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Abstract

In this work we consider numerical schemes for partial differcential equations hased on two
[rameworks. On one hand are the Petrov-Galerkin type schemes based on spline biorthog-
onal multiresolution analyses. On the other hand are the collocation schemes based on
interpolating functions obtained from these biorthogonal basic functions. Our aim is to
show that both methods are equivalent when applied to periodic initial value problems
for constant coefficient differential equations. In order to reach this purpose we use the
characterization of biorthogonal spline wavelets by means of derivatives, primitives, and
interpolatory properties. Particularly, we establish the relation between the interpolatory
multiresolution analyses coming from convolution of biorthogonal spline [amilies with other
ones already existing in the literature and known under different names. We also conclude
thiat both collocation and Petrov- Galerkin methods are equivalent to a Galerkin proce-
dure using Daubechies’ orthogonal scaling functions.

The reason for such property comes from the fact that the refinement masks of all the
involved basic functions correspond to dilferent factorizations of a same trigonometric
polynomial.

1 INTRODUCTION

In some cases, collocation methods can be interpreted as Galerkin methods. IFor
instance, in [30] Swartz and Wendrofl consider a periodic initial value problem [or a
constant coellicient diflerential equation. They prove that for this kind of problem,
the Galerkin scheme arising {rom splines of order g has precisely the same solution
as the collocation scheme using a basis of cardinal splines of order 2p. A thorough
explotation of this point of view, by combining the stability ol Galerkin methods
with error bounds for spline interpolation, can be used to obtain tlie convergence of
both methods.

!This work was partially supported by CNPq (grant 302714/88-0/MA/FV), FAPESP
(grant 93/0650-0).
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Our aimi in this paper is o extend the results in [30]. We establish a correspondence
between the Petrov-Galerkin methods based on biorthogonal spline scaling [unctions
and collocation met hods using an associated interpolatory framework. In this sense,
our results are also related with those obtained by Bertoluzza and Naldi. IFor an
elliptic boundary value model problem, these authors stablish in [3] the equivalence
ol the linear system arising in a wavelet-Galerkin formulation using Daubechies’
wavelets ol compact support and those coming from a collocation method based on
approximating {rial spaces generated by aulocorrelation of these wavelets.

In order to reach our purpose, two aspects of biorthogonal spline multiresolution
analyses must be studied, namely, their interpolatory properties and their compati-
hility with derivatives and primitives.

Iivst we shall analyse the interpolatory multiresolution analyses coming from con-
volution of biorthogonal spline scaling functions. We establish the relation between
such interpolatory [ramework with other ones alrcady existing in the literature.

Another important aspect about biorthogonal multiresolution analyses is that they
are compatible with derivatives and primitives. This means that given a pair of
biorthogonal wavelets {¥, ¥*}, then differentiating ¥ and integrating W* we obtain
another pair of biorthogonal wavelets {¥, ¥*} [20]. In the casc of biorthogonal splinc
wavelets, the corresponding primitives and derivatives are also within the family of
biorthogonal spline wavelets.

This paper is organized as follows. First we recall the main properties of biorthog-
onal multiresolution analyses in Section 2. Section 3 is dedicated to the analysis
ol these properties {or the particular case of spline biorthogonal wavelets. IFinally,
in Section 4, we establish the correspondence between the Petrov-Galerkin methods
based on biorthogonal spline functions and collocation methods using their associ-
ated interpolatory framework.

2 THE BIORTHOGONAL FRAMEWORK

Through this paper Z and R denote the sets of integer and rea! numbers, L*(R)
is the vector space of measurable, square-integrable one dimensional real functions
f(x) for which ([, g), ||f]| and f stand for the usual inner product, norm and Fourier
transform. In L?(R) we shall consider multiresolution analyses {V;} and associated
scaling functions @, in the sense defined, for example, in [25] or [24] (see also [10]).
As it is well known, a scaling function must satisfy a two scale relation

B(z) =2 h(n)®(2z — n). (1)

ned

This relation is very important, since it characlerizes all the properties of @, and
consequently of the multiresolution analysis, In the IFourier domain it can be writtcn
as
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b() = H(E/2)(¢/2),

where

=Y h(n)e ™.

nez
H (&) is called the scaling filter for {V}, ®} and /(n) the filter coeflicients. It is usual
to normalize ® such that [ ®(z)dx = 1, or equivalenttly, H(0) = T, h(n) =1
Another required property is (7)) = 0, and an important parameter is p + 1, the
order of the zero of H () al ¢ =, i.e.,

d* 1 (€)
dek

=0, 0<k<p
g=r
As a consequence,

' O(0)=1; ®(2km)=0,k#0.

