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Abstract 

In this work we consider numerical schemes for partial d ifferenti al equatioll s  ba.sed 0 1 1  two 

frameworks .  On o ll e  h and are t.he Pet. rov-Ga,lerki n type schemes based on spline biorthog­
onal llluitiresolu tion an alyses . On the other han d a.re t he colloca,Lion schem es based on 

int.erpolat. i n g  fUllction s obt.ai ned from these biort hogonal basic fu n ct ion s . O u r  ai m iR t.o 
show t. hat bot.h methods arc equivalent  when applied t.o periodic i ll i t ial value problellls 

fo r COll stan t.  coefficient differential eq Ilatiolls .  I n  order t.o reach t his p u rpose we u se the 
c h aracterization of biorthogonal spli n e  wavelets  by means o f  derivati ves , pri mit i veH , a.n d 
iut.erpol at.ory proper t ies . Particula,rly, we estab�ish t.he rela.tion between t h e  i nter pol atory 

rn l l it i l'eHoi l l t. ioll <tJ I a.lYHes coming from con vol u tion of biort. h ogona.l spli ne fami lies with  other 

ones al rea.dy exist. i l lg in the l i t.erature a.nd known under d i fferent n ames.  \Ve a.lso conclude 
tha.t. bot. h  collocation an d Petrov- G a.lc·rkin methods are equi valent to a GalerkiJ1 proce­
d u re I I R i ng D a,u bech ics ' orthogona.J scal i llg fltll c l. iolls .  

The reason for s lI ch proper t.y COllIeR fro l l l  the  fact that t he refi nement masks o f  all the 
i nvolved basic fU ll ct ions correspond to di fferent factorizations· of a same trigonomet. ri c  

polynomia.l . 

1 INTRODUCTION' 

I n  S O Il I C  cases , col locat ion methods can be i nterpreted as G alerk in methods.  For 
instance,  i n  laO) Swartz and Wendrolf cons ide r  a periodic in i t ial value problem [or a 
COll s [.al l t  coefficient d i fferential  equa.t ion . They prove that for this kind of problem , 
t.he Galerkill scheme arising from spl i lles of order f1 has prdcisely the salTle sol ution 
as the collocation scheme using a basis of cardinal sp l i nes of order 211" A t. !Iorougb 
explota,L io ll of t. h i s  poi n t. o r  v iew,  I )y comb i n i l lg t.he s t.ab i l i ty or Galcrk i l l  I l l d i lo(b 
wi t. 1 !  error bounds ror spliuc i nterpol at. ion , call be used to obtai n  t lie cOl lvc�rgcncc of  
both methods . 

I This work was pa.r t ia.lIy supported by C N P q  (grant :302 7 1 4/88-0/IVIA/FV ) ,  FA P ESP 
(gra.n t !J :J / 0650- 0 ) .  
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0 \11' ai l l l  i l l  I , h i s  paper i s  to e x t e l l d  the  res l! lts i l l  [ :10] . WI' est .a.b l i H It  a COITC'H [H) I \ < i e l l cc 
bet weell t. 1 ]('  Pd rov- Galc r k i n  methodH based OJ I  biorthogoll al flpli l le scal i n g  rU l l ct i ol l S  

and co l locat. ion m cl. hods usi ng a n  assvci ated in t.erpo l atory framework . In  Lh is sense, 
our  result s are also related wit.h those obtai ned by Bcrt.olilzza and N ald i .  For an 
e l l i pt. i c  boun d ary va.l l le I l lodel  problem,  I,hese aut. h ors Ht.ablish in [3] the equi valen ce 
or t . he  l i l lea.r system a.r i s i llg  in a wa.\'dd- G alcrk i u formulat.ion using Daubechies ' 
wavekt.::; of cOl npact. H lI l' IJOrl. an d thobc corn i ng from a. collocat.ion method based on 
a.pprox i m at i n g t.r ia. !  spaces generated by au LocorrelaLion of these wavelets.  
I I I  order to reach our purpose, two aspects of  b i ort. hogonal spl ine m ul t. i rcsolut. ion  

analyses must be studied , namely, the ir  interpola.tory properties and the i r cornpati­
b i l i t.y with deri vatives and primi t i ves . 

