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LOWER SEMICONTINUITY OF THE AFFINE TOTAL
VARIATION USED IN IMAGE SEGMENTATION.
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Abstract We stud y the Affine Total Variation, a magmtude measuring the afline
complexity of finite unions of continua, in particular, Jordan curves, appearing in
‘an affine invariant analogue of Mumford-Shah energy functional used to segment
images. We prove a lower semicontinuity result for the ATV functional.

Devoted to the memory of Julio Bouillet,

1. INTRODUCTION.

Even if the images we perceive are analyzed and understood without evident effort,
the understanding of them involves very complex mechanisms which, by now, we
cannot reproduce in a computer. The complexity of image analysis motivated
its division in a series of simpler and independent tasks. Among them, edge
detection and image segmentation seem to be fundamental. Certainly, we need to
identify the objects in a scene and therefore, to find their contours or boundaries.
Then, segmenting an image amounts to subdivide the image domain into regions
corresponding to the projection of visible surfaces of objects in a real scene. More
precisely, on one side, one wishes to smooth the nearly homogeneous regions of the
picture with two scopes: noise elimination and image interpretation, and, on the
other side, one wants to keep the accurate location of these regions and restore
some regularity for their boundaries. A general treatment of this subject can be
seen, for instance, in [MS94] and [RK82].

Images are the projection of physical objects in the three-dimensional world onto
a two-dimensional -planar- surface, be it the retina or an array of sensors in a
video camera. Since, in nost situations, one cannot control the exact location of
the objects to be recognized, we are concerned with finding properties of an image
which are invariant to transformations of the image caused by moving an object so
as to change its perceived position and orientation. The idea of invariance arises
from our ability to recognize objects irrespective of such movement. A good ap-
-proximation to image formation in a real camera is given by the perspective camera
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model in which points are projected from the 3D world onto an image plane so that
all rays joining the object and corresponding image points pass through a simple
point, called the point of projection. Since, in the perspective camera model, an
euclidean motion of a solid object in the 3D world induces a planar projective
transformation in the 2D image space, one needs methods or features which are
invariant to projective planar transformations. Under the weak perspective as-
sumption, i.e., when the object’s depth is small compared with its distance from
the camera (which corresponds to the focal distance f — c0), the planar projective
transformations can be approximated by affine linear transformations Hence, we
shall look for segmentation methods invariant under affine transformations, as a
siinplified form of invariance under planar projective transformations. We would
like to mention that a lot of interest has been recently given to affine invariant
methods in image processing (see [BCG94] and its references).

Coming back to our purpose, the recent literature on segmentation problems shows
a strong convergence of the methods to variational methods [MS89], [MS94] (see
also [GG84], [HS85] for precedents). From these references, it is now well known
that a good segmentation can be obtained by minimizing an energy functional.
The simplest such energy functional was proposed by Mumford-Shah ([MS89]).
They proposed to segment the image g : 2 — IR by minimizing

(1.1) E(u,B)=/Q\B v ul® + /Qlu—g|2+)\Hl(B),

© where Q is an open set in IR?, generally a rectangle, u is a piecewise smooth
function defined on €2, B is the set of boundaries in 2 —with length H*(B)— where
u is discontinuous and A > 0. They conjectured in [MS89] that this functional has a
minimumn (u, B), with B being a finite set of smooth C! curves. The full conjecture
has not been proved yet but a lot of significant results have been given ([MS94]).
Mumford and Shah also proposed a simplified version, where u is imposed to be a
piecewise constant function in Q\ B. In this case, (1.1) writes

(1.2) E(u, B) = /ﬂ|u—g|2+xH1(B).

In [(KMS93], Koepfler-Morel-Solimini proved, mathematically and practically, that
the “Region Growing” is an efficient method to minimize this functional (see also
[MS94]).

Although the Mumford-Shah functional (1.1) is euclidean invariant, it is not affine
invariant. Indeed, the first term and the euclidean length are not invariant by affine
transforms. In [BCG94], we replaced the euclidean arclength —as a measure of
euclidean complexity— by a different expression measuring the affine complexity of
the set of boundaries of the segmentation. When thinking in these terms, the first
thing coming to mind is the affine length of a curve but this quantity, if thought of
as an additive quantity, must be zero for a polygonal curve and does not seem to
be the right one if one tries to approximate a smooth curve by a piecewise affine
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one ([BCG94]). The smoothness term in the Mumford-Shah functional (1.1) can
also be replaced by an affine invariant one (see [BCG94]). In fact, we proposed

in [BCGY4] the following affine invariant version of the simplified Mumford-Shah
functional (1.2)

(1.3) Eaf(u, B) = /n lu—g|* + A ATV (B).

where u is a piecewise smeoth function, B is a family of curves in Q2 belonging to a
suitable segmentation class and ATV (B) denotes the Afline Total Variation of the
segmentation B (see Section 2). Let us briefly explain what each term represents.
The first term is the same term that appears in the functional (1.2) expressing the
fidelity of the segmentation to the image. Finally, the second term measures the
affine complexity of the set of boundaries of the obtained regions. Let us comment
that this term is global in nature (i.e., they make all parts of the image interact,
no matter their respective distance).

Typically, when minimizing such kind of functionals, we are trying to approximate
g by a piecewise smooth function u and, at the same time, to reduce the complexity
of the discontinuities of u (the boundaries of the regions in the image). As we
analized in [BCGY94] in the case of (1.3), the discontinuities permitted by the model
will be either a finite union of rectifiable curves or a degenerate segmentation
composed of a finite or infinite set of parallel lines —this degenerate case can
happen (e.g.) if one uses (1.3) to approximate an image which is a linear transition
from white to gray.