Furthermore, at ¢ = 2k, & has zeros of order p+ 1, the same order of the zero of
H(¢) at £ = 7. This property is known as Strang-Fix condition (of order p). 1t is a
necessary and sufficient condition for the polynomials 1,z,---,z? to be reproduced
exactly by the translates of ®. In turn, it determines the best order O(277(P+1)) of
approximation of smooth [unctions from V; in the L? norm [28].

In a multiresolution analysis of L?*(R) the wavelet functions appear when comple-
ment spaces W; are considered, such that Vjyy =V, + W,. A systematic procedure
for the construction of such complement spaces uses the concept of biorthogonal
multiresolution analysis [7].

A biorthogonal multiresolution analysis consists of a pair {Vj,®} and {V},®*} of
multiresolution analyses of L*(R) related by

(@4, @3,) = b, | ©

for cach fixed j, where, as usual
$ik(x) =21 2¢(2e — k), j k€2

whichever may be the function ¢. In this case, the corresponding scaling filters £ (&)
and [{*(€) satisly

HEH (&) + H(E +m) I (E+7) =1, (3)

for all €. Associaled Lo a biorthogonal muitiresolution analysis there are spaces W; =
Vin \"‘l and Wr =VrN Vl, which are complements, not necessarily 01Lhogonal
of Vj in Vjyy and VX in V+1’ respectively. Riesz bases for W; (resp. W) are formed
by the [aniilies W; k() (respectively W%, (x)) associated to the wavelets
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U(z) = 2‘§g(n)®(2;v —n), )
(2) = 2% g (m)®" (2 — n), (5)
nEZ

where g(n) = (=1)"h*(—n+1) and g (n) = (=1)"k(—n+1). The following biorthog-

onality relations hold o
(@, W3 = (934, 5) = 0,
and

(Wins ) = Ojmit-

A biorthogonal multiresolution analysis provides a useful tool for studying functions
in LE(R). For instance, the projection of a function f € L?(R) onto V;, parallel to

Ve,
;f(z) = Y (£, @) ®jk(2) (6)

kez

gives an approximation of f at a resclution 27. Since V;_; C V;, and II;f — [ as
J — oo, we have a convergent approximation process. Furthermore, the detail of
[ at a higher resolution 27, is given by the projection of f outo W;_; parallel to

(W_’-‘_I)J', i.e.

J

Qj—lf(w)=(11j—ﬂ.;-x)f(75 =Y (£ V) Uik (@) (1)

_kez

Similarly, the projection of a function f € L*(R) onto V", parallel to V; is given by

I f(2) = ) (f, i) B (). (8)

kez

2.1 INTERPOLATORY MULTIRESOLUTION ANALYSES

To each pair of conjugate scaling functions ®(z) and ®*(x), we can associate a
function 0(x) defined by

r) / D(y)P*(y — x)dy.
The biorthogonality relation (2) m]pl]cs that
0(k) = Sox, (9)

for all integers k (see [2]). This interpolatory function 6(z) satisfies the scaling
relation
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6(z) =23 p(n)0(2z — n), (10)

where

p(n) Zh (I —n).

Thus, the corresponding scaling filter is

which satisfies, as a consequence of (3),

PE)+P(E+m)=1, (11)

for all real £. Using (9) in the scaling relation (10), we obtain
0(k/2) = 23 pr)0(k = m) = 2p(k), (12)

for all integers k. This relation implies that the interpolatory scalmg {ilter coetlicients
vanish for all non zero even indices.

