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ABSTRACT: For x E R, we discuss the " mesa" type l imit of the one-phase Stefan problem 
in enthalpic variables. This limit is the same as for the porous medium equation, and coincides 
with the asymptotic limit when time tends to infinity of the soluition of the Stefan problem. We 
discuss a degenerate 'diffusion problem where the diffusivity is concentrated on the free boundary, 
related to the l imit when In -t 0 in the porous medium equation. The solution to this diffusion 
reaches in finite time a constant state, which turns out to be the same as in the first three cases : 
a function 0 ::; U oo ::; 1 , which coincides with the initial datum in a set which call be identified 
by a variational inequality. We show an exam Ie where for n > 1 the speed of the free boundary 
dcscrib i l lg  t .he ext inction of the zone 1/, 1  (x )  > 1 tcnds to - 00  as t -t I • .  

We wish to honour the dear memory of onr late teacher , advisor , and friend Julio E .  Douillet by 
contrIbuting to this volume with a paper - hitherto in preprint form - written jointly with him . We 
kept the paper (see [BKM] ) in its original form ( including the dedication to Prof. Mischa Cotlar) . 
Since this paper has been written, many results have been obtained on the problem of singular 
limits ;  we have added some references ( [BI 1 ) ,  [BI2) , [DDIl) , [I) , [BKMJ, and [S I ] ) ;  and the behaviour 
of weak solutions to equation ( 1 .3) h as been extensively discussed ( [AK) , [KIJ , [K2) ) .  However , we 
think that t.he computations of this paper may still have some interest: as an application of the 
result,s of section 4, concerning an elliptic-parabolic problem where the diffusion is concentrated 
on the free boundary, one can find in [BE] a numerical method for the treatment of solutions 
to diffusions of the type Ul = (<x(u))" .. , in which ", is seen as a limit of a sequence of linear 
combinations of step functions . 

Dedicat.ed to Professor Mischa Cotlar on his 75th. birthday. 

1 .  INTRODU CTION .  

The singular limit In ...... 00 for solutions U = Urn of 

ttl = D.( lu l",- l tt) , I > 0 

u(x , 0) = ur(tt) ( 1 . 1 )  

was studied by [CF] , [FIl] , [EHKO] , [S] . The limit Uoo i s  independent of  t , equals 1 011 a set that, 
roughly speaking, contains the points where 'ur (x) > 1 , and is equal to ur(x) « 1) otherw ise . 
We shall restrict attention to one space dimension operators and initial values ur (x) , sufficiently 
smooth , such that {x  : 1I1 (X)  > I} = (X l J X2 )  and, whenever nec.essary, UI E Ll (R) . These 
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"parabolic" operators , of a degenerate nature , are 

A) 
ut = {m(u - 1)+}"" , x E R , t > O j  ( 1 .2) 

We obtain Ueo observing that , by re-scaling, it is equivalent to finding 1imt_eo u(x ,  t )  for a 
solution u( x ,  t ) of 

Ut = { (u - l )+ }"" , t > 0 
u(x , O) = uJ(x) . ( 1 .3) 

This  fli l l cl.ion 1/."", is the same a s  i n  ( l o l ) .  
B )  The limit for the operator in  ( 1 . 1 )  as m --+ 0+ .IS U t  = {sgn u}"" : We change variables to 
give 

Ut = {H(u - l ) } ",,, , t > 0 

u(x , O) = UI (X)  ( 1 .4) 

where f[ is  t.he l I eaviside fUl lct ion . 

'Ve fi nd the solu t.ion tl. o (x ,  I ) = u (x ,  I )  to this problem.  Under our assumptions on UI , there is 
a t .  > 0 such that 

tto (x , t ) == uo (x , t . ) ,· t 2: t. , 

and uo (x , t . )  is the same singular limit found in ( 1 . 1 ) and ( 1 . 3 ) .  
I n other words , the fuuction ttoo (x )  is o b tained instantly,  as 800n as 1 > 0 , as a solution of the 
evolution operator Ut = 'Peo (x)"" ('Poo is the l imi t of the graphs I u lm- Iu  as rn ..... 00 , cf. [S) ) ;  
i t. i s  found as lim t_oo tl.(x ,  I )  for 'u (x , I )  solution o f  ( 1 . 3 ) ,  and i s  reached i n  finite time b y  the 
solution of ( 1 .4) ( in some sense, ( 1 .4)  inherits the finite extinction time property of solutions to 
( 1 . 1 ) with m < 1 ) . 