In [BCGY4], we studied the affine invariant energy functional (1.3) from a math-
ematical point of view, stating the existence of minimizers and giving a simple
numerical algorithm to minimize it based on the work of [KMS93] and using also a
simple numerical scheme in order to discretize the Affine Total Variation quantity.
Our purpose here will be to give a inore detailed mathematical analysis of the
term ATV (B) introduced in [BCG94] to measure the affine complexity of a family
of curves. In particular, we extend the ATV magnitude to rectifiable continua (or
finite unions of them) and we prove a lower semicontinuity result for the ATV
(see Theorem 3.1 below). Even if this has no implications in the context of our
assumptions of [BCG94] where the admissible segmentations consisted of a finite
union of rectifiable Jordan curves with disjoint interiors, it completes the math-
cmatical analysis of the ATV magnitude and some geometrical lemmas used to
prove the main result could be interesting by themselves.

Let us explain the plan of the paper. We start in Section 2 by recalling the model
and the main results of [BCG94]. Then, in Section 3, we shall extend the ATV
functional to the natural class of (H!-rectifiable) continua (and finite unions of
them) and prove a lower semicontinuity result for the ATV in this setting.

Acknowledgement.. We would like to thank P.L. Lions and J.M. Morel for their
valuable suggestions.
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2. THE MODEL AND EXISTENCE OF MINIMIZERS.

In this section, we recall the definition of affine total variation of a set of curves and
the class of admissible segmentations we used in [BCG94] to minimize the proposed
functional (13). Finally we state without prool the existence of minimizers.

For the sake of definiteness, let §2 be an open rectangle in IR2. Let A > 0. Let g be
the given image, i.e., g : 2 — IR is a bounded measurable function.

We need several definitions to introduce our model. Recall that a Jordan curve
is a continuous curve c : [a,b] = IR? such that for all ¢,t" €]a, b, c(t) # c(t') if
t# t'(a < b). If ¢(a) = ¢(b) the Jordan curve is said to be closed. The points

¢(a) and ¢(b) will be called tips of the curve, all other points in the range of care
interior points. Let & be the following family of sets

= {B C 1 : B is a finite union of rectifiable Jordan curves

whose interiors are disjoint and contained in 2 } .

Definition 2.1 Let u € L?(Q). We say that u is cylindrical in the direction
v € IR?2,v # 0, if Vu-v = 0 in the sense of distributions. We say that uw is
cylindrical if u is cylindrical in some direction v € IR%,v # 0.

A simple arguiment shows that « is cylindrical in the direction v # 0 if and only
if, after a possible modification of w in a sct of null measure, u(z + Av) = u(z) for
almost every = and all A € [0, 1], i.e., u is constant on lines parallel to the direction
v. Since u € L%(£2), almost all points & € Q are Lebesgue points of u. To choose
a particular representative of u we use the following rule: if for z € Q there exists
some A € IIZ such that

. 1

lim — lu(y) — Aldy =0,

r—=07r D(z,r)

where D(z,7) = {y € Q : |ly — || < 7}, then we define u(z) = A Hence when,
for a cylindrical function, we speak of the discontinuity set of u we mean the
discontinuity sct of its chosen representative.

Let '
Co := {u :  there exists B € & such that v : 2 — IRy is constant on each
connected component of 2\ B and u is discontinuous on B }
(1= {u ¢ w:Q— R, is a cylindrical function }
Let

¢=GUCG.

It will be common to call members u of { segmentations. Sometimes we will also
refer to function u as the segmented image and its discontinuity set B as the seg-
mentation boundaries or, simply, segmentation. Let us observe that segmentations
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in ¢y are Mumlord-Shah type segmentations while segmentations in ¢; are affine
degenerate segmentations. This would correspond to a underlying transformation
of the image by a linear map A with one of the eigenvalues near to zero.

To introduce the ATV (-), let us define:

Definition 2.2 Let T, I be two rectifiable Jordan curves. We define the interaction
of ' and T’ by

@ Inter(T,T) = /r /1 (@) A #(y)| do(a) dé (),

where 0,6 denote, respectively, the arclength parameters on each curve I' I and.
7(z),7(y) denote the tangent vectors at x € T’ and y € T\, respectively.

For convenience in notation, given u € (o, let us consider B as the set of disconti-
nuity of » and write (u, B) € (¢ instead of u € {o. If w is in (;, the discontinuity
set of uw may be very wild. On the other hand, it will not play any role in what
follows. But, for a uniform notation below, it will be convenient to write also B
as the discontinuity set of u and write (u, B) € ¢; instead of v € {;. We also refer
to pairs (u, B) € { as segmentations.

We now define the ATV functional. Let (u, B) € ¢. If (u, B) € (o, then B= |J I';

N
=1

1

where I'; are rectifiable Jordan curves whose interiors are disjoint. We set

N
ATV(B) = 5 Inter(T';,T;).

i,j=1

If (u, B) € {1, then we set ATV(B) = 0. In any case, we define
(1.3) Eaf(u, B) =/ lu—g|* + NATV(B)

Q
and we want to minimize it on the class of segmentations (.

With these definitions, Functional (1.8) is affine invariant. Moreover, as proved
in [BCGY4] the ATV functional is the only positive functional, up to a scaling
factor, associating to each pair of Jordan curves a quantity which is geometric,
affine invariant, biadditive and continuous (in the W' topology of the space of
parametric curves). With these preliminaries we have:

Theorem 2.1 E,y attains its infimum at some (u, B) € (.

The proof of Theorem 2.1, which, as usual, is based on a lower semicontinuity
result of the energy functional, can be seen in [BCG94].

