ty = e 2 = [ =1 = ) - )t
-M

-M
and
M , M :
@yt —w) 2 [ -1t - 94 - w)t
-M " Jem
so
M , M
/ () (w — w,)* = / (ur = 1= (uf = 1)*)(w! — wa)* . (5.3)
-M -M
Besides, if we consider v = (w' — wy)* 4+ w, as a test function in (5.2) we obtain
M , M
/ wi(w' — w)t > (ur — 1)(w* — wa)t, (5.4)
-M -M )
then
M , M .
[t -wtPs [~ -t - u)* <o,
-M -M
so

w' < w., Yt>0,

and we obtain

{w. > 0} 2 (s(00), d(c0)).

To prove the other inclusion recall that
ot = wallgy < Cllur— 1= (ut = 1% = (ur = Dllgagy (5.5)

(see [KS]) and as

M
[ = %ol < = ¥z oz
< Ol = D¥llea ol , Vo € 3

we have )
(u® = DFllargy < Cll(ut = 1)F|ILa s

from §3 (u*—1)* — 0 a.e. as t — 00, so we have

(! = 1)*llzs =0 as t—o0
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and by (5.5)
wt — w, in H} and a.e.

Then we can deduce that

{w, > 0} C (s(00), d(c0))

and obtain
{ws«> 0} = (s(oo),d(oo))

6. THE VARIATIONAL INEQUALITIES CORRESPONDING TO PROBLEM (1.4).

Let u(z,t) be the solution to the following problem

u = (a(u))ez 0 Rx(0,00)"

ui=0 = us in R (1.4)
where a(u) = H(u—1) and L
0, if r<0
H(r)y=<10,1], if r=0
1, ifr>0.

We know that u(z,?) = u(z,t.), for t >t. . We want to obtain the set {z : u(z,t.) =1}
from the solution to the variational inequality which has been studied in §6 and also find ¢. from
it.

Using the Baiocchi transformation we can define a function w as

w(z, 1) = /UtU(l'yT)dT,U(:c,t)eH(u(:c,t)—l),
in Rx (0,00), cf.(4.2),

then w(z,t) =0 if ¢ < s1(¢) or = > dy(t) and w(z,t) =1t if dy(t) < = < s2(t) ; besides
0< w(z,t)<t and wge(z,t)=1—ur(z) if s1(t) <z <di(t) or s2(t) <z < da(t) .

The proof is similar to that of §5 and we can also prove that

li 1) = i=1,
x-nli?(]z)—wx(z )=0 i=1,2
and
z__’1;1'1(1')4_w,(zz,t)=0 i=1,2.

Let us define a family of functions {w'};>o as
wh(z) = w(z,t) . for zeR,t>0
and consider an interval (—M, M) , bounded by (3.5), such that
—M < si(t) < do(ts) < M .
In (=M, M), w* isa C! function

w'=0 in [-M,si(t)]V[dao(2), M],
'Ll)l =1 in [dl(t),32(t)],
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0<w' <t and (w')"” =1—wus in (s1(t),d1(t)) U (s2(t),d2(t)) . For each ¢, w' is “the” solution
to the problem:

Find w' € K, such that

M M
/ (W) (v — w') > / (ur = D)(v —w') YveK; (6.1)
-M -M
where K, = {ve€ H}{(-M,M) : 0<v<t}.
If t=1¢t.,as di(t.) = s2(ts) we have

{z : wi*(2) = t.} = di(ts) = s2(ts)

and it is easy to see that

(w')"(d1(ta)) = 1 = ur(ds(8))

and
. M M
[ wyw-uwyz [ -ne-ut) wer
-M -M
to obtain .
w' = w.
and then /

- t=max{w.(z) : -M <z < M}
(51(ts),d2(ts)) = {ws > 0}

If t>t, wa € K; and

M M
/ wi(v—w.)’}_/‘ (ur =1)(v = w,), Yv € K,
-M -M

S0
w! = w. Vt >t .

7. AN EXAMPLE.

Let us next discuss an example of difussion under the law (1.4) in R"™ . To this aim, take
ur(z) = ur(|z|) = us(r) , continuous, radially decreasing, wus(r) > 1 for » € [0,7] , and
ur(r) <1 for ry <r <ra, suppur(r) C B(0,rz) .

As done in (2.2), one should solve

U(r, t) € H(u(r,t) — 1)
g n—li —
> (r 3 u) =0 (7.1)
Ua=0, U,=1

where u =1, that is, for (r,7) in s(r) < < d(r), t > . The shape of U(r,t) is obtained in
a straight{forward manner:

s@""2d(t)" 2 5, s(t)"

Ulr,t) = d(t)"=2 = s(t)n-2 r - d{t)n—2 = s(t)n-2 ’
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: — 1y —2d(t)n—2
Ur(r,t) = (Qd(t?'):(z)_s(:l)(nzz P17" . forn>2, and

_ log »/d(2)
0 g srd@
1
7 log s(t)/d(t)’

The free boundaries are obtained from condition (2.5)(iii), which gives

Ur(r,t)i for n=2.

(2 —n)d(t)"? 1

0= GO - {0 @) =D

(2 — n)s(t)r—2 1
d(t)(d()"=2 = s()*=?) (wr(d(t)) = 1)’
§'(t) = ! -
s(t)(ur(s(1)) — 1) log s(t)/d(t)
1
d(t)(ur(s(t)) — 1) log s(t)/d(t) ’

As in the one-dimensional case, it can be seen that in either case s'(t) is bounded above by a
negative constant, for ¢ > 6 > 0. Therefore, the mesa is reached in finite time. Also,

d'(t) = forn > 2, and

d'(t) =

forn=2.

1
lims'({) ~ lim —==— 2 d
i ® - o (n>32), en
.y . 1
lims'(t) ~ lim =-00,
tite ro0t 7 log 7

while in the one-dimensional case (cf. (4.3)), s'(t«—) is finite.

For a similar behaviour in the standard porous medium equation see [A, lecture 5.
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