The singular limit Ueo of ( 1 . 1 ) can be described by a variational inequality [eF] . We discuss the 
variational ineqnalities - obtained via the Baiocchi transformation - for both ( 1 .3 )  and ( 1 .4 ) .  While 
the variational inequali ties, depending on t as a parameter , are substantially the same for ( 1 . 1 ) 
and ( 1. 3 ) ,  the inequality in ( 1 .4)  differs in the definition of the convex set !{t [or t ::;  t • .  

We presen t also an example of ( 1 .4 )  ill lL71 with radial symmetry that shows that for n > 1 the 
speed of the free boundary describing tl}e extinction of the zone tl.J ( l x i )  > 1 tends to - 00  as 
t --+ t; . 

2 .  PIECEWISE S M O OTH S O LUTIO N S .  

We note that in both ( 1 .3)  and ( 1 .4) the function a(u)  i s  such that a' == 0 on intervals of  values 
of tt .  Therefore if a(u(x , t ) == constant is to hold for (x , t )  in an open set , we must have 
Ilt ( X ,  t) == 0 there . Moreover ,  for tI ( x ,  t )  > 1 in ( 1 .3 )  the eqn. reduces to tit = u,,'" . Thus 
we are led to consider generalised solutions to tit = a (tt )"", that are piecewise classical , i . e . ,  are 
obtained by j uxtaposition of classical solutions along smooth curves, in a way similar to the fitting 
of classical sol utions along a shock discontinuity of a first order conservation law (for a particular 
case , cf. [W] ) .  

. 
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Furthermore , when a = H(u - 1) in ( 1 .4) we will be forced to redefine a(u(x , t »  when 
u (x , t )  == 1 :  we shall take H to be 

and put ,  for all x , l  > 0 ,  

H( 1l - 1 ) = 1  if u > 1 ,  
=[0 , 1] if u = 1 , 

=0 if u < 1 , 

U(x , t )  E H(u(x , t ) - 1 ) ,  

Ut = U"'''' , 

thus if H (X , t )  = 1 on an open set we Illllst; have lt l ( �: ' t) = 0 there , and 

U"'''' = 0 

so U (x ,  t) must be linear in x for fixed t . 

(2 . 1 ) 

( 2 .2) 

Now if a piecewise cl assical , bounded fu nction u(x , t ) is a weak solntion of ut = a(u)""" u(x , O ) = 
u/ , in the usual sense, 

· V'P E Cg<' (R2 ) , jj u 'Pl = Jj l.t (U) 'PX" + j UI'P(x , O) (2 .3 )  

and U = 11 .. i l l  i t  bal l  13« X IJ ,  t o ) , 1 " )  t.o t . l i e  left. of a d i frerent. iable  a r c  " U = Ud ill B t. o  the  
right , taking a test function 'P suppo rted in B and integrating b y  parts give 

.� 'P{ (u, - ud) dx - (-a(u, )x - (-o:(ud)",» dt } = 

1 (a(u. ) - a(Ud» 'P" dt (2 .4)  

whence we obtain 

(i )  u. = t t d  i f , = { I  = constant } at (xo ,  t o )  j 

(ii) 
{ a(tt, ) 

a( us )x 

( iii) 
{ a(u. )  

,' (t) 

= a(ud) ,  and if , = {x = constant } at (xo , l o ) ;  = (X (Ud)" 
= a( Ud) ,  and , e .g .  

on Xo = ,(t o )  . 

(2 .5)  

(ii) or (iii) imply that two classical solutions us ? 1 , Ud ::; 1 of Ut H(!/. - 1)",,,, 
« 1 .4» cannot join along a curve ,(t) , and that a region where u(x , t )  == 1 is needed to let 
U(x ,  t )  E H(u(x ,  t )  - 1)  go from 1 to zero linearly for fixed t (cf. [RD . 