3. LOWER SEMICONTINUITY OF THE ATV FUNCTIONAL IN
A MORE GENERAL FRAMEWORK. '
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In this section we prove that the Affine Total Variation is a lower semicontinuous
functional on a wider class of sets, morc specifically, the class of sets made of a finite
union of (H!-rectifiable) continua. Let us recall some definitions and terminology.
Let © be an open connected set in JR? whose boundary is a smooth Jordan curve. .
We start with some basic notions of geometric measure theory which will be needed
to introduce the current setting. Recall that a continuum is a compact connected
set with finite H!'-measure. Given a continuum E, by H!(E) we denote the 1-
dimensional Hausdorfl measure of E. It can be proved (see [Fal85], [MS94]) that
a continuum is the union of a negligible set Fy (with H* (Fp) = 0) and of a finite
or countable union of curves which form an arcwise connected set —i.e., any two
points of E may be connected by an arc contained in the continuum— and H*! (E)

is the sum of the lengths of this system of curves. A detailed account of it is given
in [Fal85] or [MS94].

Definition 3.1 Let E, E be two continua. Then each one consists of a countable
union of rectifiable curves, together with o set of H'-measure zero. Let E =

(o] ~ - oo ~
) U( U Fi>, E=F U( U Fi) be such decompositions, where I';,T'; are rectifi-

i=1 i=1
able Jordan curves with T;nT; = T;NT; =0 fori #j and HY(Fy) = H' (£p) = 0.
Then, we define the Interaction of E, I by

— o _
Inter(E,E) = Z Inter(I';,T;),
i,j=1

where Inter(L;, fj) s giwen as in Definition 2.2.

Let S be the following family of sets

Q= {B CR?!: B= U BF, B*continuum, BEN B =0, k # j}.

finite

Given B € G, we define the Affine Total Variation of B by

ATV(B) = Inter(B*, B).
k,j

Recalling that, for B € &, the tangent vector 7 can be defined as a vector measure
on B, d7(z), with a vector density with respect to the Hausdorff measure H' with
values in S, a more compact aud intrinsic definition of ATV

arv(e)= [ [ @ aarwl= [ [ @ nrelowiot)

makes sense.

Given v € IR?, it is clear what the notation

/ v AT (y)ldo(y)
. B
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N
means if B C |J B*¥ where B* are continua with B* N BJ = 0, k # j. Indeed,
k=1

(o)

for ecach k = 1,..., N let, as above, B* = F(’,‘U(U I‘f), where T'¥ are disjoint
=1

rectifiable Jordan curves with T% N I‘é? =0 fori# j and H'(FF) = 0. We define

N oo
[ o Arwlao) =35 / O AT@ldo ).
k=1

Our purpose is to state the lower semicontinuity of the ATV [unctional with
respect to the Hausdorff distance.

Definition. Given a sequence {Bp,} C S and B € &, we shall say that the
sequence B,, converges to B if B, converges to B in the Hausdorff metric.

Theorem 3.1 Let By, be u sequence in S such that ATV (Bp) <M for all n
and sup ¢(B,,) < 400, where ¢(By,) denotes the cardinal of continua contained in

n
By, Then, there exists a subsequernce, still called B,,, and B € &, such that B,
converges to B and ‘
ATV (B) < liminf ATV (B,,).
n—oo

To prove Theorem 3.1 we start with two lemmas which have the following geomet-
rical interpretation: either the sequence B, tends to a segmentation containing
two linearly independent directions or the segmentations B, tend to oscillate in a
single direction giving in the limit a degenerate segmentation.

Lemma 3.2 Let {B,} be a scquence in . Then, either

(a) 3 > 0 such that Inter(s, B,) > nH(8) for all n and all Jordan curves &
whose range s contained in By, or

(b) there exists a subsequence of {By}, still called {B,}, and vectors v, € IR?,
lvn|l = 1, such that
/ |vn A T(y)|do(y) = as m— oo.

Proof. If
(3.1) 35 > Osuch thatVn € IV, Vo € IR? with |Jv]| = 1,
| lonr@lasw) = m,

then (a) immediately follows. In case (3.1) is not true, then

Vm € IN, there exist n, € IV and vy, € IR? with ||v,, || = 1 satisfying

[ e Ar@laow < oo
B

nm
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which gives. the statement (b) above. .

Lemma 3.3 Let {B,} be a sequence in § such that ATV (B,) < M for all n.
Then there ezxists a subsequence, still called { B}, such that

either (i) sup H'(B,) < C ,

or (i) ("degeneration”) there exists a vector v € R? such that Yp >0

H'({z € B, : |sin(r(z),v)| < p}) = o0
and

H({z € By, : |sin(r(z),v)| = p}) — 0.
Proof. From the proof of previous Lemma 3.2, we have
either 3 > Osuch thatVn € IV, Vv € R* with ||v| = 1,
(3.2) /1 lvAT(Y)ldo(y) = n
or,Vm € IN, there exist n,, énﬂV and v, € IR? with ||v,,|| = 1satislying

(3.3) [ o Arlde) < -

T

In the case of (3.2) , we obtain

(34)  ATV(B.) = /B / ()|do(@)do(y) > nH (B.).

Since ATV (By) < M for all n, (3.4) yields part (i) of the lemma.

In case (3.2) is not true, we have (3.3). Let us denote the subsequence B, again
by B,. Then, for any p > 0,

[ ton Ar@)do(@) = [ lsinon, r(@)ldo(a)

> / |sin(vn, 7(z))|do ()
{z€ By |sin(r(a),va)|2p}
>pH! ({:v € By, : |sin(1(z),vn)| = p}),
~ which implies that H* ({z € B,, : |sin(7(z),v,)| > p}) = 0 as n — oo.