Note that the interpolatory property (9) can be interpreted in the distributional
sense as '

(0(z — k), 6(z = 1)) = bu, (13)

where §(z) is the Dirac distribution. This expression can be interpreted as a
biorthogonal duality relation. Since o(z) also satisfies the scaling relation

8(x) = 26(2a),

then 6(z) and 0(x) can be viewed as dual scaling functions. The associated dual
wavelets are

: . n
a(z) = S (=1"p(—n+ oz ~ 3)
and
n*(x) = —20(2:7: -1),
respectively. Since (f,8;k) = 279/2f(277k), then the corresponding projection to
I} f is
Iif(z) = Zf 277k)0(2°x — k), (14)

which is an interpolation operator, ice., L;f(277k) = f(277k). Similarly to (7), we
define the difference operator
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Qj-1f(x) = 1;f(z) = I;-1f(z) = Zk: (f1m5-1k) Mj-1,4(2)- (15)

Let fi(k) = (f,8;x) = 279/2f(277k). The values f;-1(k), at the next coarser grid,
are formed from f; by setting . ' ‘
fi-1(k) = V2f;(2k). (16)

Denoting
dj—1(k) = (fﬂb 1k) >

the values d;_;(k) can also be obtained from f; by

dia(k) = 275 3(-1 1)p(—n + 1)F(2 (2k + m))

= VIR (1)) 2k~ + 1), (17)

Equations (16) and (17) are the decomposition formulas corresponding to the transi-
tion from the one-level basis {0; ()} to the two-level basis {0;_1x(x)}U{n}_; 1(2)}.

2.2 COMPATIBLY WITH DERIVATIVES AND PRIMI-
TIVES

An important fact about biorthogonal multiresolution analyses is that they are com-
patible with derivatives. For instance, under certain regularity conditions (e.g.
® € H'(R)), it was pointed out in [20] that differentiating ®(x) and integrating
®*(x) the following formulae hold

?'(z) = ®(z) — B(z — 1) (18)
and '

~ z+1 -
@ = [ ewa, (19)

where {9, (D*} are also blorthogonal scaling functions. The corresponding scaling

filters {/1(€), II*(€)} and {TI(€), 11*(£)} are related by
2

H(e) = =z H(©) (20)
— 1+e -
H*(§) = — = H"(6) (21)

As a consequence the dual waveiets {¥, ¥*} and {¥, ¥*} satisfy

U'(z) = 4¥(x), ¥'(z)=—4V*(z). (22)
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The relations (18) and (19) imply the commutation formula

%onj=ﬁjo

d

%,

(23)

where

I f(z) = 3 (f,@},) Bin(a)

k€eZ
is the projection operator on the biorthogonal multiresolution analysis defined by
{®,9*}. We refer to [32] for a generalization of these results to several dimensions.

3 BIORTHOGONAL SPLINE SCALING FUNC-
TIONS |

A family of biorthogonal scaling functions {®, ®*}, based on the B-splines, was

constructed in [7]. For even N = 2, ® = @y is the symmetric B-spline, centered on
0, and '

N
Hy(¢) = (cos %) . (24)

For each N* = 2{* there exist a conjugate scaling function ®* = ¢y n-. The
corresponding scaling filter Hy y.(£) is given by

' N* 141*—1 . _ ‘ m »
H n-(8) = (cos g) ’?::0 < i+l ml tm ) (sin2 g) .- (25)

Similarly, for odd N = 2+ 1, ® = @y is the symmetric B-spline centered on § such
thal '

. N )
Hn(€) = e™%/? (cos %) . (26)

For each odd index N* = 2{*+1 there exists a conjugate scaling [unction ®* = ‘I’IN,N'

such that
N* 1410 * | . m
. - L+ 0+ .2 €
HN,N‘(O — e €/2 (cos -;—) 2 ( m m > (Sln2 —2-> . (27)

m=0

The basic functions @, ¥, ®* and ¥* have compact support in all the cases, and -
both @ and ¥ are CV=2 piecewise polynomials of degree N — 1. Their duals ®* and
U* have increasing regularity with increasing N* (see [7] and also [10]).