Fi rHt we s lml l ana.lyse L h e  i n t.erpola,tory lll u l i i resol li t iol l  analyses com i ng from CO I I ­
volu t ion of b iort hogo ll a l spl ine scal i ng fU ll ct ions.  We establish the relat ion between 
H uch in kr po l a,Lory framcwork w i t h other ones al read y ex ist i ng  in the  l i te ra.t. ure.  

AlJother i m portal lt  aspect about biort.hogollal ru u l t. i resol uL ioll analyses i s  t h a.t they 
are compaL i ble with deri vatives and primi t ives . This means that given a pair of 
b iorthogon al wavelets { \11 , \11 * } ,  then different. iating \{1 and i ntegrat ing \{1*  wc obtai n 
another pair  of h iorthogon al wavelcls { � ,  W * }  [20J . In the case of b iort l lOgonal spl ine 
wavelets ,  the corresponding primit i  ves and derivat i ves are also w i thin the family of 
biorthogonal spline wavelets .  

Th is  paper i s  organi zed as  follows .  First  we recall the main properties of biorthog­
oll al 1 11u l t iresolut ioll analyses in  Section 2 Sect ion 3 is  ded icated to the analys is 
of these properties for the  part i cu l al case .of spline b iorthogollal wavelets .  Finally, 
in Section 4, we establ ish the corresponden ce betwee n the Petrov-Galerk i n  methods 
based on bior thogonal  � plille [ullct iol iS  an d collocation methods lls ing t heir associ­
ated i ll terpola.tory fra mework . 

2 THE BIORTHO G ONAL FRAMEWORK 
Through this paper Z and R denote the sets of i nteger and real numbers, U (R) 
i s  the vedor space of measurab le , square- i l ltcgrablc  Olle dimensional real fu nct ions 
f ( :r )  for which (f, y) , I l f l l  and j stan d for the usual inner product ,  norm an d Fourier 
transform. In J} ( R) we sh al l  consi der multi  resolu t ion analyses { Vd and associ ated 
i:ical i n g  fu nctions tP ,  i ll  the sense defined, for example, in [25] or [24] ( see also [10] ) .  
As i t. i s  well know n , a. scal ing function must sat i sfy a two scale relat i on 

tP(x )  = 2 I: h(n )<1> (2:1' - n) .  ( 1 )  
n E Z  

This relation i s  very i mportant. , since i t  cb a.racLerizes all  t.he propert i es of <1>, and 

consequently of the Illult i resolut ion a.ncl iysis, In the Fourier dOlnaill i t. ca.n be wri t ten 
as 
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where 
H(O = L h(n)e- i!t(. 

nEZ 
11 (( )  i s  called the scal ing filter for { Vi ,  <I>} and h(n) the filter coeffici ents . It is  usual 
to Ilorma.l ize <I> such th at IR <I> (x ) dx :: 1 ,  or equ i valent, t ly, 11 (0 )  = L: .. h (n )  = 1 .  
A n other required pl'Operty is H(7r) = 0 ,  and an i mportant parameter i s  p + 1 ,  the 
order of the zero of 1I (� ) at � = 7r ,  i . e . ,  

A s  a. consequence, 
� (O ) = 1 ; �(2h) = 0, k i= O .  

Furthermore , at � = 2k7r,  � h as zeros of order 11 + 1 , the  same order o f  t ,he zero of 
H ( � )  at � ::: 7r . This property is known as Strang- Fix cond i t ion (of order p ) .  It is a. 
necessary and sufficient cond i t ion for the polynomia.ls 1 ,  x , ' . .  , x 11 to be reprod uced 
exactly by the translates of <I>. In turn, i t, determi nes the best order 0 ( 2-j ( I)+ 1 ) ) of 
approximation of smooth functions from Vi in the L2 norm [28] . 

In a multiresol ut. ion analysis of L2 (R) the wavelet, functions appear when com ple­
ment, spaces Wj are considered , such that Vi+l = Vi + ltVj • A systemat i c proced ure 
for the construc t ion of such complement spaces uses the concept of biorthogonal 
lllu l t . ircsolution analysis [7] . 

A hiort. hogonal multi resol u tion analysis consists of a pai r  Fj , <I> }  and { Yj* , <I> * }  of 
l l1ul t i resol u tion all alyses of £2(R) re l ated by 

. . 