On the other hand, since we can assume, without loss of generality, that
IY(13,) = +oo as m — oo and

HY(B,) = H*({x € B, : |sin(1(z),v,)| < p})+H'({z € By : |sin(t(x),vs)| = p})

we obtain that H' ({z € B, : |sin(7(x),v,)| < p}) = 400 asn — oo, Vp > 0.
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Now, there exists a subsequence of {v,}, still called {v,}, and a vector v, ||v|| =1,
such that v, = v. Take € > 0. Let ng be such that |sin(v,,v)| <, for all n > ng.
By elementary trigonometry,
|sin(r(z),v)| < |sin(r(z),vn)| + |sin(vn,v)| < p+¢,
forz € {y € B, : |sin(7(y),vn)| < p}, p > 0. From that, the set {z € B, :
|sin(r(x), v,)| < p} is included in {z € B, : [sin(r(z),v)] < p+ € il n > nyp.
Thus II'({x € By : |sin(r(x),v)| < p+¢}) = +o0, as n — oo,Ve > 0, which
gives the first statement in (ii).
To prove the second statement it is sufficient to follow the same argument as above,
observing that
|sin(r(z),vn)| = |sin((r(z),v) = (vn,v))|
> Jsin(r (@), v)l|cos (v, 0)| = [cos(r(z), 0)llsin(on,v)]. =

Lemma 3.4 Suppose that (”degeneration”) of Lemma 8.8 holds. Let gy, : [0, L] —
R? be a curve parametrized by its arclength whose image Img, C By. Extend g,
to fn i [0,4+00[— R? by fn(s) = gn(Ln) for s > L,. Then, there exists a subse-
quence of {fn}, called again {f,}, and a function f : [0, +oo[— R? parametrizing
a line segment in the direction v such that

(3.5) fn = in Ciec([0,00]),

(3.6) fl= f' in the weak* topology o(L™ ([0, 00l), L' ([0, oo[)).

Remark 3.1. It follows from the statement of Lemma 3.4 that if supL, < 400

then Imf,, converges to Imf in the Hausdorff topology.

Proof. Since Inf, C B, the range of f, is bounded. Moreover, sup||f%loo <
n

+00. Then, there exists a subsequence of {f,}, called again {f,}, and a function
f +[0,4+00[— R? such that (3.5) and (3.6) hold. Now we write: f/ = (f,-v)v+
(f! -vt)vt, where v is the vector coming from (”degeneration”) in Lemma 3.3 ,
with ||v|| = 1. We are going to prove that

(3.7) fr-vt = 01in o (L°°([0,00[), L* ([0, 00[)) .
To this aim, we estimate de |fi(s)-vt|ds for any L > 0. Let L > 0.
If L,, = +o00, taking n large enough we may assume that L, > L. Then

L L
/Wﬁ@mﬂw=/NMﬁ@wws
0 0

/ Jsin(a(9), )l ds
{s€[0,L]: |sin(f7.(s),v)I<p}

+ / |sin(fr,(s),v)| ds
: {s€[0,L]: [sin(f},(s),v)|>p}

<pL +/ ds.
{s€l0,L]: |sin(f7,(s),v)|2p}
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Since (”degeneration”) of Lemma 3.3 holds,

L
(3.8) 0< hmsup/ I7.(s) - vt|ds < pL.
n—o00 '
Since this is true for any p > 0, it follows that
(3.9) , 1 (s) vt =0 4n L0, L).

If sup L, < +00, take L > supL,. Since f}(s) =0 for any s > Ly,

L Lo Ln
' (s)-vt|ds = ' (s) - vE|ds = sin(f (s s.
[ 15as) -1 / 1£1(s) w1 d [o SACRIIE

As above we prove that (3.8) and (3 9) follow. Now let g € L*[0,+o0[. Then for
any L, N > 0, '

'+oo‘

+o0 ’
fi(s) - vtg(s)ds| < / 1£4(5) - v llg(s)lds
0

L L
- / 1£1(s) - vt inf (lg(s)], N)ds + /0 1£4(s) - v (lg(s)] = NY*ds
r+oo L
[ ot la@lds < N [T 100 ot
+oo
+ [ ton-mras+ [ g(oas
Letting n — oo
+o0 L +o00
"(s) - vt g(s)ds s)| — s s)ds.
/0 1 (5) - vt - g(s)d s/oug( ) N)+d+/L lo(s)ld

Letting N — oo and L — oo in this order in the above expression we get

lim sup
n—ro0

+o0
lim sup fl(s) - vtg(s)ds = 0.
0

n—o0

This proves (3.7). It follows that

= (f - o+ (f, vt ot = (- v)v in o (L2([0, o)), L* ([0, 00])) -

Since, on the other hand, f; — f’ in that topology, we get f' = (f'-v)v. Hence,
f'(s) = A(s) v, where A € L®[0. +o0], i.e.

10 = £0)+ (| Aads)v.



S1

f parametrizes a segment in the direction v. "
The following simple technical fact will be required.

Lemma 3.5 Let p,q € Q. Let [p,q] be the segment joining both points, i.e.

[p,gl ={tp+ (1 —t)q : t € [0,1]}, and let § be any Jordan curve joining p and q.
Then, for any B € &

Inter(B,d) > Inter(B, [p,q))-

Proof. Without loss of generality we may assume that B is a Jordan curve in

Q. Since for any z € [p, q], 7(z) = WI;L:ZTI

Inter(B,[p,q]) = /

[pyq

_ /B /6 r(@)do(x) A ()| do(y) < /B /6 (@) A r(y)|do(2)do(y)
= Inter(B,9). .

[ @ Al @io@ = [ 16-0 Ar)ldew

Lemma 3.6 Suppose that ("degeneration”) of Lemma 3.3 holds. Moreover, sup-
pose that sup ¢(By) < +00, where ¢(By,) denotes the cardinal o f continua contained

n
in By,. Then, there exists a subsequence of By, called again B, such that B, con-
verges to B where B € & consists of a finite number of line segments parallel to v
(which may possibly be reduced to a point).

