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Abstract: We st udy tllC AfIin13 Total Variation, a magnitude measuring the aflille 
complexity of fillite unions of con tin ua, in partic ular, Jordan curves, appearing in 
an afIiI!e invariant analogue of Mumford-Shah energy functional used to segment 
images. We prove a lower semicontinuity result for the ATV functional. 

Devoted to the memory of Julio Bouillet. 

1. INTRODUCTI O N .  

Even if the images we perceive are analyzed and understood without evident effort , 
the understanding of them involves very complex mechanisms which, by now, we 
cannot reproduce in a computer. The complexity of image analysis motivated 
its division in a series of simpler and independent tasks. Among them, edge 
detection and image segmentation seem to be fundamentaL . Certainly, we need to 
identify the objects in a scene and therefore, to find their contours or boundaries. 
Then, segmenting an image amounts to subdivide the image domain into regions 
corresponding to the projection of visible surfaces of objects in a real scene. More 
precisely, on one side, one wishes to smooth the nearly homogeneous regions of the 
picture with two scopes: noise elimination and image interpretation, and, on the 
other side, one wants to keep the accurate location of these regions and restore 
some regularity for their boundaries . A general treatment of this subject can be 
seen, for instance, in [MS94] and [RK82] . 

Images are the projection of physical objects in the three-dimensional world onto 
a two-dimensional -planar- surface, be it the retina or an array of sensors in a 
vided cam�ra. Since, in most situations, one cannot control the exact location of 
the objects to be recognized , we are concerned with finding properties of an image 
which are invariant to transformations of the image caused by moving an object so 
as to change i ts perceived position and orientation. The idea of invariance arises 
from our ability to recognize objects irrespective of such movement. A good ap
proximation to image formation in a real camera is given by the perspective cameTa 
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model in which points are projected from the 3D world onto an image plane so that 
all rays joining the object and -corresponding image points pass through a simple 
point ,  called the point of projection. Since, in the perspective camera model, an 
euclidean motion of a solid object in the 3D world induces a planar projective 
transformation in the 2D image space, one needs methods or features which are 
invariant to projective planar transformations . Under the weak perspective as
sumption, i . e . ,  when the object 's depth is small compared with its distance from 
the camera (which corresponds to the focal distance f -t oo),  the planar projective 
trap.sformations can be approximated by affine linear transformations Hence, we 
shall look for segmentation methods invariant under affine transformations, as a 
simplified form of invariance under planar projective transformations. We would 
like to mention that a lot of interest has been recently given to affine invariant 
methods in image processing (see [BCG.94] and its references) . 

Coming back to our purpose, the recent literature on segmentation problems shows 
a strong convergence of the methods to variational methods [MS89] , [MS94] (see 
also [GG84] , [HS85] for precedents) . From these references, it is now well known 
that a good segmentation can be obtained by minimizing an energy functional .  
The simplest such energy functional was proposed by Mumford-Shah ( [MS89] ) . 
They proposed to segment the image 9 : 0 -t JR by minimizing 

( 1 . 1 ) 

where 0 is an open set in JR2 , generally a rectangle, u is a piecewise smooth 
function defined on 0, B is the set of boundaries in 0 -with length HI (B) - where 
u is discontinuous and A > O. They conjectlired in [MS89] that this functional has a 
minimum (u ,  B ) ,  with B being a finite set of smooth 01 curves. The full conjecture 
has not been proved yet but a lot of significant results have heen given ( [MS94] ) .  
Mumford and Shah also proposed a simplified version, where u is imposed to  be  a _  
piecewise constant function in 0 \ B . In this case, ( 1 . 1 )  writes 

( 1 .2)  

In: [KMS93] , Koepfier-Morel-Solimini proved, mathematically and practically, that 
the "Region Growing" is an efficient method to minimize this functional (see also 
[MS94] ) .  

Although the Mumford-Shah functional ( 1 . 1 )  is euclidean invariant , it is not affine 
invariant . Indeed, the first tetm and the euclidean length are not invariant by affine 
transforms. In [BCG94] , we replaced the euclidean arclength -as a measure of 
euclidean complexity- by a different expression measuring the affine complexity of 
the set of boundaries of the segmentation. When thinking in these terms, the first 
thing coming to mind is the affine length of a curve but this quantity, if thought of 
as an additive quantity, must be zero for a polygonal curve and does not seem to 
be the right one if one tries to approximate 'it smooth curve by a piecewise affine 



43 

one ( [BCG94] ) .  The smoothness term in the Mumford.,Shah functional ( 1 . 1 )  can 
also be replaced by an affine invariant one (see [BCG94] ) .  In fact, we proposed 
in [BCG94] the following affine invariant version of the simplified Mumford-Shah 
functional ( 1 .2) 

( 1 .3)  Ea/ (n, B)  = In In  - g l 2  + >' ATV (B ) . 

where n is a piecewise smo')th function , B is a family of curves in n belonging to a 
suitable seglnentation class and ATV (B ) denotes the Affine Total Variation of the 
segmentation B (see Section 2) . Let us briefly explain what each term represents.  
The first term is the same term that appears in the functional ( 1 . 2 )  expressing the 
fidelity of the segmentation to the image. Finally, the second term measures the 
afiine complexity of the set of boundaries of the obtained regions . Let us comment 
that; this term is global in nature ( i .e . , they make all parts of the image interact , 
no ma.t ter their respective distance) . 
Typically, when minimizing such kind of fUllctionals , we are trying to approximate 
9 by a piecewise smooth function n and , at the same time , to reduce the complexity 
of the discontinuities of n (the boundaries of the regions in the image) . As we 
analized in [BCG94] in the case of ( 1 .3) , the discontinuities permitted by the model 
will be ei ther a finite union of rectifiable curves or a degenerate segmentation 
composed of a finite or infinite set of pai·allcl lines -this degenerate case can 
happen (e . g . ) if one uses ( 1 .3) to approximate an image which is a linear transit, ion 
fronl white to gray. 

In [BCG94] , we studied the affine invariant energy functional ( 1 . 3) from a math
ematical point of view, stating the existence of minimizers and giving' a simple 
numerical algorithm to minimize it based on the work of [KMS93] and using also a 

simple numerical scheme in order to discretize the Affine Total Variation quantity. 
Our purpose here will be to give a more detailed mathematical analysis of the 
term ATV (B ) introduced in [BCG94) to measure the afiine complexity of a family 
of curves. In particular , we extend the ATV magni tude to rectifiable continua (or 
finite unions of them) and we prove a lower semicontinuity result for the ATV 
(see Theorern 3 . 1  below) . Even if this has no implications in the context of our 
assumptions of [BCG94] where the admissible segmentations consisted of a finite 
union of rectifiable Jordan curves with disj oint interiors , it completes the math
ematical analysis of the ATV magni t ude alld some geometrical lemmas used to 
prove the main result could be interes t ing by themselves. 