3.1 CHARACTERIZATION BY MEANS OF INTERPO-
LATORY PROPERTIES

Now we shall consider the particular case of interpolatory scaling functions obtained
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from the spline biorthogonal family. For each pair of conjugate scaling functions
¢ = &y and ¢* = Oy N, let O(x) = Oy ne+(z) be the associated interpolatory
function. If N = 2! and N* = 2/* are even integers, then the corresponding scaling
filter is given by

N4N* 1417 1 . _ m
Py e (&) = (cos g) DY < 41 ml tm ) <sin2 -62-) .

m=0
Similarly, if N =2l + 1 and N* = 2[* 4+ 1 are odd integers, then
NAN* 14+ - m
_ ¢ 41" +m .2 €
Py n+(€) = (cos§ m2=0 m |sin®5

Note that, in both cases, M = N + N* is an even integer, and the interpolatory
scaling filter depends only on M, e.g., Py n+ = Pp. Indeed, M = 2(! + {*) in the
first case and M = 2({ + [* 4+ 1) in the second one. The next theorem summarizes
the main properties of such interpol.tory multiresolution anaiyses.

Theorem 3.1 To cvery even integer M = 2K, K > 1 it is associated an interpola-
tory scaling filter

M ;-1 - 2m
¢ K—14m . &
PM(ﬁ) (cos 3 m;() m sitl 5 (28)
and an interpolatory scaling function Opy(x) which satisfy the following properties:

1. Py, (g\ is symmetric around § =0, i.e. Pm(§) = Pu(=¢€).

2. Pp(€) 20, for all § € R, and Py (§) =0 if and only if § = km,k € Z,k # 0.

Furthermore, for £ =0 and § =,

d* Py (&)

—ggr @ =0, 1Sk<M-1

3. The filter coefficients pp(n) are symmetric around n = 0, and py(n) =0 for
aln <=M andn > M. py(n) also vanish for all even integer n # 0.

4. On(2) is supporied in [-M + 1, M — 1] and it is symmetric around z = 0.

. (:)M(O) =1 and Op(2kx) =0 for all k € Z, k # 0; Furthermore,
d' | ‘
GO =0, 1<I<M -1,

Jor all k € Z (including k=0).



69

6. Op(x) coincides with all interpolatory scaling functions Oy ns+(x) coming from
biorthogonal splinc scaling functions &5 and Gy e, for any posilive inlcgers

N and N* such that N+ N*=M.

Proof. Assertions 1 and 2 can be easily obtained from formula (28). 5 is a con-
sequence of 2, and 6 follows from the comments just before the statement of the
theorem. We can thus think in ©(x) as being 01,ar-1(x). Therefore, 4 is implied
by the facts that @, () and @1 pr_1(x) are symmetric around the same point x = 1/2, _
@ (2) =0 for ¢ <0 and 2 > 1, and that support &y ar-1(x) = [=M +2, M — 1] (see

(7]). Finally 3 comes [rom 4 together with expressions (9) and (12). a

The remainder of this section is dedicated to some consequences of Theorem 3.1.
We shall emphasize thal interpolatory multiresolution analyses already known in the

literature under diflerent three names coincide t.o those coming {rom biorthogonal
spline wavelets.

Remark 3.1 In filter bank theory the filters satisfying properties 1, 2 and 3 are
relered as linear-phase halfband mazflat filters. One way to obtain two-channel fil-
ter banks is just to find spectral factorizations Pp(€) = Fo(€)F1(€) of such filters
[29]. The factorizations mentioned above, of Py in terms of spline biorthogonal
scaling filters, are some examples. There is also another important [actorization
Pa(€) = |Fo(8)]? (i.e. Fy(€) = Fy(€)) which is the so called paraunitary factoriza-
tion. It gives rise to the famous orthogonal Daubechies’ filters of lenght M = 2.
If we form the interpolatory scaling functions using ®* = &, where &=, ® are the
associated Daubechies scaling functions, then they also have Py(€) as interpola-
tory scaling fillers. Under this point of view, these interpolatory scaling functions
are just the autocorrelation functions of x® (see [27] and [26]). Therelore, the in-
terpolatory multiresolution analyses determined by the autocorrelation function of
the Daubechies’s orthogonal scaling function supported in [0,2/x — 1], and by the

biorthogonal spline scaling functions ®y5 and ®y n» such that N + N* = 2K, are
the same.