Proof. Since B, € S and sup ¢(B,,) < 400, there exists a subsequence B,, such

n
that ¢(B,) = k for all n and we may write B, = K, U...U Kk, where K,;
are continua with H!(K,;) < +oco and I{,; N Kp; = 0 for i # j. Our strategy
will be as follows. We take i = 1 and construct a subsequence of K, converging
to a line segment parallel to v (possibly reduced to a point). Having constructed
a subsequence {n,} of IV such that K, _; converges to a line segment parallel to
v forany ¢ = 1,2,...,j — 1(j < k) we take i = j and construct a subsequence
{ny} of {n,} such that K. Myl also converges to a line segment parallel to v. Our
lemma follows from this construction. Our proof reduces to a single step. Suppose
that K,;, ¢ < j, converges to a line segment parallel to v. Consider ¢ = j. Using
the Blaschke selection theorem, we find a subsequence of Kyj, call it again Kp;,
such that K,; — K in the Hausdorff distance where I{; is a continuum. If
K; is not reduced to a point, we find points p,q € Kj, pn,qn € K,; such that
Pn = D, qn = ¢ and ||pp — ¢u|| > a > 0 for all n, for some a > 0. Since K,;
is a continuum, there exists an arc [py,¢n] C Kn;j joining p, to q,. By Lemma
3.4, [pn,qn] can be suitably parametrized to converge to a line segment Sj, in the
weak* topology o (L>[0, +oo[, L}[0, +o0[). Set Bj, = K;N{line passing through a
point in Sj, in'the direction v}. (Observe that p € Sj,.) We claim that K; = Bj,,.
Otherwise, there exists a point € K; such that d(p, Bj,) > 0. As above we may
find pn,qn € Kyj such that p, = B, ¢» = G € Bjy, ||[Pn — qnll = @ > 0 for all n,
for some o > 0. Let u, = pn — gn. Let [pn,gs) be an arc contained in K, ; joining
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Pn to gn. If sup H'(K,;) < +oo, the length of [pn,gns] is uniformly bounded.

By Lemma 3.4n and Remark 3.1, we know that, after extracting a subsequence,
[Pn,gqn] converges in the Hausdorff distance to a line segment L parallel to v. It
follows that p,q € L. Hence p € Bjy, which yields a contradiction. In this case,
K; = Bj,. Now we may assume that H'(K,;) = +00 asn — co. We also assume

that u, — u where ||u|| > @ > 0 is not parallel to v. Choosing p sufficiently small
we may assume that

(3.10)
| sin(7(z),u)] > 1> 0 for somen > 0and allz € {z € Kyj: |sin(r(z),v)| < p}.

Finally, recall that, by Lemma 3.3, we may suppose that
H! ({z € Kyj : |sin(1(z),v)| < p}) = +o0o as n — co. Now, set
Knj =UTnj,, UFnj,, where I'yj  are rectifiable curves and H'(Fyj ) = 0. Let

m

Anj = Inter({z € Kpj : |sin(r(z),v)| < p}, un)
= Z[‘llt(ﬁ’l‘({:l: € Ny ¢ |sin(r(x),v)| < p} Ny, , un)

m

/ [7(2) A up|dom(),
m P o€, | sin(r(x),v)|<p}

where o, () denotes the arcleuth of the curve I'y; . Since, by Lemma 3.5,

|7(z) Aun| < |7(x) /\/

[pn. 1Qn]

7(y) do(y) | < / () A T(¥)] doy),

n,dn
we have

(3.11)
INESN /[ @) AT do) dom o)

j F"J"run{zel{"j: lSill(’T(m),U)l(p}
= Inter({z € K,; : |sin(7(z),v)| < p}, [Pn, an]) < ATV (Kn;) < ATV (B,) < M.

On the other hand,

Anj = Z/ |7(2) A un| dom ()

m Y Ung,n {z€Kqj: | sin(r(z),v)|<p}

=l Y [ it (r(2), w)ldom (2).

m iy MTEK nj: | sin(7(z),v)|<p)

Using (3.10) ,

Ans >l /
(3.12) ? ,,Z .

dom(x)
nigm N{2€Knji|sin(7(x),v)|<p}

=1 [[un|| H' ({z € Kn; : |sin((z),v)| < p}).
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As observed above, the right hand side of (3.12) tends to +-co as n — oo, contra-
dicting (3.11). We have proved that K; = Bj,. Our lemma is proved. =

If we may expect the lower semicontinuity result of Theorem 3.1 to be true, the
same result should be true for Jordan curves. Indeed, this is the case and it is
stated in the next Lemma which will be needed during the proof of Theorem 3.1.

Lemma 3.7 ([BCGY4] Lemma 4.7) Let fr : [0, Ln1] = IR2, gn : [0, Lpo] — IR?
be the arclength parametrizations of sequences of Jordan curves A, = fn ([0, Lyt]),
Bn = gn([0, Lna]). Suppose that Lni, Lna are bounded sequences. Suppose that
An = A, B, — B in the Hausdorff distance. Then :

(3.13) Inter(A, B). < liminf Inter(An, By).

The proof of Theorem 3.1 will be a consequence of the following geometrical result
which may be interesting by itself.

Lemma 3.8 Let K; be a sequence of continua such that sup H'(Kj;) < +oo

j

and K; - K as j = oco. Let Cy,.. C',, be a system of Jordan curves such that
C; C K CiNnCj=0,i#73,1,5=1,...;,p. Then, there exists a sequence {jn}7%;
of IN and sequences of curves {D } ey ©=1,...,p, such that

(3.14) Di C C; + B(0, %) i=1,..,p,

(3.15) C; C D}, + B(0, %) i=1,..,p,
1 i __8_ 1

(3.16) H (i=LJ1 D\ Kj,) < —(H'(K) +1).