Let us explain the plan of the paper . We star t in Section 2 by recalling the model 
and the main results of [BCG94] . Then , in Section 3, we shall extend the ATV 
functional to the natural class of (Hl-rectifiable) continua (and finite unions of 
them) and prove a lower semicontinuity result for the ATV in this setting. 

Acknowledgement . We would like to thank P. L .  Lions and J . M .  Morel for their 

valuable suggestions . 
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2 .  THE MOOEL AND EXISTENCE OF MINIMIZERS . 

In this section, we recall the definition of affine total variation of a set of curves and 
the class of admissible segmentations we used in [BCG94] to minimize the proposed 
functional ( 1. 3 ) . Finally we state without proof the existence of minimizers . 

For the sake of definiteness, let 0 be an open rectangle in 1R2 • Let A > O .  Let 9 be 
the given image, Le . , g : 0 -+ 1R+ is a bounded measurable function . 

We need several definitions to introduce our model . Recall that a Jordan curve 
is a continuous curve c : [a, b] -+ R1,2 such that for all t , t' , E ]a , b[, c{t) =/:- c(t' ) if 
t ::/= t' (a < b) . If c( a) = c( b) t.he Jordan curve is said to be closed. The poiilts 
c(o.) and c(lJ) will be called tips of the curve, all other points in the range of c are 
interior ]Joints. Let � be the following family of sets 

� = { B � n :  B is a finite union of rectifiable Jordan curves 

whose interiors are disjoint and contained in 0 } .  
De:O.nition 2 . 1  Let u E L2 (0) . We s ay that u is cylindrical in the direction 
'U E iff? , 'U ::/= 0 ,  if 'V'll . v = 0  in the s ense of distributions. We say that 'll is 
cylindric(J,l if u is cylindrical in some direction v E 1R2 , v =/:- O . 

A simple argu ment shows that u is cylindrical in the direction v ::/= 0 if and only 
if, after a possible modification of 'u in a set of null measure, 'll (x + AV) = 'll (a:) for 
almost every x and all A E [0 , 1] , Le. , u is constant on lines parallel to the direction 
v. Since 'll E L2 (0) , almost all points x E 0 are Lebesgue points of u. To choose 
a particular representative of 'U we use the following rule: if for x E 0 there exists 
some A E Rl such that 

1 ! lim � l u (y) - A ldy = 0, r-tO 1fr D (x ,r )  . 

where D(x,  T) = {y E O : I l y - x i i  � r } ,  then we define u(x) = A. Hence when, 
for a cylindrical function, we speak of the discontinuity set of 'Ii, we mean the 
discontinuity sct of its choscn representative. 

Let 

Let 

(0 := {'ll : 
(1 := {'ll : 

there exists B E � such that u : n -+ 1R+ is constant on each 

connected component of 0 \ B and u is discontinuous on B } 
u : 0 -+ 1R+ is a cylindrical function } �  

I t  will be  common to call memhers u of ( segmentations. Sometimes we will also 
refer to function u as the segmented image and its discontinuity set B as the seg
mentation boundaries or, simply, segmentation. Let us observe that segmentations 
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.i n (u are Mumford-Shah type segment.ations while segmentations in (1 are affine 
degenerate segmentations . This would correspond to a underlying transformation 
of the image by a linear map A with one of the eigenvalues near to zero. 

To introduce the ATV(· ) , let us define: 

Definition 2 . 2  Let r,  r be two rectifiable Jordan curves. We define the interaction 
of r and r by 

(2 . 1 ) Inter (r, r) = r � I r (x) 1\ f(y) 1 da (x) da{y) , lr h 
where a, a denote, respectively, the arc length parameters on each curve r, r and , 

r {x) , f (y) denote the tangent vectors at x E r and y E r, r-espectively. 
For convenience in notat ion , given 11, E (0, let us consider B as the set of disconti
nuity of  7./, and write (11" B) E (0 instead of 11, E (0 .  If 11, is in (1 , the discontinuity 

set of 1J, may be very wild . On the other hand , it will not play any role in what 
follows. But,  for a uniform notation below , it will be convenient to write also B 
as the discontinuity set of 11, and write (11" B) E (1 instead of 11, E (1 . We also refer 
to pairs (71" B) E ( as segmentations. 

N 
We now define the ATV functional . Let (71" B) E ( . If (71" B) E (0 , then B = U I\ 

i=l  
where ri are rectifiable Jordan curves whose interiors are disjoint . We set 

N 
ATV(B) = I: Inter(ri ' rj ) .  

i ,j=l  

If  (71" B) E (1 , then we set ATV (B) = O. In any case, we define 

( 1 .3 ) Ea/ (u, B) = In \u  '- 9 \ 2 + ,\ ATV(B) 

and we want to minimize it on the class of segmentations ( . 

With these definitions, Functional (1 .3) is affine invariant. Moreover, as proved 
in [BCG94] the ATV functional is the only positive functional, up to a scaling 
factor, associating to each pair of Jordan curves a quantity which is geometric, 
affine invariant , biadditive and continuous ( in the W1 , 1  topology of the space of 
parametric curves) . With these preliminaries we have: 

Theorem 2 . 1  Ea/ attains its infimum at some (u, B) E ( . 

The proof of Theorem 2 . 1 ,  which, as usual , is based on a lower semicontinuity 
result of the energy functional , can be seen in [BCG94] . 

3 .  L OWER S EMI C O N TINUITY OF THE ATV FUNCTIONAL IN 

A M O RE G ENERAL FRAMEWORK .  
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In this section we prove that the Affine Total Variation is a lower semi continuous 
fuucLional on a w ider class of sets, more specifically, the class of sets made of a finite 
union of (HI-rectifiable) continua. Let us recall some definitions and terminology. 
Let n be an open connected set in JR2 whose boundary is a smooth Jordan curve. 
We start with some basic notions of geometric measure theory which will be needed 
to introduce the current setting. Recall that a continuum is a compact connected 
set with finite HI-measure. Given a continuum E, by HI (E) we denote the 1-
dimensional Hausdorff rneasure of E. It can be proved (see [Fa185] , [MS94]) that 
a continuum is the union of a negligible set Fo (with HI (Fo) = 0) and of a finite 
or countable union of curves which form an arcwise connected set -i .e . , any two 
points of E may be connected by an arc contained in the continuum- and HI (E) 
is the sum of the lengths of this system of curves. A detailed account of it is given 
in [Fa185] or [MS94] . 