Remark 3.2 According to the terminoiogy used in [27], the filters Py(€) are La-
grange a trous fillers, e.g., the filter coefficients par(n) are real and synunetric, with
support described by n € [=M + 1,M — 1]; the “4 trous” comes for the “holes”
par(20) = g, and the “Lagrange” is due to the interpolation formula

L(k/2) =2 pm(k = 2n) L(n)

which is exact for polynomials of degree < M — I. This is a consequence of assertion
'2 in Theorem 3.1 above. In particular, the [ollowing holds for the odd filter coefli-
cients, par(2n — 1) = ppr(—2n 4+ 1) = LA-1(3)/2,n = 1,---, M/2, where LM ()
are the Lagrange polynomials based on the points [ = —M/2 + 1,--+, M /2. These
properties can be interpreted in the following form. Consider the interpolation op-
erator
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If’ff(af) = z [(279n)0n (Y — n), (29)

n
and let

L(z) = L(z; M, k),

be the (M — 1)-th degree polynomial that interpolates f(z) at the points w{_l =
2=t l=k—M/2,---,k+ M/2—1. Then '

IM F(279(2k = 1)) = L(27 (2k — 1)).

This means that ©ys(z) also correspond to the fundamental functions of Lagrange
ilerative interpolations, as described in [13] and [11].

Remark 3.3 One can observe that replacing z = 279(2k + 1) in equation (15) gives

Qi1 f(279(2k +1)) = =23° 3" dj, (1)0(2k — 21) = —2°F d; 4 (k).
1

Using (15), the “wavelet coefficients” d;_1(k) can also be expressed by

dia(k) = =275 [L1(279(2k + 1)) — L [(279 (2K + 1))
= 27 (L2 (2k +1)) - f@(2k+ 1)) (30)

Therelore, d;— (k) is in fact the relative error at @ = 279(2k + 1) ol the interpolation
formula (29), obtained from the (j — 1)th grid points. Based on formula (30), A.
Harten suggested in [17] a systematic procedure Lo obtain (generalized) interpola-
tory multiresolution analyses by just choosing any interpolation technique in the
definition of the reconstruction procedure I;f(x). For instance, in the applications
of the subsequent papers ([18] and [5]) the authors used central interpolation where
Ii—1f(277(2k — 1)) is computed from the (M — 1)-th degree polynomial that inter-
polates [(z) at the points 2]~' =279+, [=k—s,---,k4+s—1, M = 2s. From
the previous remark, we conclude that there is a one-to-one correspondence between
the interpolatory multiresolution analyses determined by the halfband maxfalt filters
Prr(€) and the interpolatory multiresolution analyses by means of central Lagrange
interpolation of degree M — 1, as irtroducced by A. Harten in [17].

Remark 3.4 The assertion 5 of Theorem 3.1 means that © () satisfies the Strang-
Fix condition of order M — 1. In ad:ition it verifies the following moment relation

Om(€) =14 0(EM), as¢—o.

Therefore, as described in [28], for smooth functions f in the Sobolev class HM(R),
the following rate of convergence holds

WEMf = fllare < C27I = £ yna, (31)
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Next we shall apply these results to show that the multiresolution analyses of cell
averages constructed independently by A. Tlarten in [17] and D. Donoho in [12] and
the biorthogonal spline family corresponding to N = 1 are the same.