Hence, (3.14), (3.15), (8.16) imply that, for each i =1,...,p, we may construct a
sequence of curves Di contained in K;, up to a set of small H1 -measure and such
that D} — C; as n — oo.

To prepare the geometrical construction needed for the proof of Lemma 3.8, we
recall the following result which was pointed to us by J.M. Morel.

Lemma 3.9 ([MS94], 9.28, 9.81, 9.57). Let I{ be a regular 1-set (for instance,
a continuum). Then, there exists K' C K with H (K \ K') = 0 such that for all
z € K' there ezists a line D(z) such that

Ve > 0, Vro > 0, 3r <o such that
(3.17) H'(Pp() (KN B(z,7))) > (1 —€)2r
(3.18) H' (B(z,7)\ D(z,rer)) N K) < er
(3.19) H'(B(z,m)NK) < 2+¢)r
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where Pp(y) (respectively Pp(gy1 ) denotes the projection onto the line D(x) (re-
spectively D(z)*t, the orthogonal to D(x) passing through = ) and D(z,r,a) =
{y € B(z,7) |IPp@):(y— )|l < a}.

Proof of Lemma 3.8. Let d* = inf{d(C;,Cj) : 4,j = 1,2,...,p, 1 # j}. Fix
€€ (0,1) and 79 < 514:, ro > 0. Consider the family V(e,r9) = { B(z,r) : 0<r <
ro,x € K', B(x,r)satisfics (3.17), (3.18), (3.19) }. It is clear by Lemma 3.9 that
V(e,70) is a Vitali covering of K'. Then, we select a finite or countable disjoint
sequence F' = {B(xj,7;)}32; C V(€ 7o) such that H'(K \ U2, B(zj,7;)) = 0 and
H'(K) < 3552, 2rj + €. Observe that, by our choice of 7o, no ball of F" intersects
two of the Curves C1,Cy,...,Cy,. Moreover, since K is connected, we have

(318)  H'((B(wj, (1 — e)r;) \ D(zj, (1 — €)rj,2er;)) N K) =0,  Vje NN

In fact, since K is connected, if there were a point of K in B(zj, (1 — €)r;) \
D(zj, (1 —¢€)rj,2er;) there would exist an arc joining it to KN D(z;, (1 —¢€)r;j,er;).
This would imply the existence of an arc of K of length at least er; crossing either
D(xj,(1 = €)rj,2er;) \ D(zj, (1 = €)rj,er;) or B(zj,7;) \ B(zj, (1 — €)r;). This
would contradict (3.18).

Let us also observe that it follows from (3.17)
(3.17) H' (Ppay (K 0 Bz, (1 — k)rj))) > (1 — ¢)2r; — 2ker;

for all k such that ke < 1 and j € IN. On the other hand, observe that

cOo e )
> 2 <73 1" (Pp(e,) (K N B(w;,75)))
j:l =
> HY (K
< S KB < T8 o

Choose p > 0, p < min{c, min{H*(C;) : i = 1,...,p}}. Let N = N(p) be such
o0
that > 2r; < p. To simplify our notation, let us write 7, = (1 — ke)r;. Let
J=N-+1
us define the familly of balls:

F = {B(:Uj,‘r‘jk) : 7 <N, B(mj,v‘j) € F, B(a:j,rjk) NC; # @},

1=1,2,...,p, k such that ke <1.

TFor the sake of simplicity let us concentrate our arguinent on one of the curves
Ci,i=1,2,...,p, say on C;. Fix a parametrization of C;. We claim that for
k = 7, we may renumber the balls of Fi7;

(320) F17 = {B(.’Ej,Tj']) . j= 1,.. .,N17}
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so that if j; < jy then C; enters B(zj,,7;,7) before it enters B(zxj,,r;,7) and it
does not enter again B(x;,,7;,7) after B(zj,,7j,7).

For that, for each ball B = B(zj,rj7) € Fir, let p(zj,rj7), q(x;,7j7) be the
first and last point of C; in B respectively. Observe that, by (3.18), when C)
enters B(x;,7;j1) or B(xj,7;7) it does it through D(z;,7;1,2er;) or D(zj,7j7,2€r;)
respectively. Let us observe that

(3.21) from p(zj,7j7)to g(zj,7j7), C1 is entirely contained in B(zj,7;1).

Else, this would imply a cost in length for Ci, hence for K,in B(zj,rj1)\B(zj,j7)
of, at least,

(3.22) 3 - Ger; = 18er;.
On the other hand, since, by using (3.17)

HY(K N B(gj,7j7)) 2 H' (Pp(e;) (K N B(zj,757))) 2 H' (Pp(o)(K N B(zj,75)))
— H'(Pp(e;)(K N (B(zj,75) \ B(zj,77))))
> (1=¢€)2r;— 2 Ter; = 2r; — 16er;

and, using (3.19)

(3.23) HY (K N (B(zj,r;) \ B(zj,mj7))) < 2+ €)r; — H' (K N B(xj,77))
< 2+ e)r; —2r; + 16er; = 17er;.

This contradicts our previous estimate (3.22). Therefore (3.21) follows. In partic-
ular, C does not visit another ball in between p(z;,7;,) and g(z;,7;,). With these
remarks, we may renumber the balls in 7 as in (3.20) so that (1 <)j; < j2(< Ni7)
if and only if C; enters B(z;,,7j,7) before it enters B(zj,7j,7). As we have shown
above, if j; < j2 we cannot go back to B(zj,,7;,7) after going to B(xj,,7j,7).