Definition 3 . 1  Let E, E be two continua. Then each one consists of a countable 
union of rectifiable C'UTves, together with a set of HI -measure zero.  Let E = 

Fo U (Ql fi) , E = Po U (Ql r i) be such decompositions, where r i , r i aTe rectifi

able Jordan C7.LrVeS with fi nfj = ri nrj = 0 for i i= j and HI (Fo)  = HI (PO )  = o .  
Then, we  define the Interaction of E, jj; by 

<Xl 
Inter(E, E) = L Inter(ri , f'j ) ,  

i ,j= l 

where I nter (ri , r  j )  is given as in Definition 2. 2. 

Let CS be the following family of sets 

CS = { B C R2 : B = U Bk , Bkcontinuum, B� n Bj = 0 ,  k i= j } .  
finite 

Given B E es, we define the Affine Total Variation of B by 

ATV(B) = L Inter (Bk , Bj ) .  
k ,j 

Recalling that , for B E es, the tangent vector T can be defined as a vector measure 
OIl B, dr (x) ,  with a vector density with respect to the Hausdorff measure HI with 
values in SI , a more compac t and intriusic definition of ATV 

ATV (B ) = L .� \dr (x) 1\ dr(y) \ = L L \r(x) 1\ r(y) \ da (x)da(y) 
makes sense. 

Given v E JR2 , it is clear what the notation 

L \ v  1\ T(y) \ da(y) 
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N 
means if B � U Bk where Bk are continua with 13k n Bi = 0 ,  k 1= j. Indeed , 

k= l 
for each k = 1 , . . .  , N let , as above , Bk 

= F� U ( .0 r7) , where n are disj oint 
1=1  

rectifiable Jordan curves with r7 n rj = 0 for i 1= j and Hi (F� )  = O .  We define 

N 00 i i'll 1\ T(y) l da (y) = L L 1 ,k I v 1\ T(y) lda(y) . B k= l  i = l  BnI i 

Our purpose is to state the lower selllicontinui ty of the ATV functional with 
respect to the Hausdorff distance. 

Definition. Given a sequence {Bn }  C 8' and B E 8' ,  we shall say that the 
sequence BII converges to B if BII converges to B in the Hausdorff rnetric. 

Theorem 3 . 1  Let Bn be a sequence in 8' such that ATV(Bn) ::; . M for all n 
and sup c(Bn ) < +00, where c(Bn )  denotes the cardinal of continua contained in 

n BIl • 'Then, then; e:l;ists a snbsequen"ce, <� t.ill called Bn ,  and 13 E �' , s itch that HI! 
converges to B and ATV(B) ::; lim iuf ATV(Bn ) .  n-+oo 

To prove Theorem 3 . 1 we start with two lemmas which have the following geomet
rical interpre tation : either the sequence Bn tends to a segmentation containing 
two linearly independent directions or the segmentations Bn tend to oscillate in a 
single direction giving in the limit a degenerate segmentation. 

Lemma 3 . 2  Let {Bn }  be a sequence in 8'.  Then, eithe'r 

(a.) ::hJ > 0 s7J,ch that Intcr (o, B,, ) 2:: ·qH1 (o) for all n and all Jordan curves 0 
whose range is contained in 1371 , or 

(b) there exists a subsequence of {Bn } , still called {Bn } ,  and vecto r's Vn E ]R2 , 
I l vn l l = 1 , sllch that 

Proof. If 

/' I Vn 1\ T (y) lda (y) � 0 lBn as n � 00. 

(3 . 1 ) ?J17 > O such that Vn E lN, V'll E JR2 with l l v i i  = 1 ,  
/' I v 1\ T (y) l da (y) 2:: T] , lBn 

then (a) immediately follows . In case (3 . 1 ) is not; true, then 
Vm E lN, there exist nm E lN and Vm E JR2 with I l vnt l l  = 1 satisfying 

1 I V,n 1\ T (y) l da (y) ::; � ,  
En-m rn 
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which gives . the statement (b) above . • 

Lemma 3 .3  Let {Bn } be a sequence in <s such that ATV(Bn) � M for al l  n. 
Then there exists a subsequence, s till called {Bn } ,  such that 

e'ither (i) sup FJI (Bn) � C , n 

aT (ii) ("degenemtion ") there exis ts a vector v E 11,2 such that Vp > 0 

FJl ({X E Bn : I sin (r (x) , v) 1 < p}) -+ +00 

and 
FJI ({X E Bn : I sin(r (x) , v) 1 � p}) � O . 

Proof. From the proof of previous Lemma 3 .2 ,  we have 

(3 .2 )  

(3 .3 )  

either :317 > 0 such that Vn E lN, Vv E JR2 with I I v l l  = 1 , 

.�n I v 1\ r (y) l dcr(y) � 'fJ 

or ,  Vm E lN, there exist nm E lN and 11m E m2 with I I  11m I I = 1 satisfying 
r I Vm 1\ r (y) l dcr (y) � ..!:.. . 1 JJnm . 771 

In the case of (3 .2)  , we obtain 

Since ATV (Bn ) � M for all n, (3.4) yields part (i) of the lemma. 

In case (3 .2)  is not true , we have (3.3) . Let us denote the subsequence Bnm again 
by Bn . Then, for any p > 0 ,  

1\ r(x) l dcr(x) = r I sin(vn , r (x)) l dcr(x) 18n 
� r I sin( 11n , r (x) )  I dcr (x) l{rcEJJn :  I s in (r (rc ) , v  .. ) I:;::: p}  
�pFJI ({x E Bn : I sin(r (x) , vn ) 1 � p} ) ,  

which implies that FJl ({X E Bn : I sin(r (x) , vn ) 1 � p} ) -+ 0 as n -+ 00. 

On the  other hand , since we ean ass u m e ,  without loss of generality, that 
IJ 1 (lJn )  -7 +00 as n -7 00 and 

we obtain that FJ1 ({x E Bn : I s in(r (x) , vn ) 1 < p}) -+ +00 as n -+ 00, Vp > O .  
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Now, there exists a subsequence of {vrJ , still called {vn } ,  and a vector v, I l v l l  = 1 ,  
such that Vn -+ v . Take E > a . Let no be such that I sin (vn , v) 1 < E ,  for all n ;::: no · 
By elementary trigonometry, 

I sin(T(x) , v) 1 ::; I sin(T (x) , vn) 1  + I sin(vn , v) 1 < p + E, 
for x E {y E Bn : I sin(T(Y) ,  vn ) 1  < p} , p > a. From that , the set {x E Bn : 
I sin(T (:r) , vn ) 1  < p} is included in {x E Bn : I sin(T(x) , v) 1 < p + E} if n ;::: no . 
Thus ll l ( { :!: E Bn : I sin (T (:l: ) , v) 1  < p + E}) -+ +CXJ, as  n -+ CXJ,YE > 0 ,  which 
gives the first statement in (ii) .  
To prove the second statement it is sufficient to follow the same argument as above, 
observing that 