( 2 )  
for each fi xed j ,  where, as usual 

wh i chever may be the function cp. In this case , the corresponding scal ing filters H(� )  
and }{* (0 sat isfy 

Il (OlJ * ( � )  + ll ((  + 7r )ll* ( e  + 7r}  = 1 ,  ( 3 )  
for al l e .  Associated t o  a biorthogonal mult. i resolu t i oll an alys i s there are spaces H/j = 

Vj n V/ .L and Wj* = lj* n lj.L ,  which are complements ,  not necessari ly  orthogolla l ,  
o f  lj in  lj+ 1  and Vj* in Yj�l l respec tively. Riesz bases for Wj (resp . Wn are formed 
by the famil ies \)Ij,k ( X )  (respectively \lIj,k ( :r ) )  associated to the wavelets 
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w (x) �. 2 L:  g(n)<I> (2x - n) ,  (4) 
neZ 

w* (x) = Z:L: g* (n)cI>* (2x - n ) , (5 ) 
nez 

where g(n) � ( - l)n h* (-n+ l )  and' ��bl) = ( - l )nh (  -n+ l ) .  The follow ing biorthog­
onali ty relat.iolls lto,It! 

and 
(WiJc , W,:n,I ) = O!m�kl . 

A biort.hogonal multiresolution analysis provides a useful tool for studying funct ions 
in L2 (R) .  'For i tistall ce ,  the pr�je�ti�� of a function I E peR) onto Vi ,  parallel to 

�j* , 
HiJ(x) = L: (I, <I>i,k ) <I>j,k(X) (6 )  

keZ 
gives an approximation of I at a. resolution 2j • Since Vi-1 C Vi , and fIJI -+ I as 
j -+ 00 ,  we have a convergent approximation process. Furthermore , the detail of 
I at a higl�er l:esoiution 23 ,  is giVen by the projection of I 011tO Wj-1 parallel to 
( W;;' ) .l . ' ' . 

i - 1  , I . e .  

Qj-t /(x) = (fIj � fIj-'- l )I(x) = L (I , Wi_1 ,k) Wj-l ,k(X ) .  ( 7 )  , , '. keZ 

Sirriilarly, the project ion of a function f E L2 ,(R) ont.o Vj* , parallel to Vi i s  given by 

nif(x)= L.: (J, <!>.j,k) CPi,k (X) .  (8 )  
keZ 

2 . 1  INTERPOLATORY :MULTIRES OLUTION ANALYSES 

To each pair of  conj llgate scaling functions cp (x )  and CP* ( ;t: ) ,  we can associate a 
function O( ;t: )  defined by 

O (x )  �,L. CP (y )CP* (y - :t: )dy . 
The b iorthogonalit.y relat ion (2)  iillpl ies that 

O (k) = OOk , ( 9 )  
for al l integers k (see [2] ) .  This interpolatory function O (x )  satisfies t.he scaling 
relat.ion 
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( 1 0 )  
71 

where 
p(n) = L h( l )h* ( l - n ) . 

I 
Thus, the corresponding scaling filter is 

P(�) = JJ (OJl * ( � ) ,  
which satisfies , as a consequence o f  ( a ) ,  

P(�)  + P ( �  +11")  = 1 ,  ( 11 )  

for all real � .  Using (9) i n  the scaling relation ( 10 ) ,  we obtain 

0(kj2) = 2 LP(n)O (k - n ) = 2p(k) , ( 1 2) 
71 

for all integers k . This relation implies that the interpolatory scaling filter coefficient.s 
vanish for all non zero even indices . > 

Note that the interpolatory property (9)  can be mterpreted in the d istributional 
sense as 

(O(x - I.: ) ,  b(x - I))  = 15k" 
where b (x )  is the D irac distribution. This expression can be interpreted as a 
biorthogonal duality relation. Since o (::r)  also satisfies the, seetling relation 

15 (::' ) = 2b (2x ) ,  

then b (x)  and O(x) can b e  v iewed ai:l dual scal ing functions. The associated dual 
wavelets are 

71 (X ) = L( - l )"p( -n + l )b(x - � ) 
71 

and 
17* ( :r )  = -20(2:r - 1 ) ,  

respectively. Since (J, bj,k) = 2-i/2 J(2-j k) ,  then the corresponding projection to 
njJ is 