Now, it is clear that 0B(zj,7j7) N D(z;,7j7,2€er;) has two connected compo-
nents. Call I(zj,7j7) the connected component containing p(z;,7;7) and call
R(zj,7;7) the other one. Let cl(zj,7j7) = {p € D(zj,7j7,2€erj7) : p is connected
to l(zj,7j7) by an arc of C; contained in D(zj,7j7,2erj7)}, cR(zj,rj7) = {p €
D(zj,rj7,2€erj7) : p is connected to R(zj,7j7)by an arc of C; contained in
D(zj,rj7,2€erj7)}. Tt is clear that cl(z;,7j7) == 0. Two situations are possible:

(¢) cR(zj,rj7) # 0. In this case
i(zj,rj7) = inf{||p — q|| : p € cl(zj,7j7), ¢ € cR(zj,7j7)} = 0.
(’ii) lCR(.’ZIj,TJv) = 0.

In fact, if cR(zj,7j7) # @ and i(x;,7;j7) > 0, then there are at least four disjoint
arcs of C crossing B(zj,7;,)\ B(zj,7j7), each one of length, at least, 6er;. Hence

HYK N (B(zj,75,) \ B(zj,7j7)) > 4 - 6er; = 24er;



56

contradicting again our estimate (3.23). Observe that, in the first case (i),
q(zj,7j7) € R(xj,7;7) and, in the second one, q(z;,7;7) € l(zj,7j7).

Since K converges to K as j — oo, we may choose j(€) large enough so that

(3.24) (I oy, ) < %
with p < §inf{r; : j = 1,2,..-,N}. Consider a ball B = B(z;,rj7) € I1r.
Observe that

(3.25) I\’j(e) n (B(.L], Tik — ,u) \D(.’Ej, Tjk — My 2675 + /1«)) =

for k = 1,7. To simplify our notation we write x,r, 7y instead of z;,7;, 7 except
when it will be convenient to stress the subindex j. Consider a finite set of points
{p1,-++,ps} of C1 N B, ordered by the arclength parametrization of Cj, such that
|pi — pi41] < §,i=1,2,---,5s—1. By (3.24), we find points ¢; € Kj(c) in the balls
B(pi, §), i = 1,2,--+,s. Observe that |¢; — git1| < p, i = 1,2,-++,5 — 1. Now,
observe that by (3.25), any arc of Kj() contained in B(z,77 — u) exits through
D(z,r7 — p, 2er + p) NOB(x, 7 — p) (if it exits the ball) which has two connected
components which may be called according to their proximity to {(z,r7), R(z,r7)
by (z,77, 1), R(x,r7,u), respectively. Let us first suppose that we are in case
(i) above. Consider the points of {qi,---,¢s} contained in D(z,r7,2er + pu) N
B(z,m7 — p). Call then {my,---,mg}, s’ < s. If there is an arc of Kj() in
D(z,r7 — w,2er + p) joining (a point of) I(z,r7, ) to a point of R(z,r7,u), then
we choose it. Otherwise, no arc of K joins I(x,r7,u) to R(z,r7,u). In this
case, any arc contained in Kj() and passing through some point of {mj, ..., m}
is connected either to l(z,r7, ) or to R(z,r7,) but not to both of them. Recall
that our purpose is to construct a curve joining l(z, 77, u) to R(z,r7, 1) contained,
except for a small set, in K. If there is an arc contained in Kj(¢) joining m;
to R(z,r7,p) then we choose it. Since the distance of this arc to I(z,r7,p) is less
than u, we complete our arc with an artificially added one whose length does not
exceed p. If no arc joining m; to R(z,77,u) exists, then there is an arc in Kj()
joining my to l(z,r7, 1) and we go to the next point mq to start the game again.
If there is an arc in Kj( joining my to R(z,77,u) then we select such an arc.
In this case we have two arcs in Kj(c), one joining my to l(z,77, ) and the other
joining mq to R(z, r7, ). We add an artificial segment joining m; to mg (of length
less than p) to complete a curve joining I(z, 77, 1) to R(z, r7, ) and contained in
Kj() except for a set of length less than . If no arc of K exists joining mo
to R(x,r7, ), then there is an arc in Kj() joining mq to I(z,77, ) and we go to
the next point and start the game again. We continue this strategy until we reach
the last point my. At the end we have a curve, which may have double points,
joining I(z,r7, ) to R(x, 77, ) and contained in Kj(), except for a set of length,
at most, p. Using [Fal85] , Lemma 3.12, we may extract from it a simple curve
I'(x,r7, ) contained in D(x, 77 — p, 2er7 + p) and contained in Kj() except for a
set of length, at most, u. Then, we extend this arc to join the first entrance point
of C in l(z,77) to the end of I'(z, 77, 1) in I(z, 77, ) and the last exit point of C;
in R(z,r7) to the end of I'(z, 77, p) in R(x, 77, ). This can be done with a cost in
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length of, at most, 2(4er + p). Call I'(z, r7) this extended arc. Then we connect
I(x,77) with the previous ball (if j > 2) B(zj—1,7j—17) by an arc of C; going from
q(zj-1,7j-17) to p(zj,rj7) and with B(zj4+1,7j+17) (j < N) by an arc of C; going
from q(:l?j, 1‘j7) to p(.’L‘j+1, Tj+17).

Let us now consider case (4i). In this case, we take the first and last points of C
in l(z,77) and we join them by the arc of I(z,r7) which joins them. The length
of this arc does not exceed 4er. As above, we join g(zj—1,7j-17) to p(z;,7;7) and
q(zj,7j7) to p(zj41,7j+17) by arcs of Ci.