I sin(T(x) , vn ) I ;::: l sin( (T (x) , v) - (vn , v) ) 1 
;::: I sin (T (x) , v) l l cos ('On , v) I - l cos (T(x) , v) l l sin(vn , v) l · • 

Lemma 3 . 4  Suppose that ("degeneration") of Lemma 3. 3 holds. Let gn : [0, LnJ -+ 
R2 be a curve parametrized by its arclength whose image Imgn � Bn . Extend gn 
to In : [a , +CXJ[-+ R2 by In (s) = gn (Ln ) for s ;::: Ln . Then, there exists a subse
quence of {In } , called again {In } , and" a function I :  [a ,  +CXJ [-+ R2 parametrizing 
a line segment in the direction v such that 

(3 .5 )  In -+ I in Cloc ( [a ,  CXJ[) ,  
(3 .6) I:, -+ !' in the weak* topology a(Loo ( [a , CXJ[) , L1 ( [a , CXJ [) ) .  

Remark 3 . 1 .  I t  follows from the statement of Lemma 3 .4 that if sup Ln  < +CXJ 
then Imln converges to Iml in the Hausdorff topology. 

Proof. Since Irnin � Bn , the range of in is bounded. Moreover, sup 1 1 1:, 1 100 < n 
+CXJ. Then , there exists a subsequence of {In } ,  called again {In} ,  and a function 
I :  [a , +CXJ [-+ R2 such that (3 .5)  and (3 .6) hold. Now we write: I� = (f� . v) '0 +  
(f� . v.l )  v.l , where v is the vector coming from (" degeneration" ) in Lemma 3 .3  , 
with I l v l l  = 1 .  We are going to prove that 

(3. 7) I� . v.l -+ a in a (L 00 ( [0, CXJ[) , L 1 ( [a ,  CXJ [) ) . 
To this aim,  we estimate J�L 1 1� (s) · v.l l ds for any L > 0. Let L > a. 
If Ln -+ +CXJ, taking n large enough w e  may assume that Ln > L. Then 

J 

1L I I� (s) . v.l l ds = 1L I sin (f� (s ) ,  v) 1 ds 

= r " l sin(f� (s) , v) l ds J { sE [O,L) : I sin (f:' (s) ,v ) l <p} 
+ r I sin(f� (s) , '0) 1 ds J{ SE [O ,L ) : I sin(f;, (s ) ,v) l 2:p} 

::; p L + r ds .  J{S E [O ,L) : I s in (f:' (s) ,v) l 2:p} 
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Since (" degeneration" ) of Lemma 3.3 holds, 

(3 .8) o � lim sup [L 11� (s) . v.L 1 ds � p L. n-+oo Jo 
Since this is true for any p > 0 ,  it follows that 

(3 .9) 

If sup Ln < +00, take L > sup Ln . Since I� (s) = 0 for any s > Ln ,  

[L [Lu (Ln Jo 1 1� (s) . v.L 1  ds = Jo 1 1� (s) . v.L 1 ds = Jo I sin(f� (s) , v) 1 ds . 

As above we prove that (3 .8) and (3.9) follow. Now let 9 E Ll [O ,  +00[. Then for 
any L, N > 0 ,  ' 

1 1+00 I� (s) · v.Lg (s)ds l � 1+00 11� (s) · v.L l lg(s) l ds 

= 1L 1 1� (s) . v.L 1 inf ( l g (s) 1 , N)ds + 1L 11� (s) . v.L I ( lg(s) l - N)+ds 
+ j�-f'OO 1 1� (s) . v.L l lg (s) l ds � N 1L 11� (s) . v.L lds 

+ .foL ( l g(s} l - N)+ds + [+00 Ig (s) \ ds . 
Letting n -t 00 

lim sup 1 [+00 I:l (s) ' v.L . g(s)ds l � {L ( lg(s) l - N)+ds + [+00 Ig(s) \ds . n -+ oo  Jo Jo J 
L 

Letting N -t 00 and L -t 00 in this order in the above expression we get 

1+00 lim sup I:. (s) . v.Lg(s)ds = O.  
n -+ oo  0 

This proves (3 .7) . It follows that 

Since , on the other hand, I� ->. f' in that topology, we get I' = (I' · v) v . Hence, 
I' (s) = A(S) v , where A E LOO [O ; +00[, i .e .  

I(t) = 1(0) + (It A(s)ds) V .  
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f parametrizes a segment in  the direction v .  • 

The following simple technical fact will be required. 

Lemma 3 . 5  Let p, q E O. Let [p, q] be the segment joining both points, i . e .  
[p, q] = {tp + ( 1  - t )q : t E [0, 1 ] ) ,  and let 0 be  any Jordan curve joining p and q . 
Then, for any B E � 

Intcr (B,  8) � Inter (B, [p, q] ) . 

Proof. 'Without loss of generality we may assume that B is a Jordan curve in 
O. Since for any x E [p, q] , r (x)  = I I�=�I I 
Inter (B , [p, q] ) = r r I r (x) 1\ r(y) l do- (y)da (x) = r I (p - q) 1\ r (y) l da(y) i[p,q] i D iB 

= L \1 r(x)da(x)  1\ r(y) \ da(y) :::; In 1 I r (x)  1\ r (y) l da(x)da(y) 

= Inter (B ,  8) . • 

Lemma 3 . 6  Svppose that ("degeneration") of Lemma 3. 3 holds. Moreover, sup
pose that sup c(Bn ) < +CXl, where c (Bn ) denotes the cardinal of continua contained 

n 
in JJn . Then, there exis ts a subs eq'uence of JJn , culled again JJn , s 'uch thal JJ" con-

ver-ges to  B wheTe B E � consists of a finite number of line segments pamllel to v 
(which may possibly be r-educed to a point) . 