IjJ(x) = L J(Tj k)0(2ix - k) ,  ( 14) 
k 

which is a.n interpolation operator, i ;e . ,  Ii/(2-jk) = !(2-j k). Similarly to (7) , we 
define the difference operator 
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Qj-d(a; ) = ljf(x) - 1j-d(x) = I: (j, 1]j-l ,k ) 1];_l ,�(X) .  ( 15) k 
Let .fj ( k) = (j, Dj,k) = 2-j/2 f(2-j k) . The values h- l (k ) , at the next coarser grid ,  
are formed from fj by setting 

Denoting 
dj-1  ( k) = (j, 17i- l ,k ) , 

the values dj-l ( k) can also be obtained from h by 

n 
= v'2 I:( _ I t+l p(n )h (2k - n + 1 ) .  

n 

( 16 )  

( 1 7) 

Equations ( 1 6 )  and ( 1 7) are the decomposi tion formulas corresponding to the transi­
tion from the one-level basis {OJ,k ( J; ) } to the two-level basis { OJ-l ,k ( x ) }  U { Tlj_ l , k ( ;Z; ) } . 

2 . 2  C O MPATIBLY WITH DERIVATIVES AND P RIMI­

TIVES 

An important fact about biorthogonal multiresolution analyses is  that they are com­
pati ble with derivatives. For instance, under certain regulari ty conditions (e.g.  
<I> E 1]1 (R) ) ,  it was pointed out in [20] that differentiating <I> (x ) and integrating 
<1>* (x) the following formulae hold 

and 

<I>
'
(x)  = � (x ) - � (x - 1 )  

- rx+1 
<I>* ( :c )  = Jx <I>* (y )dy , 

( 1 8) 

( 1 9) 
where {<i> ,  <I>* }  are also biorthogoual scaling functions . The corresponding scaling 
fi lten; {fI CO , II* (O } and { JJ (O ,  ll * (O }  arc related by 

(20) 

H* (
" = 1 + e-i� 

H* ( I: ) ° 2e-ie .. .  (21 ) 

As a consequence the dual waveiets { \II , \II* }  and { � ,  � * } sat isfy 

\II
'
( x )  = �� (;r ) ,  �* ' ( x )  = -4'l1* (x ) .  (22) 
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The relations ( 18) and ( 1 9 ) imply the commutation formula 

whel"<� 

d - d - o U ' = U ' o - , d.T J J dx 

llJ(x ) = L (I, <i>;,k) <I>.i,dx ) 
kEZ 

(2 :3 ) 

is the projection operator on the biorthogollal multi resolution analysis defined by 
{ <1> ,  <I>* } . We refer to [32] for a generalization of t hese results to several d imcm;ions. 

3 BIORTHOG ONAL SPLINE S CALING FUNC­
TIONS 

A family o f  biorthogonal scaling functions {<I>,  <I>* } ,  based on the  B-splines , was 
con structed in [7] . For even N = 2/ ,  <I> = <I>jy is the symmetric B-spline, centered 011 
0 , and 

For each N* = 21* there exist a conjl,,!;ate scal ing function <1>* 
corresponding scali rig fil ter H'N,N . (e ) i s  given by 

* 
( . � ) N' 1+1'  - 1 ( I + 1* _ 1 + m ) ( . 2 � ) m HN,N· (e) = cos "2 7�O m 8111 "2 

(24 ) 
<1>N,N" The 

( 25 )  

Similarly, for odd N = 21  + 1 ,  <I> = <1> N i s  the symmetric B -splille centered o n  � such 
that 

(26)  

For each odd in dex N* = 21* + 1 there exists a conj ugate scal ing function <1>* = <I> N,N'  
such tha.t 

}} * ( t ) _ -i£../2 . , � � 1 + 1 + m : 2 �  ( ) N' 1+1' ( . * ) ( ) m 
N N' <, - e cos - L.J :)111 , 2 m=O 11/. 2 

(27) 

The bas ic  functions <I>, I}i,  <I>* and I}i*  have compact support in  aU the cases , and 
bot.h <1> and 11' are CN-2 piecewise polynomials of degree N - 1 .  Their duals <I>* aud 
11'* have increasing regularity with increasing N* ( see [7] and also [ 1 0] ) .  