3 .  PROBLEM ( 1 . 3 ) ,  a(u) = (u - 1 )+ 
• 

Solving 

UI = { (u - l )+ }"", , t > O 

u(x ,  0) = UI (X) , { x : UI > I } = (X l ,  X 2 ) ( 1 . 3)  
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is accomplished by joiuing the sobtion u(x ,  t )  == u/(x) for x tf. [X l ,  X2) with a solution onhe 
heat equation , as follows 

(i) Ut = Uxx t > 0 ,  set) < X < d(t) , 

( i i) u(x , 0) = u/(x) , X 1 :S;  X ::; X2 , (i .e . u/ (x) > 1 ) 

(i i i )  -·u.x (s (t )+ , t ) = ( 1 - uJ (s(W )) . s' (I ) , s(O) = X l , (3 . 2 ) 

( iv ) -u,, (d(t ) - ,  I ) = ( 1 - u/ (d(t )+ ) ) .d' (t ) , d(O) = X2 , 

(v) u(x , l )  == u/(a:)  whenever x < se l l  or x >  de l )  . 
We observe here t.hat ( 3 . 2) ( i-v) is a Stefan· problem with variable latent heat . 
Clearly, s' ( i ) ::; 0 ,  d' (t) 2: 0 . The behaviour of, say, set) as t -+ 0+ was studied by [lIN) , [NJ , 
who found that 

where '" depends on 

through a nonl inear equation.  

set ) - X l = - ",Vi + o(Vi) 

u' (x+ )  p := _/ _1_ 
uj (x l )  

(3 . 3) 

As [or the behaviour as 1 -> +00 , notice that i ntegration by parts and use of (3 .2) (iii-iv) give 

By comparison with 

ld(t )  ld(
' )  

. 
I t (a' , t ) dx =  ltJ (x) dx ; _ , ( I ) , ( I ) 

J{.e-(x-X , ) 2/4( t+r) 
---;===;::=�- + 1 , 

j27r(t + r ) 

(3 .4) 

for sui table ]( ,  r >  0 , one finds that limt_colt (x ,  I) ::; 1 , and in par tic u lar limt_cou(x ,  I) = 1 
for s(oo) < X < d(oo) : passing to the limit in (3 .4) gives 

ld(OO) 
d(oo) - s(oo) = . u/(x) dx 

, (co ) 
and therefore d(oo) < 00 ,  s(oo) > -00 if u/(x)  E L1 (R) . 
From eqs . (3 . 2 )  we also obtain 

a ld(t ) a ld(t ) 
n- x u(x , t ) dx = n- x u/ (x) dx vt , ( t )  . vi , (t ) 

Integrating ill ( 0 ,  T) and letting T -+ 00 yields 

d(00)2 - s(00)2 ld(CO) -'-----'-----'---"- = x u/ ( X ) dx 
2 ' ( 00 ) _ 

d(oo) + 8(00) J,�<:/ x u/ (x)dx 
2 

= 
Id( 00) u/(x)dx ' (00 ) 

(3 .5)  

(3 .6) 
. In fact ,  (3 .5) and (3 .6 )  completely determine uoo (x) := limt_cou(x , . t ) , as wi ll be seen below (ef. 
§4) . 

. 
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4 .  PROB LEM ( 1 .4 ) .  

We discuss now t h e  init ial value problem 

U(x , t ) E JJ (tI (x , t ) - 1 ) , t > 0 , 

tit = Uxx , t  > 0 , 

tI (a! ,  0) = 'II. / ( X ) , { x ; "lIJ > I } = (X I , i2)  . 
( 1 .4) 