Proof. Since Bn E � and sup c(Bn ) < +CXl, there exists a subsequence Bn such 
n 

that c(Bn ) = k for all n and we may write Bn = Kn1 U . . . U R-nk , where Kni 
are continua with Hi (Kni ) < +CXl and Kni n Knj = 0 for i =f. j .  Our strategy 
will be as follows. We take i = 1 and construct a subsequence of Kni converging 
to a line segment parallel to v (possibly reduced to a point) . Having constructed 
a subsequence {nr } of IN such that Kn,-i converges to a line segment parallel to 
v for any i = 1 , 2 ,  . . .  , j  - 1 (j :::; k) we take i = j and construct a subsequence 
{nrJ of {n,. } such that Kn" l j also converges to a line segment parallel to v. Our 
lemma follows from this construction. Our proof reduces to a single step. Suppose 
that Kni ,  i < j, converges to a line segment parallel to v. Consider i = j .  Using 
the Blaschke selection theorem, we find a subsequence of J( nj , call it again J( nj , 
such that J(nj � J(j in the Hausdorff distance where Kj is a continuum. If 
Kj is not reduced to a point , we find points p, q E Kj , Pn , qn E Knj such that 
Pn � p,  qn � q and I IPn - qn l l � a > 0 for all n, for some a > O. Since Knj 
is a continuum, there exists an arc lPn ' qn ] � Knj j oining Pn to q" . By Lemma 
3 .4 ,  lPn ,  qn ]  can be suitably parametrized to converge to a line segment Sjv in the 
weak* topology a (LOO [0 , +CXl[ ,  L1 [0 , +CXl[) .  Set Bjv = Kj n {line passing through a 
point in Sjv in the direction v } . (Observe that p E Sjv . ) We claim that Kj = Bjv . 
Otherwise, there exists a point p E Kj such that d(iJ, Bjv ) > O .  As above we may 
find ]In ,  qn E J(nj such that Pn � p, qn � ij E Bjv , I iPn - qn l l  � a > 0 for all n, 
for some a > O .  Let Un = Pn - qn '  Let lPn , qn] be an arc contained in Knj joining 
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Pn to qn ' If sup HI (Knj ) < +00, the length of [Pn , qn] is uniformly bounded . 
n 

By Lemma 3 .4  and Remark 3 . 1 , we know that , after extracting a subsequence, 
[Pn , qn] converges in the Hausdorff distance to a line segment L parallel to v. It 
follows that p, ij E L. Hence j5 E Bjv , which yields a contradiction . In this case, 
Kj = Bjv . Now we may assume that HI (Knj ) -+ +00 as n -+ 00 .  We also assume 
that Un -+ U where l I u l l  -::::: a > 0 is not parallel to v. Choosing p sufficiently small 
we may assume that 
(3 . 1 0) 

I sin (r(x) , u) l -::::: 17 > 0 for some 17 > o and all x E {x E Knj : I sin (r (x) , v ) 1 < pl .  

Finally, recall that , by Lemma 3 .3 ,  we may suppose that 
HI ({x E Knj : I sin (r(x) , v ) 1  < p} ) -+ +00 as n -+ 00. Now, set 
Knj = U rnj ", U Fnjo ' where rnjm are rectifiable curves and HI (Fnjo )  = O. Let 

m 

Anj == Inter ({x E Knj : I sin(r (x) , v ) 1  < p} , Un) 

== L lntc'/' ({:r E l\nj : I H i u (r (:!: ) , v ) 1  < p} n fnj"" Un ) 
m 

where am (:c) deno tes the arcleuth of the c urve e'J' . Since, by Lemma 3 . 5 ,  . m 

I r (x) 1\ un l :::; I r(x) 1\ 1, . r (y) da(y) I :::; 1, I r (x) 1\ r (y) 1 da (y) , [l',, ,q,, ] [Pn ,q,,] 
we have 
(3. 1 1 ) 
Anj :::; L 1 r I r (x) 1\ r(y) l da(y) dam (x) j rnjm n{xEJ(nj : I si n (r (x) ,v) l <p} J[l',, ,q,,] 
= Inter ( { :r; E Knj : I sin (r (x ) , v) 1 < p} , [Pn ,  qn ] ) :::; ATV(Knj ) :::; ATV(Bn) :::; M. 

On the other hand, 

Anj = L f Ir (x) 1\ un l dam (x) 
m l'''j ", n {xE J(nj : I sin(r(x) ,v) l <p} 

= I I  Un I I  L 1 I sin (r (x) , un ) l dam (x) .  
m rnj", n{xEJ(nj : I si n (r (x) ,v ) l <p} 

Using (3. 10) , 

(�t 12)  
Anj -::::: l l un l l 17 L f dam (x) 

m l'nim n {xE l\"j : I s i n (r (x) ,v) l <p} 

=17 I l un l l  HI ({x E Knj : I sin (r (x ) , v ) 1 < p} ) .  



53 

As observed above, the right hand side of (3 . 12) tends to +00 as n -+ 00 ,  contra
dicting (3 .11 ) .  We have proved that Kj = Bjv . Our lemma is proved. • 

If we may expect the lower semicontinuity result of Theorem 3 . 1  to be true, the 
same result should be true for Jordan curves. Indeed, this is the case and it is 
stated in the next Lemma which will be needed during the proof of Theorem 3 . 1 .  

Lemma 3 . 7  (fBCG94] Lemma 4 . 7) Let fn : [0 ,  Lnd -+ IR? , gn : [0 , Ln2J -+ JR2 
be the (J,rclength pammetrizations of sequences of Jordan curves An = f,, ( [O , L" t l ) ,  
Bn = 9" ( [0 ,  Ln2)) ' Suppose that Lnl , Ln2 are bounded sequences. Suppose that 
An -+ A, Bn -+ B in the Hausdorff distance. Then 

(3 . 13) Inter (A, B)  S Hm inf Inter(An , Bn ) . n 

The proof of Theorem 3 . 1  will be a consequence of the following geometrical result 
which may be interesting by itself. 

Lemma 3 . 8  Let  Kj be  a seq1LenCe of continua such that sup HI (Kj )  < +00 
j 

and Kj -+ K as j -+ 00 . Let CI , . .  - . , Cp be a system of Jordan curves such that 
Ci � K, Ci n Cj = 0, i #- j, i , j = 1, . . .  i P. Then, there exists a sequence {jn }�=l 
of IN and sequences of curves { D:, }  :=1 ' i = 1 ,  . . .  , p, such that 

(3 .14) 

(3. 15) 

(3 . 1 6) 

D� � Ci + B (O, �) ,  i = l , . . . , p, 
n 

Ci � D:t + B (O , .!:.) ,  i = l , . . .  , p, 
n 

Hl (U D� \Kj,. ) S 18
(HI (K) -I- 1) .  

i= 1 n 

Hence, (3. 14), (3. 1 5), (3. 1 6) imply that, for each i = 1 ,  . . .  , p, we may construct a 
sequence of curves D� contained in Kj,. up to a set of small HI -measure and such 
that D� -+ Ci as n -+ 00 .  

To prepare the geometrical construction needed for the proof o f  Lemma 3 . 8 ,  we 
recall the following result which was pointed to us by J .M. Morel. 