3 . 1  CHARACTERIZATION B Y  MEAN S O F  INTERP O­

LATORY PRO PER'!'IES 

Now we shall consider the part icu lar case of interpolatory scaling fun ctions obtained 
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from the spl ine biorthogonal family. For each pair of conj ugate scaling functions 
<1> = <1>N and <1>* = <1>N,N0 , let O (x )  = ON,N0 (X)  be the associated int.erpolatory 
function. If N = 21 and N* = 21* are even integers , then the corresponding scaling 
filter is  given by 

(. � ) N+NO I+IO _ l ( l + l* - l + m ) ( . 2 � ) m PN,N° (�) = cos 2" E m 
sm 2" 

m=O 

Similarly, if N = 21 + 1 and N* = 21* + 1 are odd integers ,  then 

( � ) N+N0 I+I. ( I + I* + m ) ( � ) m 
PN,N· (�)  = cos 2" fa m . sin2 2 " 

Note that , in both cases , M = N + N* is an even integer, and the interpolatory 
scaling filter depends only on M, e.g. , PN,NO = PM . Indeed , M = 2(1  + 1*) in the 
firs t case and M =. 2( I + 1* + 1) in the second one. The next theorem summarizes 
the main properties of such interpoLtory multi resolution anaiyses . 

Theorem 3 . 1  To every even integer M = 21(, J( � 1 it is asc ?Ciated an interpola­
tory scaling fiUer 

(28) 

and a n  interpolatory scaling function eM (X ) which satisfy the following properties : 

1 .  PM (O is symmetric around � = 0 , i . e .  PM (O = PM( -{) . 
2. PM (O � 0 ,  f01' all � E R, and PM (�) = 0 if and only if � = k1r ,  k E Z ,  k i:- O . 

Furthermore, f07' e = 0 and e = 1r ,  

3 .  The filter coefficients PM (n) are symmetric around n = 0 ,  a n d  pM (n)  = 0 ji)r 

all n ::; '-M and n � M .  PM (n)  also vanish for all evcn intcgc1' n 1= o .  
4. .  e M{r) is supported in [-M + 1 ,  M - 1 ]  and it is symmetric around x = O .  

5 .  0M (0) = 1 and 0M(2k1r) = 0 for all k E Z ,  k 1= 0;  Furthermore ,  

dl  A 

d�1 eM (2h) = 0 ,  1 ::;  1 ::; M - 1 , · 

for all k E Z (including k=O) .  
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6. 6M( ;C )  coincides with all interpolatory scaling junction" ON,N- ( ;r )  romin.tJ jrom 
bior·t/wgoual '�Jllinc scaling junctions Ij> N and Ij> N,N - , jm' any l'o8 i l i  ue i n t egers 
N and N* sitch thal N + N* = M . 

Pm oj. Assertions 1 aud 2 can be easi ly obtained from formula (28 ) .  [) is a con­
sequence of 2, and 6 follows from the comments just before the statC11lent  of t.he 
theorem. We can thus think in 6M (X) as being 0I ,M-l (X) ,  Therefore , 4 i s  implied 
by t.he fads that. <1>1 ( ;r )  and <l>1 ,M -1 (x ) are symmetric  around the same poi n t. ;r. = 1 /2 ,  
<1> 1  ( ;r )  = 0 for x < 0 aud :r � 1 ,  and (,hat support. <l> I ,M- l (J: )  = [-M + 2 ,  M - 1 ] ( see 
[7] ) .  Fina.1 ly 3 comes from .:1 together with express ions ( 9 )  and ( 1 2 ) .  0 
The remainder of this section is dedicated t.o some conseqllcuces of Theorem a . 1 .  
We shall emphas ize tha.t. interpolatory multi resol u t. ioll an a.lyses already known i n  t.he 
l i t.erat u rc under di ffereut t.hree n antes coincide t .o those coming from biorthogona.l 
spl iue wavelets. 

Remark 3 . 1  l u  fl ltcr ba.nk theory t.he filters sat i sfying propert ies 1 ,  2 and 3 a.rc 

refered as lin ear-phase halfoand maxflat filters. Oue way to obt.ain two-channel fi l ­
ter  banks is j ust t.o find spectral factorizations PM(�) = Fo( OFt (0 of such filLer::; 
[29] . The factorizat iolls mentioned above, of PM in terms of spline biort. J lOgonal 