Since there is only a finite number of balls followmg the previous specifications,
we may construct a curve D1 satisfying

C, C D: + B(0,27‘0), Del cCi+ B(O, 21‘0).

Finally, we observe that D! is contained in K j(e) except for a set of small H 1.
measure. In fact, the length of D! not contained in K j(e) is estimated by:

a) The length of artificial curves used to construct D! inside the balls B(z;, rJ,7),
~j =1,...,N17. As we have seen above, for each ball B(zj,rj7) this length is

oslnnat(d by 2(4derj + ) + o < 2ezj Hence, the length contribution of these
artificial curves for all balls can bLe estimated by

(3.26) 219 < ZHI K N B(zj,rj)) < ——1LH1(K)
. j12er1_ 4(1 zj,7j5)) < 1=9

b) The length of Cy contained in the balls B(zj,r;) \ B(zj,7j7),j = 1,..., Ni7.
Since:

[e.e]

Z (K N (B(zj,r5) \ Bz ri7)) = H(K) = > H'(K N B(wj,757))

= j=1

and, using (3.17), (3.19),

— | 2(1 — 8€) —
- 1
;Hl (K N B(zj,ri7)) ; (1—8¢)2r; > _zTe_;H (K N B(j,75))

2 — 16¢
PEY: Hl(K)
Then
(327) S H (K \(Blas,r3)\ Blasmsn) < HMK) (1= 525 < et (K).

Jj=1

c) The length of C contained in the balls B(z;,7;), 7 > N+1, which is estimated
by

20 = 2+e 2+ ¢
(3.28) > H(Kﬂ(B(a;],rJ < ——p< e

j=N+1 j=N+
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Adding (3.26), (3.27), (3.28) we get

19¢ 17

Hl(Del\Kj(e)) 52(1_:_) 1(K)+— Hl(K)+2+€

2

Proceeding in a similar way as we did for D}, we construct curves D}, ..., D? such
that
C; C D; + B(0,2r), D: C C; + B(0,2rg),
19¢ 17 2+¢€
1 Hl ( 1 .
oY UD\Ix(C)) <T=9 (K) + el (K) + ——e

i=1

The statement of Lemma 3.8 follows by repeating this construction for each n and
taking rg = 2—171—, €= n+1 at each step. .

Proof of Theorem 3.1. As we said in the discussion previous to Lemma 3.8,
without loss of generality, we may assume that ¢(B,) = k for all n, where k£ > 1.
We shall give the complete proof only when k£ = 1, the general case being a simple
extension of it. Since the ATV of a finite union of parallel segments is zero, by
Lemina 3.3 and Lemma 3.6, we may assume that sup H!(B,,) < +oo. To simplify

n
our presentation let us first consider the case in which ¢(B,) =1 for all n, i.e., By,
is a sequence of continua K,, with sup H!(K,) < 400, converging to a continuum
n

K. We may also assume that B, is such that lim ATV (B,) = liminf ATV (B,).

Let €, be a sequence of positi\}e numbers converging to zero. Define p(0) = 0, Cp =
0, ¢ = H'(K). Suppose that, at stage n, we have a system of curves Cy, ..., Cp(n),
such that C;NC; =0 for ¢ # jand

(3.29) HYK\ (CoU ..U Cpm)) < €n.

Then, at stage n 4+ 1 we extract curves Cp(n)41,.-, Cpnt1) from K\ (C1U...U
Cpn)) to get a system Co,...,Cpnt1) such that C;NC; = @ for i # j and
HY (K \ (CoU...U Cpnt1)) < €n+1. Let us consider m fixed. Consider the family
of curves C1,...,Cp(m)- Let D}, i = 1,...,p(m), be as in the statement of Lemma
3.8 satisfying (3.14), (3.15), (3.16) with p = p(m).

Now, let us observe that

p(m)
(3.30) ATV (K) < > Inter(Ci, Cj) + 2H' (K) em + €2,
i,j=1

p(m) . ) )
Since sup Y, H!(D!) < 400, we may suppose that the arclength parametrization
oon g=1 . .
of D} converges to a parametrization of D', ¢ = 1,...,p(m). Hence, they also
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converges in the Hausdorff distance. Then, for any A > 0, letting n — oo in
(3.14), (3.15) we get

D' CC;+B(0,)), C;CD'+B(0,)).

Since C;, D* are compact sets and the above inclusions hold for all A > 0, we get
that C; = D*. Now, we may apply Lemma 3.7 to get

(3.31) Inter(C:, C;) < lim inf Inter(D:, D).

For simplicity, write I, for the sequence I, found in Lemma 3.8. Since

Inter(D, D) =Inter(Di N K,,, D N K,) + Inter(Di \ Kn, D} N K,)
+Inter(Di N Ky, D3 \ K,) + Inter(Di \ Kn, Di \ K,),

it follows that
Inter(Di, D3) <Inter(D} N K,, D N K,)+

3.32 . )
(332) + 2H (UM Di N\ K,) M + HY (U D\ K,

where M represents a bound on H!(K,) (independent of n). Using (3.30), (3.31),
(3.32) and (3.16) , we get

p(m)
ATV(E) < S liminf (Inter(D; N Kn, D N Kp)+
n
i1j=1
36M 324 ,
+ S (H(K) + 1) + = (H (K) + 1)2) 4 2H (K )em + &,
p(m) . '
< Y liminf Inter(D}, N Ky, D}, N Ky) + 2H' (K)em + €5,
n
1‘7.7:1
p(m) _ _
<liminf Y Inter(Dj}, N Kn, D}, N Kn) + 2H" (K)em + €,
i,j=1
< liminf ATV (Ky) 4 2H(K)em + €2,.

Since this is true for all m, letting m — 00 we get

(3.33) ATV(K) < liminf ATV (K,).
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