Lemma 3 . 9  (fMS94], 9. 28, 9. 31, 9. 57) .  Let K be a regular l-set (for instance, 
a continuum) .  Then, there exists K' � K with H1 (K \ K') = 0 such that for all 
x E K' there exists a line D(x) such that 

(3 . 1 7) 
(3 . 18) 
(3 . 1 9) 

\:IE > 0 ,  \:Iro > 0 ,  3r < ro such that 
HI (PD(x ) (K n B(x , r) ) )  � (1 - E)2r 
H1 ( (B(x ,  r) \ D(x ,  'r, Er) ) n K) < Er 

H1 (B(x ,  r) n K) S (2 -I- E) 'r 
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where PD (x) (respectively PD(x).J.. ) denotes the projection onto the line D(x) (re
spectively D(x) l. ,  the orthogonal to D(x) passing through x ) and D(x ,  r, a) = 
{y E B (x, r.) I IPD (x) .L (y - x) l I � a} . ' 

Proof of Lemma 3 .S .  Let d*" = inf{d(Ci '  Cj )  : i , j = 1 , 2 ,  . . .  , p, i =1= j} .  Fix 
E E (O , 1 ) and ro < d; , ro > O .  Consider the family VeE,  TO) = { R(x, T) : 0 < T < , 
'I'o , ;C E [(' , B (;c , r)satisfics (3. 1 7) ,  (3 . 18) ,  (3. 19) .} . It is clear by Lemma 3.9 that 
V (E , l'O ) is a Vitali covering of ](' .  Thcn, we select a finite or countable disjoint 
sequence F = {B (Xj, Tj ) }f=l C V(E, TO) such that Hl (K \ Uf=lB(Xj , Tj » = 0 and 
H1 (K) � 2:}:1 21"j + E .  Observe that , by our choice of TO , no ball of F intersects 
two of the curves C1 , C2 , • . •  , Cp o Moreover, since K is connected, we have 

Vj E IN� 

In fact ,  since K is connected, if there were a point of K in B (xj , (1 - E)rj ) \ 
D (xj , ( 1 - E)rj , 2ETj ) there would exist an arc joining it to K n D (xj , ( 1 - E)Tj ,  ETj ) .  
This would imply the existence of an arc of K of length at least ETj crossing either 
D(a;j , ( 1 - E)Tj , 2ETj ) \ D(xj , ( 1 - €)Tj ,  ETj ) or B (xj , Tj ) \ B (xj , (1 - �)Tj ) . This 
would contradict (3 . 18) . 

Let us also observe that it follows from (3 . 17) 

(3 . 1 7) 
for all k such that kE < 1 and j E IN. On the other hand, observe that 

f 2Tj � 1 � f f Hl (PD(Xj ) (K n B(Xj ' Tj » ) 
j=l j= 1 

1 00 HI (K) 
� 1 _ E I: HI (K n B (xj , rj » � 1 - E < +00. 

j=1 

Choose p > 0 ,  p < min{ c ,  min{JI1 (Ci )  : i = 1 ,  . . . , p} } .  Let N = N(p) be. such 
00 

that L: 2rj < p. To simplify our notation, let us write Tjk = (1 - kE}rj . Let 
j=N+ l 

us defiue the familly of Lalls : 

i = 1 , 2 , . . .  , p , k such that kE < L 
For the sake of simplicity let us concentrate our argument on one of the curves 

Gi , i = 1 , 2 , . . .  , p, say on C1 • Fix a parametrization of C1 • We claim that for 
k = 7, we may renumber the balls of F17 

(3 . 20) 
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so that if ]1 < ]2 then C1 enters B(Xj" r. h 7 ) before it enters B (xh , rj2 7 )  and it 
does not enter again B (xj l l ri l 7 )  after B (xh ' rh7 ) .  

For that , for each ball B = B (Xj , rj7) E F17 ,  let p(Xj , rj7) , q(Xj , rj7 )  be the 

first and last point of C1 ill B respectively. Observe that ,  by (3 . 18 ) ,  when C1 
enters B (xj , 1'j 1 )  or B(xj ,  rc·7) it does it through D(xj , rj l ,  2Erj ) or D(xj , rj7 ,  2Erj ) 
respectively. Let us observe that 

(3 .21)  from p(xj , rj7 ) to q (Xj , rj7 ) ,  C1 is entirely contained in B (Xj , rj 1 ) '  

Else, this would imply a cost in length for C1 , hence for K, i n  B (xj , rj l )  \B (Xj ,  rj7 )  
of, at least , 

(3 .22) 

On the other hand, since, by using (3. 17) 

HI (K n B (xj , rj7» ;::: HI (PD(Xj ) (K n B(xj , rj7» )  ;::: HI (PD(xj ) (K n B (xj , rj ) )  

- H
1
(PD(Xj ) (K n (B (xj , rj ) \ B (xj , rj7 » »  

;::: ( 1  - E)2rj - 2 ·  7Erj = 2rj - 16Erj 

and, using (3 . 1 9) 
(3 .23) HI (K n (B (Xj , rj ) \ B (xj , rj7 » ) ::; (2 + E)rj - HI (K n B (xj , rj7» 

::; (2 + E)rj - 2rj + 16E'rj = 17Erj . 

This contradicts our previous estimate (3 . 22) .  Therefore (3 .21)  follows . In partic
ular , C1 does not- visit another ball in between p(xj , rh )  and q(xj , rh ) '  With these 
remarks, we may renumber the balls in F17 _as in (3 .20) so that (1 ::;)]1 < ]2 (::; N17) 
if and only if C1 enters B(xil ' ril 7) before it enters B (xj ,  rj2 7 ) .  As we have shown 
above, if ]1 < 12 we cannot go back to B(Xj" rj17 )  after going to B (xh , rj2 7 ) .  

Now, i t  -is clear that oB (xj , rj7)  n D(xj , rj7 ,  2Erj ) has two connected compo
nents. Call l (x j ,  r j7 )  the connected component containing p( x j ,  r j7)  and call 
R(Xj , rj7 )  the other one . Let cl (Xj , rj7) = {p E D (Xj , rj7 , 2Erj7 )  : p is connected 
to l (Xj , rj7)  by an arc of C1 contained in D(xj , rj7 , 2Erj7) } ,  cR(Xj , rj7)  = {p E 
D(xj , rj 7 , 2Erj7 )  : p is connected to R(Xj , rj7) by an arc of C1 contained in 
D(Xj , rj 7 , 2Erj7 ) } .  It is clear that cl (Xj , rj7)  ��{: 0. Two situations are possible : 

(i) cR(xj , rj7 )  =f 0. In this case 

i (xj , rj7) == inf{ l lp - q l l  : p E cl (xj , rj7) , q E cR(xj , rj7 ) } = O. 
(ii) cR(xj , rj7) = 0.  

In fact ,  if cR(Xj , rj7 )  =f 0 and i (Xj , rj7) > 0,  then there are at least four disjoint 
arcs of C1 crossing B (xj ,  rj , )  \ B (xj , rj7 ) ,  each one of length, at least , 6Erj . Hence 
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contradicting again our estimate (3.23) . Observe that , in the first case (i) , 
Q(Xj , 1'j7) E R(Xj ,  1'j7 ) and , in the second one, q(Xj ,  1'j7) E l (Xj , 1'j7 ) .  