Remark 3.5 Consider the cell averages f(k) of a function [ given by

—_ k+1 )
T = [ rwdy = [ Fe)@uy - k)dy.
Using the expression _
J(k)=1"(k+1) = I'(k),

of the cell averages in terms of the point values of the primitive function

= ["rwa,

reconstruction via primitives” RM(x, ) is then defined by central Lagrange
interpolation ol degree M —1 of the primitive point values followed by derivation (see
(17] and [12]). Therefore, from Remark 3.3 we conclude that RM (e, [) is preciscly
d/dzlyF(z), where

the «

E I‘ GM l: - /\.)
Ilin formulae (32) and (33) weset N =1, and N* = M —1, and if we apply [ormula
(19), then we get

Bon(z) = One) = [ @uy-(a)(y)dy.
Therefore,

d
=Ll (x)

Z[ @M (z — &)

= ZI‘ : [<I>1‘N— (x+1—=4k) — Oy n(z— k)]
k

Z[F k+1) = F(k)] Dy n+(x = k)

Zf (I)lN"r—]‘)

]

This implies that &M (z, f) and the projection operator Il f(z) associated to the
pair of biorthogonal scaling functions {®;, ¥, a—1} are the same.

In the next section we shall give another application of the results in (32) and (33).
They will be used in the study ol the equivalence between Petrov-Galerkin methods
based on biorthogonal spline multiresolution analyses and collocation schemes based
on the interpolatory scaling functions ().
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for all 0 < s < r, provided that ©a € H"(R). We reler to [L1] for a method to
determine the order of regularity of these interpolatory functions.

3.2 CHARACTERIZATION BY MEANS OF DERIVATIVES
AND PRIMITIVES

If in formulae (20) and (21) we replace H(€) and I*(€) by the pair of scaling filters
defined in expressions (24) and (25), or in (26) and (27)), then we conclude that the
spline biorthogonal scaling [unctions are related by derivatives and primitives, as
follows (cf. [16]). Il & = &y and &* = y y+, then the associaled functions {®, @*}
satislying (18) and (19) are given by '

5oy _ | Pnaal2) il N isodd
b(e) = { On_1(z+1) if Niseven (32)
and | ;
ooy ) OnoNepa(® if NV is odc .
() = { On_iNep1(z+ 1) I[N is even (33)

Let ll;N’N‘)f and ll}f(N’N')f be the projectors in (6) and (8) corresponding to o= by
and ¢* = Py n». The commutation formula (23), together with expressions (32)
and (33), imply that

d

I () = 1T (),

and

(l * » *(N+1N*— .

'c-l:—L:IIJ‘(N'N )J"(.’C) — Hj(]\-}-l N l)f’(.'l,').

Note that formulae (32) and (33) also hold for N = 0 and N* = 2K = M > 2, by just
identifying ®o(x) = 6(x) and @y ar(x) = Opr(x). Denoting g p(x) = =20 (20-1),
and using formula (22) we get the following expression [or the derivatives of ().

Theorem 3.2 Whenever V¥ 5,_ () is a well defined function, then

T Ou(e) = (<2 W, (5 = [s/2)

da?
where [s/2] stands for e integer part of s/2.
As an example, consider M = 6. Thus

- . x—1
g 1), and () = 4‘1’3,3*(}:72—).

T+ 1
2

Op(x) = Wys%( ), Og(x) = =203 4(
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4 PETROV-GALERKIN AND COLLOCATION
METHODS

As in [30], we consider here the periodic initial value problem [or the constant
coeflicient differential equation

. 5\P

U =Y 00y (j’;) u = Du.

u(x,0) = ug(), ' (31)
uw(z,t) l-periodic in space.

The Galerkin method described in this section is based on biorthogonal frameworks

{V;, V;*} corresponding to spline dual functions ® = & and ®* = @y .. One of

the families of basic [unctions, say @7, (x), are used as trial functions, and its dual
?

family ®;i(x) are the test functions. This means that we shall approximate the
exact solution of (34) by :

wi(e, 1) = T U4 (a), (35)
k

where Ug(l) = Upya(t) are periodic coeflicients that inust be determined by requiring
u;, — Du;j to be orthogonal to V;. That is,

/R (Un - D’Uj) ®;,(y)dy = 0, (36)

for all [ € Z. It is assumed that the basic [unctions have the regularity propertics
required in order that (36) makes sense (using integration by parts when neces-
sary). The initial conditions Uk(0), k € Z, are the coeflicients of some approximation
u;(x,0) of the initial data ug(x).