As U t  = a on open sets where tI > 1 or 1t < 1 , and J tI( x ,  t)'P(x) ---. J tlJ'P(x) as t ...... 0+ , 
it is clear that tI = tlJ (x) for x =1= x I ,  x =1= X 2 an d small t > a . lIo\vever , regions where 
u. ( x ,  t) > 1 and tI ( x , t )  < 1 cannot join along an arc I' , due to the con di tion a (tI , ) = a(ud) of 
(2 . 5) (ii-iii) ; we need a region where tI = 1 and U(x ,  i ) E [0 , 1] satisfies Uxx = a . Consider the 
right end-point X2 of {x  ; tlJ (x ) > I} , to fix ideas . 
A region { ( x ,  t )  ; se t )  < x < d2 ( t )  , t > 0 ,  82 ( 0) = d2(0) = X2 }  separates x < 82 ( t )  where 
( local ly)  U = 1/.[ > 1 , and U = H(u - 1) = 1 , from {x > d2 (t ) }  , where tI = tlJ < 1 , and 
U == H ( u  - 1) = (] ; taking into accou nt the region ( where tI == 1 also) ( (x , t )  ; 81 (t )  < X < 
", ( I ) , t > () , " ,  ( 0 )  = 111 ( 0 )  = a! I }  , we ha.ve a fU l l c t ion U (a: ,  I )  , p i ecewise l inear in x ,  defined by 

U(x , i)  = 0 ,  x < S l (t ) 
= 

x - s I (i ) , sl (t) :::; x S dl (t )  (tI = l )  dj (t )  - Sl ( t )  
= 1 , dl ( t ) < X < S2 (1 )  

- :c - s2 (l ) 
82 (t )  s x s d2 ( 1 )  (u = 1 )  

- 8 2 ( t )  - d2(t ) 
, 

= 0 ,  d2 ( 1 )  < x 

(4 .2) 

This expression for U holds as long as dl (t ) :::; 82 ( t )  . The exis tence of a t. > a such that 
dl ( t . ) = S2 ( t . ) implies U (x , tt l  = a , and the evolution ends, giving u (x ,  t )  = u(x ,  I . ) , t :?: I • .  
We obtain a system of differential equations for 82 (t) , d2 (t ) (and likewise for S l  , dd by satisfying 
(2 .5) ( iii) ; 

We pause now to consider some examples . 

1 .  

In this case 

UI ( X ) = a > 1 ,  x E [-X l , X l ] , 

= b < l , b > O , X Eit [-X1 , X l] . 

d' _ _  1 _ __ 1 _ .  
- i - b d - s ' 

8(0) = d(O) = X l  

(4 .3 )  

(4 .3 )  

( 4 .4 )  
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(d _ s) (d _ s)' = _1 _ _ _ . _1 _ => d _ s = 2 ( b - a ') t 
1 - b  I - a  ( 1 - b) ( 1 - a) 

, 1 ( ) => s = ( 1 
_ a) . --r=;==;=== => s t  = X l  -

2 (b - a) t ( 1  a) ( l b ) 

I I I l => d = -1. & . f2<- => r. ( t )  = X l  + - :l <I - I> 1 ( a - f)(T::'b) 

2( 1 - b) t 
(a - b) (a - 1 ) 

:l( (/. - J )  t (a - &) ( 1  - &) 

' I  t 0 I t ( a - b)(a - 1) 2 t we sec . Ia ,  s = W len = .  2( I - b) X l = • .  

At, Litis Lime u(x , t )  = 1 on [- �:::� X l ,  i::: � X l l  and u(x ,  t ) = b < .1 outside. 

1 1 .  

llI (X ) = -x + 1 ; 

s' = ..2... _1 _ ,  d' = -d
l d .� 

8
' 8 (0) = d(O) = O . -s d - s -

dd' - 88' = 0 => d = -s . It follows that 

1 1 1 .  

( ) 1 /3 s e t )  = - �t , 
( 3 ) 1 /3 d( l ) = 2 t  

1If (X )  = -ax  + 1 ,  X < 0 ,  a >  0 , 
= -bx + 1 ,  X > 0 ,  b > 0 . 

s' = - -- , d' = bId d � s ' 8(0) = d(O) = 0 . a8 d- s -
bdd' - ass' = 0 => Vbd = -vas . The system becomes 

- 1 s' = (fo+v'b) ' 82 
; 

a v'b 

( , ) 1 /3 3Vb => s( t) = - II: t , a (va + v b) 
( 3va ) 1 /3 del) = b(va + Vb) t 

(4 .5) 

(4 .6) 