Since Kj converges to  K as j -t 00, we may choose j (f:;} large enough s o  that 

with /1, < � inf{ 1'j 
Observe that 

(3 .25) 

d( [(j(c) , J() < � 
J = 1 , 2 , · · · , N} . Consider a ball B = B (Xj , 1'j7 ) E F17 . 

for k = 1 , 7. To simplify our notation we write x,  1', 1'k instead of xi > 1'j , 1'jk except 
when it will be convenient to stress the subindex j .  Consider a finite set of points 
{P1 , ' "  , Ps }  of C1 n B,  ordered by the arclength parametrization of C1 , such that 
!Pi - PH1 ! < � ,  i = 1 , 2 "  . . , s  - 1 . By (3.24) ,  we find points qi E Kj(€) in the balls 
B (pi ' � ) ,  i = 1 , 2" " , s. Observe that ! qi - qi+ 1 !  S J1" i = 1 , 2 " " , s - 1 .  Now, 
observe that by (3 .25) , any arc of Kj(f) contained in B(X , 1'7 - J1,) exits through 
D (x ,  1'7 - J1" 2E1' + J1,) n 8B(x, 1'7 - J1,) (if it exits the ball) which has two connected 
components which may be called according to their proximity to l (x ,  1'7) , R(x, 1'7) 
by l (x ,  1'7 ,  /1,) , R( x, 1'7 , J1,) , respectively. Let us first suppose that we are in case 
(i) above . Consider the points of {q1 , " ' , qs } contained in D(x,  1'7 , 2E1' + J1,) n 
B (X , 1'7 - J1,) . Call then {ml , " ' ,  ms' } '  S' S s .  If there is an arc of Kj (€) in 
D (x ,  1'7 - J1" 2E1' + J1,) joining (a point of) l (x ,  1'7 , J1,) to a point of R(x, 1'7 , J1,) , then 
we choose it. Otherwise, no arc of Kj(€) joins l (x ,  1'7 , J1,) to R(x, 1'7 , J1,) . In this 
case, any arc contained in Kj(€) and passing through some point of {ml ' . . .  , ma, } 
is connected either to l (x ,  1'7 , J1,) or to R(x, 1'7 , J1,) but not to both of them. Recall 
that our purpose is to construct a curve joining l (x ,  1'7 , J1,) to R(x, 1'7 , J1,) contained, 
except for a small set , in Kj(f) ' If there is an arc contained in Kj (€) joining ml 
to R(x ,  1' 7 ,  J1,)  then we choose it. Since the distance o f  this arc to  l (x ,  1'7 , J1,)  i s  less 
than J1" we complete our arc with an artificially added one whose length does not 
exceed J1,. If no arc joining m1 to R(x, 1'7 , J1,) exists, then there is an arc in Kj (€ ) 
j oining ml to l (x ,  1'7 , J1,) and we go to the next point m2 to start the game again. 
If there is an arc in Kj(€) joining m2 to R(x, 1'7 , J1,) then we select such an arc. 
In this case we have two arcs in Kj(€) ' one joining ml to l (x ,  1'7 , J1,) and the other 
joining m2 to R(x, 1'7 , J1,) . We add an artificial segment joining ml to m2 (of length 
less than J1,) to complete a curve joining l (x ,  1'7 , J1,) to R(x, 1'7 , J1,) and contained in 
Kj (€ ) except for a set of length less than J1,. If no arc of Kj(€) exists joiniI).g m2 
to R(x, 1'7 , J1,) , then there is an arc in Kj(€) joining m2 to l (x ,  1'7 , J1,) and we go to 
the next point and start the game again. We continue this strategy until we reach 
the last point ma, . At the end we have a curve, which may have double points, 
j oining l (x ,  1'7 , J1,) to R(x, 1'7, J1,) and contained in Kj (f) ' except for a set of length, 
at most, J1,. Using [Fa185) , Lemma 3 . 12 ,  we may extract from it a simple curve 
r(x ,  1'7 ,  J1,) contained in D(x, 1'7 - J1" 2E1'7 + J1,) and contained in Kj(€) except for a 
set of length, at most , J1,. Then, we extend this arc to join the first entrance point 
of C1 in l (x ,  1'7) to the end of r(x,  1'7 ,  Ii,) in l (x ,  1'7 , J1,) and the last exit point of Cl 
in R(x, 1'7 ) to the end of r(x, 1'7 ,  J1,) in R(x, 1'7 , J1,) . This can be done with a cost in 
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length of, at most , 2 (4fT + f1,) . Call r(  X, T7) this extended arc. Then we connect 
r(x, 1'7 ) with the previous ball (if j � 2) B(Xj_ l , Tj- 17) by an arc of C1 going from 
q(Xj- l , Tj- 17 ) to p(Xj , Tj7 )  and with B(Xj+l ' Tj+17 ) (j < N) by an arc of C1 going 
from q(Xj , Tj7 ) to P(Xj+l , Tj+17) . 

Let us now consider case (ii) . In this case , we take the first and last points of C1 
in l (x ,  T7) and we join them by the arc of l (x , T7) which joins them. The length 
of this arc does not exceed 4fT. As above, we join q(Xj- l , Tj- 17 )  to p(Xj , Tj7 ) and 
q(Xj , Tj7 )  to p(Xj+l , Tj+ 17 ) by arcs of C1 . 
Since there is only a finite number of balls following the previous specifications, 
we may construct a curve D: satisfying . 

Finally, we observe that D: is contained in Kj(e) except for a set of small Hl_ 
measure. In fact , the length of D: not contained in Kj(e) is estimated by: 

a) The length of artificial curves used to construct D: inside the balls B(xj ,  Tj ,7 ) ,  
j = 1 , . . .  , NI7 .  As  we have seen above, for each ball B(Xj , Tj7) this length is 
estimated by 2 (4fTj + 1-',) + 1" � lin·j . Hence, the length contribution of these 
artificial curves for all balls call be estilllated by 

(3 . 26) 
N1 7 19 19f 00 

1 19f 1 f; 2fTj � 4(1 _ f) f; H (K n B (Xj ,  Tj ) ) � 4(1 _ f) H (K) . 

b) The length of C1 contained in the balls B(xj , Tj ) \ B (xj , Tj7 ) ,  j = 1 , . . .  , N17 .  
Since: 

00 00 . 