'The equations in (36) can be expressed as the {ollowing system of ordinary differen-
tial equations

-d -
.(YZU—BU (3!)

where U(t) is a vector with compo.ients Ui(t) aud B is a matrix with entries by
given by
n

bie = D 27T, (k = 1),

=0
and , '
[p(m) =N ne(m) = (-1)° /n DP=2 o™ (y) D*d(y + m)dy.

Here D = ,—,l; and the index 0 < s < pis introducced in order to handle possible
lack of regularity of the basic functions. For instance, let N = 0 and M be an even
integer. For this case, ®o(x) = 6(x) and &f 5,(x) = Opr(x), aud s is always sct equal
to 0. Thus, I'y;(m) = DP0ps(—m), which can be calculated using Theorem 3.2. Note
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that, in this case the above formulation is just the collocation method, and equation
(36) reduces to

[ujt - Duj] («f) = 0, (38)
for all I € Z, where i =27,
The following result is a consequence of the relations (32) and (33).

Theorem 4.1 Let M = N + N* be an even inleger. Then the syslem of ordinary
diffcrential cqualions (37) depends only on M.

Proof. Let us consider the case of odd integers N and N*. Using integration by
parts, and the relation of derivatives and primitives (32) and (33), we have

Dpave(m) = (=" [ D710y nu(y) D @y + m)dy
= (=1 [ D7 oy ()0 [@-a(y + m) = @naly +m = 1] dy
= (=1 [ D7 [@nve(y + 1) = Ove(u)] D* -y + m)dy
= (=" [ D" @i (4)D Bvcs (3 + )iy

= Tpn-1,nepa(m).

The case of even N and N* can be considered in an analogous way. a

In [3] the authors establish the equivalence of the linear system arising in a wavelet-
-Galerkin forimulation using Daubeckies’ scaling [unctions of compact support and
those comiug from a collocation method based on approximating trial spaces gener-
ated by their autocorrelation functions. Therefore, by virtue of the above thcorem
and of Remark 3.1, the following results hold.

Corollary 4.1 Let M = 2. Apart from the choice of inicial data U(0), the fol-
lowing numerical methods for problem (34) are equivalent:

o The Petrov-Galerkin method using biorthogonal spline scaling funcltions ® =
Oy and ¥* = (I)N‘N' with N+ N*=M.

o The Galerkin mcthod using ¢ = ®* = ®, the orthogonal Daubechics’ scaling
function supported in [0,2K — 1].

o The collocation method based on the interpolatory scaling functions .

We can also prove that the methods mentioned above may provide very accurate
approximations of exact regular solutions at the nodes with a superconvergence rate
O(279WM=m) " provided that the approximate initial data is chosen properly. The
proof uses quite standard arguments that have already been successfully applied for
usual spline based methods [31] as well as in the wavelet context ([14], [15]).
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5 FINAL REMARKS

In this paper we discuss the use of multirecolution analyses and their associated
scaling {unctions as bases in Galerkin, Petrov-Galerkin and collocation methods.
We analyse the specific case of scaling [unctions whose refinement masks come from
different factorizations of the same linear-phase halfband maxflat filter. We show
the cquivalence of these methods when they are applied to linear constant coefli-
cients diflerential equations with periodic boundary conditions. However, there are
situations where these schemes may be really different. This is the subject of a next
paper which is in progress. IFor instance, in the presence ol non-constant coelli-
cients, nonlinear terms or nonperiodic boundary conditions. Furthermore, the main
advantages of methods based on mulliresolution analyses are better appreciated il
the problems are discretized with wavelet basis instead ol the scaling function basis
[19]. When applied to irregular situations showing localized singular behaviour, the
multiresolution structure of wavelet bases provides a simple way to adapt computa-
tional refinements to the local regularity of the solution (cf. [22], [23],[1], [L8], [5] and
(8]). The wavelet framework also ailows sparse and well-conditioned representation
of operators ([4], [9], [6]). In all these applications, a spline biorthogonal setting
may show several good properties, as discussed in [21].
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