Hcal i ng fi lters , are some examples . There i s  also another important. factorizat ion 
P1'd(�) = 1F0(�W ( i .e .  F1 (O = Fo(O)  which i s  t.he so called parauni tary factoriza­
tion. It gives rise to the famous orthogonal Daubechies' filters of lengM A! = 2/\.  
I f  we  form the interpolatory scaling functions us i ng <1>* = <1> ,  where <1>=1\ <1>  are the 
associated Daubechies scal ing fuuctioIls , thell they also have PM(�) as i l licrpola­

tory scal ing filters. Under th is point of view, these interpolatory scal i ng funct ions  

are j ust the autocorrelat ion funct.iol1s of  /\<1> (see [27 )  and [26) ) .  Therefore, the iu­

terpolatory multiresol ut.ion analyses determined by t.he autocorrelation fun ction of 
the Dau bechies 's orthogonal scal ing funct ion supported in [0 , 2/{ - I J , and by the 
biorthogonal spline scali ng functions <l>N and <l>N,N- such that N + N* = 2K, are 
the same . 
Remark 3 . 2  According to the terminOlogy used in [27J , the filt.ers PAf (O are La­
grange a lro'us fillers, e.g. , the filter coefficients PM (n)  are real and symmetric, with 
support described by 11 E [-M + 1 ,  Af - 1 ] ;  the "a. trOllS" comes for the "holes" 
}JJlt ( 21 )  = 00/ , and t.he "Lagrange" i s  due to the interpolat ion formula 

L ( k/2) = 2 L PM (k  - 2n) L (n )  
n 

which is exact for polynomials of degree S M - 1 . This is a consequence of assertion 
2 in Theorem 3 . 1  above . ' In particular ,  the fol lowing holds for the odd fi lter coeffi­
cient.s ,  PJli(2n - 1 ) = PM ( -2n + 1 )  = L�1-1 ( � ) /2 , 1i = 1 , · · · , M/2 ,  where Ltf-l (X )  
are the Lagrange polynomials based on  the points I = -M /2  + 1 ,  . . . , 1\1/2. These 
propert ies can be interpreted in the following form . Consider the iuterpolat ioll op­
erator 
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If f(x)  = 2: f(Tin)8M(2ix  - 11,) ,  (2H) 
n 

a. l l d  let, 
L(3:: ) = L(x ; M, k) ,  

be the (M - 1 ) - th  degree polynomial that interpolates f( x)  at  the points X{-l = 
2-H1 1 ,  l = k - M/2, · . . , k + M/2 - 1 . Then 

If�l f(Tj(2 1.: - 1 ) )  = L(Tj (2k - 1 ) ) .  

This means that 8M ( :r )  a.lso correspond t o  the fundamenta:l functions o f  Lagrange 
iterative interpolalions, as descri bed in [ 13] and [ 1 1 ] .  

Remark 3 . 3  One can observe that replacing x = 2-j (2k + 1 )  in  equat ion ( 15 )  gives 

U s i ng (1 5) ,  the "wavelet coefficients "  dj _ 1 ( k) can also be expressed by 
dj-d k )  -2 - '2- 1 [Ij f(Ti (2k + 1 ) )  - Ij _ t !(Tj (2k + 1 ) ) ] 

= 2=Y!- [/j_ t! (Tj (2k  + 1 ) )  - f(Ti (2k + 1 ) ) ] : (30 )  
Therefore, di- 1  ( k ) is i n  fact the relative error a t  x = 2-j (2k + 1 )  of  the ,i nterpolation 
formu la  ( 2�l ) ,  obtai ued from the (j - l ) th grid points.  Based 011 formu la (30 ) ,  A .  
Hartcn suggested i ll [ 1 7] a systemat ic  procedure t o  obta.in (genera.li zed ) interpola­
tory l11 ult i resolution analyses by j ust choos ing any interpolation technique in the 
defini tion of the reconstruction ,proccdure Ijf( :l; y. For ins tance, in the applications 
of the subsequent papers ( [ 18] and [5] ) the authors used central int.erpoiatioll where 
1j_ t !(2-j (2k - 1 ) )  is computed from the (M - 1 ) -th degree polynomial that inter­
pola.tes f(x)  at the points X{- l  = 2-H1 1 , 1 = k - 05 , " ' ,  k + 05 - 1 , Al = 205 . From 
the previous remark ,  we conclude that there is a one-to-one correspondence between 
the interpolatory multi resolution analyses determined by the hal fband maxfalt fil ters 
PM (� )  ami the interpolatory muiti resolutioll analyses by means of central Lagrange 
interpolation of degree 1',11 - 1 , as irtroducced by A. Harten in [ 17] . 