We observe that for smooth llf (X ) , the "plateau" II == 1 expands as t 1 /3 , while for discontinuous 
initial values the behaviour of the free boundaries resembles that of the self-similar solutions: 
s , d �  Vi ,  
We note in  passing the dependence of the speeds of s and d on the side derivatives of the initial 
values llf (X )  at, points where !tl = 1 , reminiscent of (3 . 3 ) .  
Iuspcct. ioll of  t h e  ODE system (4 . 3 )  yields a fi rst i ntegl'al J.d( 1 ) 

d(t ) - s e t )  = !tI (X)  dx 
. ( t ) 

(4 .7) 
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which compares with (3 .4) , ( 3 . 5 ) :  it actually means conservation of mass , as before . Conservation 
of the first moment furnishes another first integral , as in (3 .6) : in fact ,  

I 1 jd(t ) 
x u (x ,  l) dx = X UJ (X)  dx + x dx , say . 

• {u (x , t )=ti/(x)} . ( t ) 
But 

jd 
X dx = 

d2 (t) - S2 (t ) = 
d(t)  + set ) jd(t ) 

ul dx 
• 2 2 . ( t ) 

from above.  Now int.egration by parts in J,�;? x uJ (x )dx gives the same expression , hence 

J l' lI ( :C , t ) dx =  J x UJ (x ) dx , 

d2 (t ) - S2 (t) jd(t) 
and 

2 
= x UI (x ) dx . 

• ( t ) (4 .8) 

A "pictorial" way of finding u (x ,  t . )  employing these integrals is the following , which 
hints at t.he possibil ity of discussion of init ial values giving rise to many "mesas" as well : Put 
F(x) '=  .r; u J ( I' )dr . Assume, for simplicity, U I � 0 ,  { x : UI > I }  = (X I , X 2 )  . F(x)  is a 
1lI0110tOI IC  i l l creasi ng fU IIct ion that has slope 1 at x = X I  and x = X2 . Consider the tangent. 
I iues to F at these poiuts , aud the portion of the graph of F contained between these parallel 
lines . The evolu tion from u[ ( x ) proceeds by moving the lower line upwards from (X I , F(xl l )  , 
and the upper line downwards from (X2 ' F(X2»  , keeping their slope.  The evolution ends at a 
certain position where the two lines mee t ,  dividing portions of F (x ) that cut equal area above 
and below the said line of unit slope .  

5 .  THE VARIATIONAL INEQUALITIES CORRESP ONDING TO PROBLEM ( 1 .3 ) .  

Let u ( x , t ) b e  the solution to the following problem: 

where a ( u) = (u - 1 )+ . 

Ut = (a(u» xx Ul t=o = U[ in R x (0 , 00) 
111 R ( 1 .3) 

We want to obtain the set {x : limt_oo u (x ,  t )  = I} from the solution to a variational inequaJit,y. 
Using the Daiocchi transformation we clefine a function w as follows: 

w (x ,  t) = 1t 
a (u (x , T»dT in R x (0 , 00) ; 

then w(x ,  t) = 0 if x < s ( l )  or x >  del) ; besides, w (x ,  t )  > 0 and wxx (x , t )  = u(x , t) - 11[ (X) 
if set) < x < d(t)  . In fact ,  if d(O) < x < d(t ) 

then 

w(x , t ) = t ( a (u» (x ,  T)dT Jd- ' (x ) 
wx (x ,  l )  = t (a (u » x (x ,  r)dr Jd- ' (x ) 
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w",,,, (x , t ) = r' (o:(u))",,,, (x , r)dr - (o:(u» ., (x , d- 1 (x» . (d- 1 ) , (x) . Jd- ' (,,) 

= r' ut (x , r)dr + d' (d- 1 (x)) ( 1 - UI(x» (d- 1 )' (x) Jd- ' (,,) 
= U(X ,  t) - U(X ,  d- 1 (x) )  + 1 - UI(X) 
= U(X , t) - U/ (X )  . 

The proof is sim i lar in the ca.�e set ) < x � d(O) . 
Let us see that 

lim w.,(x , t) = 0 . 
.,_d(I )-

As UI E Lioc ( {u � I } ) we have 

but 

and 

t (a (u» ,, (d(r) , r)dr -+ 0 , if x -+ d(t)
Jd- ' (,, )  

because we are  assuming that d is sufficiently smooth. Then 

t .  (a(u» ,, ( x , r)dr -+ 0 , if x -+ d(t)
Jd- ' (,, )  

that i s  what w e  wanted to prove. 
In the same way we can see that 

lim ui", (x , t ) = O .  
,,_.(t )+ . 