L HI (K n (B(xj , Tj ) \ B(xj , Tj7 ) ) ) = H1 (K) - L HI (K n B (xj , Tj7) )  
j= 1 j=1 

Then 

c) The length of C1 contained in the balls B(xj ,  Tj ) ,  j � N + 1 , which is estimated 
by 

(3 .28) 
00 00 2 � 1 2 + f  � 2 + f + f L.t H (K n (B(Xj , Tj ) ) � -2- L.t 2Tj < -2-P < -2- f . 

j=N+l j=N+1 
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Adding (3 .26) ,  (3. 27) , (3 .28) we get 

I ( I ) 19f I 17 I 2 + f H Df \ Kj (f) ::; 4(1 _ f) H (K) + 2fH (K) + -2-f. 

Proceeding in a similar way as we did for Di , we construct curves Di , . . .  , Df such 
that 

Ci � D� + B(O , 2ro ) ,  D! � Ci + B(O, 2ro ) , 
1 (Up i . ) 19f 1 17  1 2 + f 

H D€ \ Iij (€) ::; 4( 1 _ f) H (K) + 2fH (K) + -2-f. 
i=l 

The statement of Lemma 3.8 follows by repeating this construction for each n and 
taking 1"0 = 2� '  f = n� 1 at each step. • 

Proof of 'Theorem 3 . 1 .  As we said in the discussion previous to Lemma 3.8, 
without loss of generality, we may assume that c(Bn) = k for aU n ,  where k ;?: l. 
We shall give the complete proof only when k = 1 , the general case being a simple 
extension of it. Since the ATV of a finite union of parallel segments is zero, by 
Lemma 3 .3  and Lemma 3 .6 ,  we may assume that sup HI (Bn) < +00. To simplify 

n 
our presentation let us first consider the case in which c(Bn) = 1 for all n, i .e . ,  Bn 
is a sequence of continua Kn ,  with sup H l (Kn) < +00, converging to a continuum n 
K. We may also assume that Bn is such that lim ATV(Bn) = lim inf ATV(Bn) .  

Let fn  be a sequence o f  positive numbers converging t o  zero. Define p(O) = 0,  Co = 
0, fa = HI (K) . Suppose that, at 

·
stage n, we have a system of curves Co , . . .  , Cp (n ) , 

such that Ci n Cj = 0 for i #- j and 

(3 .29) 

Then, at stage n + 1 we extract curves Cp(n)+ l ,  . . .  , Cp(n+1 ) from K \ (C1 U . . .  U 
Cp(n» ) to get a system Co , . . . , Cp(n+1 ) such that Ci n Cj = 0 for i #- j and 
H1 (K \ (Co u . . . . U Cp(n+1 » )  ::; fn+l .  Let us consider m fixed. Consider the family 
of curves C1 , . . .  , Cp(m) .  Let D� , i = 1 ,  . . . , p(m) , be as in the statement of Lemma 
3 .8  satisfying (3 . 14) ,  (3 . 15) ,  (3 . 16) with p = p(m) . 

Now, let us observe that 

p(m) 
(3 .30) ATV(K) ::; L Inter (Ci , Cj ) + 2HI (K) fm + f;' . 

i ,j=1 

1' ( Tn) 
Since sup I: HI (D:1 )  < +00, we may suppose that the arclength parametrization 

n i= l 
of D:1 converges to a parametrization of Di , i = 1 , . . . , p(m) . ·  Hence, they also 
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converges in the Hausdorff distance. Then, for any >. > 0, letting n -+ 00 in 
(3 . 14) , (3 . 1 5) we get 

Since Gi , Di are compact sets and the above inclusions hold for all >. > 0 , we get 
that Gi = Di . Now, we may apply Lemma 3 .7 to get 

(3 .31 ) 

For simplicity, write Kn for the sequence Kj" found in Lemma 3 .8 .  Since 

Inter (D� , D� ) =Inter (D� n Kn , D� n Kn ) + Inter (D� \ Kn , D� n Kn) 
+Inter (D� n Kn , D� \ Kn) + Inter(D� \ Kn , D� \ Kn) ,  

it follows that 

Inter (D� , D� ) �Inter (D:., n Kn , D� n Kn )+ 

+ 2Hl (u'.'(m) Di \ K ) M + HI (u'.'(m) Di \ K ) 2  ,= 1 n n ,=1 n n , 
(3 .32) 

where M represents a bound on HI (Kn)  (independent of n) . Using (3 .30) ,  (3.3 1 ) ,  
(3 .32) and (3 . 16) , we get 

p(m) 
ATV(K) � L limninf ( Inter (D� n Kn , D� n Kn )+  

i ,j=1 

+ 
36M (HI (K) + 1 ) + 

32; (HI (K) + I?) + 2HI (K)€m + €� n n 
p(m) 

� L limJnf Inter (D� n Kn , D� n Kn) + 2HI (K)€m + €� 
i ,j= 1  

p(m) 
� limninf L Inter(D� n Kn , D� n Kn) + 2HI (K)€m + €� 

i ,j= 1  
� lim inf ATV(Kn)  + 2H1 (K)€m + €� . n 

Since this is true for all Tn, letting Tn -+ 00 we get 

(3 .33) ATV(K) � lim inf ATV(Kn) .  n 

REFERENCES . 

. [BCG94] C. Ballester, V. Caselles , . and M .  Gonzalez. Affine invariant segmen
tation by variational methods . To appear in SIAM J. Appl. Math . ,  

1 994. 
' 



60 

[Fa185] K .  J .  Falconer. The Geometry of Fractals Sets. Cambridge Univ. Press , 
1985.  

[G G84] S .  Geman and S .  Geman. Stochastic, gibbs distributions and the 
bayesian restoration of images. IEEE PAMI 6, pages 721-741 ,  1984. 

[HP74] S .  L. Horowitz and T. Pavlidis . Picture segmentation by a directed 
split-and-merge procedure. In Proc. of Second IJCPR, pages 424-433, 
1974. 

[HS85] R. M. Haralick and L. G .  Shapiro. Image segmentation techniques. 
Computer Vision and Image Processing, 29: 100-132, 1985. 

[KMS93] G.  Koepfier, J .  M. Morel , and S. Solimini . Segmentation by minimizing 
a functional and the merging methods. To appear in SIAM J. of Num. 
Analysis , 1993. 

[MS89] D.  Mumford and J .  Shah. Optimal approximations by piecewise 
smooth functions and variational problems. Communications on Pure 
and Applied MaiJ" ernatics, XLII( 1) , 1 989. 

[MS94] J .  M. Morel and S .  Solirnini. Variational methods for image segmen
tation. Birkhauser, 1994. 

[RK82] 

[Zie89] 

A. Rosenfeld and A. C. Kak, editors. Digital Picture Processing, vol
ume 2 of Computer Science and applied Mathematics. Academic Press , 
1982. 

W. P. Ziemer. Weakly Differentiable Functions, volume 120 of Gradu
ate Texts in Math. Springer-Verlag, 1989. 