Remark 3 .4  The a.ssertion 5 of Theorem 3 . 1 means that 8 M(.r )  satisfies the Stra.ng­
Fix condition of order M - 1 .  In adJition i t  verifies the following moment relation 

Therefore, as described in [28] , for s11100th functions f in the Sobolev cl a.ss JIM (R) , 
the following rate of convergence holds 

1 1 1Mf f l .1 < C2-j(M-s) I ' f l l  j - II '  _ I J  lI M ,  ( 3 1  ) 



7 1  

N ext we shal l app l y  these results to  show that the mult ircsol u t j oll allil.lYl,e::; of cell 
(we /'agcs cow;\,rudcd i ndependently by A. Hartell ill [ 1 7] ami D, Donoho in [ 1 2] a tl d  
t.IlC biorthogol1al ;;pl ine family corresponding t o  N = 1 are the same. 

Remark 3 . 5  COllflider the cell aY(�ril.ges ]( 1.: )  of a function f given by 

- {k+l ( f (k )  = Jk f(y )dy = JR f( il )<I> l ( y  - k )dy . 

U sing the ex pression 

]( /,; )  = F(k  + j )  - F(k ) ,  
o f  the cell averages in  terms o f  the point values o f  the primi tive [unction 

F( .• ) = foX f(y )dy ,  

1, l1o " reconstruction via. pri mi tivc;;" [-lM ( :1' , 7) is then defilled by cell t. ra.l Lagrallge 
interpola. t ion of degree 1\,£ - 1  of tlte pri mitive poiut val ues followed by deri va. t ion ( flee 
[ 1 7] an d [ 1 2] ) .  Therefore, from Rernark 3 .3 we conclude that R/\,.f ( :c , 7) is precisely 
djdx1oF('J.; ) ,  where 

IoF(x)  = I>" (k)0M ( :r - I.;) . k 
If i n  formulae (32)  and (33)  we set N = 1 ,  and N· = AI - 1 , a.nu if we apply formula 
( HI ) ,  t hen we get 

Therefore, 
d = L F(k ) - 0M('J.: - J.: ) 

k d;r 
= I: P(k )  [<I> l ,N ' ( X  + 1 - k) - <P I ,N · ( ;r - ,,: ) ]  

k 
= I: [P(A:  + 1 )  - F(k ) ] <P I ,N. ( :r - k) 

k 
L: 1(J.: )<p I ,N ' (x  - k) . k 

This im plies that RAJ (x , 1) and the projection operator I1of( 'J.; ) associated to the 
pai r of  b io rt hogoll a l �ca.l i ll g  fuuctions { <I> l , <I> l ,M- l }  a r c  the S iL lIl e .  

In the next section we shall  give a.nother a.pplica.L ion of the results  in  ( :32)  emu (3 :3) . 
They will  be used in  the  s t u d y  o f  t .he equivalen ce bdween Pctrov- Ga.J e rk i n  met hods 
based 0 1 1  biorthogollal spl ine multiresol utioIl analyses and collocatioll schemes based 
on the interpolatory scaling functiOIIS 0M (x ) .  
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for al l 0 $ .� $ 1' , provided that, E-hl E lr (R) .  We refer to [ 1 1 ] for a mdhod to 
dct.el'm i ll e  t. he  order of r(�gtil al' i t,y of t .hese i ll terpol atol'Y functions.  

3 . 2  C HARACTERIZATIO N  B Y  MEAN S OF DERIVATIVE S 

AND P RIMITIVES 

If i n  formulae (20 ) and ( 2 1 )  we replace IJ(�) and H* (O by t.he pair of scaling fi l ters 
defined in expressions (24) and (25 ) ,  or in (26) an d (27) ) ,  then we conclude that the 
sp l i uc  biort hogonal scaling fUllct. i ons are related by derivati ves and primi ti ves, as 
fo l lowH (d'. [ 1 6) ) .  If !lJ  = !lJN aud !lJ* = !lJN,N " then the associ ated fUl l ct ions { ;p , ;p * }  
sat. i s fyi ng ( 1 8 )  and ( 1 9 )  are given by 

a.nd 

<I>( :r: ) = { <J>N-l (X) if N is odd 

<I>N-l (X + 1 )  i f  N i s  even 

<1>* (  ) _ { <I>N- l ,N°+l (X )  if N is odd 
.r: - <I>N- l ,N0+l (X  + 1 )  i f  N is even 