As u(x ,  t ) - 1 > 0 if set) < x < d(t ) we can write 

u(x , t ) - UI (X) = (u(x , t ) - 1 )+ + 1 - UI (X)  

(we shall u s e  this decomposition below) . 
We define a family of functions {wth>o  as 

w\x) = w (x ,  t ) , x E R , t >  0 , 

and consider an interval , bounded by (3 . 5) , (-M, M) such that 

-M < s(oo) < set ) < d(t) < d(oo) < M . 

In (-M, M) , Wi is a a1 function 

wi = 0 in [-M, s et )] U [det) ,  M] , 
Wi > 0 ,  and 

(w!)" = (ul - 1 )+ + 1 - u/ in (s(t ) ,  d(t »  , 
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where ul (x)  = 11 (X ,  t ) , t > 0 . It is easy to see that wt is "the" solution to the following problem: 
Find Wi E J( such that 

where J( = {v E HJ (-M, M) : 0 � v} . 
If w. E J( satisfies 

1M 
w� (v - . v. ) ' � 1M (UI - 1 ) (v  - w. ) 

- M  - M  

(5 . 1 ) 

Vv E J( (5 .2) 

then Wi � W. ; in fact ,  if we consider v = _(wt - w. )+ + Wi and v = (WI - w. )+ + Wi as test 
functions in ( 5 . 1 )  we obtain 

and 

so 1M (wt )' (wt - w. )+' = 1M (UI - 1 - (ut - 1 )+ ) (wl - w. )+ . 
-M - M  

Besides , if we  consider v = (wt  - w. )+ + w. as a test function in  (5 .2) we obtain 

then 

so 
Vt > 0 ,  

and we obtain 
{w. > O} 2 (s(oo) , d(oo» .  

To prove the other inclusion recall that 

(see [KS] ) and as 

we have 

1 1: ( ut - l )+ v l � I I (ul - 1 )+ I IL· l J v l JL' 

� C . 1 1 (ut - 1 )+ I JL2 1 I v I III� ' <Iv E HJ 

I I (ut - 1 )+ I J(H�)' � C I I (ut - 1)+ I JL'  ; 

from §3 (ut - 1 )+ --+ 0 a.e .  as t --+ 00 , so we have 

as t --+ oo 

(5 .3 )  

(5 .4) 

(5 .5) 
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and by (5 .5 )  
in HJ and a.e . 

Then we can deduce that 
{w. > o} � (s(oo) , d(oo» 

imd obtain 
{ w. "> o} = (s(oo) , d(oo) ) . 

6 .  T H E  VARIATIONAL INEQUALITIES C O RRES.P O N DING TO PRODLE� ( 1.4) . 

Let u(z ,  t )  be the solution to the following problem 

where a(u) = H(u - 1)  and 

uI = (a(u)).,., in R x (O , oo) · 

u l l=o = UI in R 

{ O '  if r < O  

H(r) = [0 , 1] ' if r = ° 
1 ,  if r > O . 

( 1 .4) 

We know that u(z , t) = u(z ,  t . )  , for t � t • .  We want to obtain the set {z  : u (z ,  t . )  = I } 
from the solution to the variational inequality which has been studied in §5 and also find t. from 
i t .  

Using the Baiocchi transformation we can define a function .w as 

w(z ,  t) = l U (z ,  T) p,T , U (z ,  t )  E H(u(z , t) - 1) , 

in R x ( 0 , 00) , cf. (4 .2) ,  
then w(z , t) = ° if z < S 1 (t) or z > d2(t )  and w(z , t) = t if d1 (t) < z < sa (t) j besides 
0 < w(z ,  t )  < t and w.,,,, ( z ,  t )  = 1 - UI (Z) if S 1 (t ) < z < d1 (t) or sa(t)  < z < d2 (t) . 

The proof is similar to that of §5 and we can also prove that 

and 

lim w", (z ,  t )  = ° 
"' .... d , (I )-

lim w", (z , t ) = O  "' .... . , ( 1 )+ 
Let us define a family of functions {wl h > o  as 

i = 1 , 2 

i = 1 , 2 . 

for z E R ,  t > ° 
and consider an interval (-M, M) , bounded by (3 . 5) ,  such that 

In (-M, M) , WI  is a a1 function 

WI = 0  
WI = t  

in [-M, S 1 (t») U [d2 ( t ) ,  M) , 

in [d1(t ) , 8a (t») , 
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O < wt < t an d (wt )" = I - UI in (sl (t ) , d1 (t » U (S2 (t ) , d2 (t» . For each t , wt is "the" solution 
to the problem : 

I" ind  wi E J(I such that 

1M (wt) ' (v - Wi)' � 1M 
(UI - 1) (v - wt )  \Iv E KI 

- M  - M  

where J(I = {v  E HJ (-M, M) : 0 ::;  v ::; t } . 

and it is easy to see that 

and 

to obtain 

ami then 

1M (WI· )'(V - WI . ), � 1M 
(UI - l ) (v - w'· ) Vv E J( 

-M - M  

, t. = max{w. (:v) : -M ::; :v ::;  M} 
(Sl (t. ) , d2(t. ) )  = {w. > O} 

If t > t .  , w. E [(, and 

1M 
w: (v  - w. )' � 1M (UI - 1) (v - w.) , 

- M  - M  
so 

w' E W. \It � t • .  

7 . AN EXAMPLE. 

\Iv E [(, 

(6 . 1 ) 

Let us next discuss an example of difussion under the law ( 1 .4) in Rn . To this aim , take 
UI (:V)  = UI ( I :v 1 )  = uI (r) , continuous , radially decreasing , uI(r) > 1 for r E [0 , rl] , and 
uI (r) < 1 for rl < r < r2 , Supp uI(r) C B(0 , r2 ) '  
As done in (2 .2 ) , one should solve 

U(r, t) E H(u(r,  t )  - 1 ) 

.?- (rn - 1 .?- U) = 0 or or 
Ud = 0 ,  U. = 1 

(7 . 1 ) 

where u E l , that is , for (r , T) in S ( T) < ' r < d(T) , t > r .  The shape of U(r, t )  is obtained in 
a straightforward manner : 

, s(t )' n ':' 2 d(t)n-2 _ s (t t -· 2 
U (r t )  = r2 n - ..,..,...,,---::-:---,-.,.--...,,. , d(t )n 2 _ s(t )n- 2  d(t)n - 2  _ s (t )n - 2 ' 
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(2 - n)s(t ),, - 2d(t )"- 2 _ 
U (r t) - rl " 

r , - d(t),,-2 _ s(t)" - 2  

log 7'/d(t) U(r, t )  = 
log s(t)/d(t) , 

for n > 2 ,  and 

. 1 
Ur (r, t) = r log s(t)/d(t) ' for n = 2 ,  

The free boundaries are obtained from condition (2 .5) (iii) , which gives 

(2 - n)d(t )"-2 1 
s' ( t) - ..,.-,-...,-'-:-:-:---'::--'-'--:-:----::--:- -:---:-"""-;"'---:7 

- (s(t)d(t)"-2  - s(t ) n-2 ) ( U[ (s(t » - 1) 
, (2 - n)s(t)"-2 1 d ( t )  = d(t ) (d(t)n- 2 _ S(t)"- 2 )  (u[ (d(t» _ 1) ' for n > 2 ,  and 

' (t )  1 . 
s = 6(t ) (U[ (s(t» _ 1 )  log s(t)jd(t) 

d' (t
) = 

d(t) (u/(s( t» _\) log s( t )/d(t ) ' for n = 2 .  

As in the one-d imensional case , it can be seen that in either case s' (t) is bounded above by a 
negative constant ,  for t > {j > 0 . Therefore, the 1l1eSa is reached in finite time. Also, 

lirn s' ( t )  "" lim - !  = -00 (n > 2) , and tr,. r .... O+ r 

lim s' (t )  "" lim -1 1- = -00 , l it . , . r .... O+ r og r 

while in the one-dimensional case (cf. (4 . 3» ,  s' (t . - ) is finite. 

For a similar behaviour in the standard porous medium equation see [A, lecture ' 5] , 
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