(32) 

(33) 

Let. l1�N,N° ) f and H i ( N ,N " ) f be the projectors in ( 6 )  and (8 )  corresponding to <I> = <I>N 
and !lJ* = <I>N,N0 ' The comm u t ation formula (2 :3 ) ,  together with ex press ions ( 32)  
a.nd (33) , i ll1ply that 

aBd 

� ll<'N,N0) .� ( . ) = Il (N- l ,N °+l ) f' { .. ) d J J .r. J .r: , . ;C 

d� n;(N,N" ) f{x )  = n; (N+1 .N°-l )  f'(x ) . 

Note th at formulae (32) and (33) also hold for N = 0 and N* = 2l( = A! � 2 , by j ust 
identi fying <I>o(x )  = 6(x) and <I>o,M ( ;r: )  = 6M(X ) ,  Denoting \]i�,M (X )  = -26M (2x- 1 ) ,  
a.nd  Ils ing formula ( 22 )  we get. t.he following expression for the der ivatives of 6M { :c ) .  

Theorem 3 .2  Whmevel' \]i:,M_s ( ;r: ) is a well defined junction, then 

dS 6 ( ) ( '  ) S- l , Tr * (X + 1 [ / ]) dxs � M x = - 2  '.I:' . ,M - s  -2 - - s 2 , 

wh ere [s/2] stands fo '" the intege,' part of s/2 .  

As all example, consider M = 6 .  Thus 

6' ( :r. + 1 ) 0"(· ) ,T, * ( x - 1 ) d 8"'( ' 
,T, ( x  - 1 

) � 6 ( ·T )  = W 1 ,5 *  -2 - '  6 x = - 2 '.1:' 2 ,4 -2 - '  an 
� 6  ;1: ) 

= 
4 '.1:' 3,3* -2- . 



4 ' PETROV-G ALERKIN AND C O L L O C ATION 

METHO D S  

A s  i n  [30] , we consider here the periodic i l l itia.l value problcm for thc consta.nt 
coefficient different ia.l eq nation 

,\, 11. ( D ) p _ '1'"1 
Ut = L... p=O ap ox U = L/U . 
tt (,r" O )  = 'll o ( ;r, ) ,  
u ( x , l )  I -periodic in  s pace . 

The G a.lerkin method described in th is section is based on bior thogonal frameworks 
{ Y:i , �n corresponding to spl ine dual function s <li = <liN and <li* = <liN,N. ' Olle of 
the fami l ies of basic funct ions , say <lij,k (X ) ,  are used as trial fun ct ions , and i ts dual 
fami ly <li.i,k ( x ) are the test functions . This means that we shall approximate the 
exact solut iou of (34) by 

llj (X ,  t) = L Uk ( l )<lij,k (X ) , 
k 

where [Tk ( t) = Uk+2J ( t )  ate periodi c coefficients thaI. must be determined by requi ring 
1lj t - DUj to be orthogonal to Vj. Tba.t i s , 

( 36)  
for a.1 l  I E Z .  It  is assumed tha.t the basic functions have the regulari ty properties 
required i n  order that (36 )  makes sense ( using in tegration by parts when neces­
sary ) .  The ini t ial coudi tions Uk (O) ,  k: E Z, are the coeIIlcients of some approxi mat. ion 
llj (:'c , O )  of  the i ni t ial data uo(;:r,) .  
The equat iolJ s in (:36 )  can b e  expressed as the following system o f  ordinary differen­
t ial equa.tions 

d U = B U fit ( 37 )  

where U( l )  is a. vect.or with compo.; leuts Uk ( t )  aud B is a. matrix with ent r ies b1k 
gi ven by 

Jl b1k = L 2P,ifp (k - I) ,  
p=O 

and 

l'p (rn) = fp,N,N. (m) = ( - 1 )" in DP-S ip* (y )D" ip (y  + m)dy .  
Here f) = (;�r and the index 0 ::; S ::; ]J i :;  i l l L rod ucced i ll order to hamlle po:;si b le  
l ack o[ regular i ty of  L he basic functions .  For i nstance, le t, N = 0 allu 111 be an even 
int.eger . For t.h is  cas e ,  <Po (x )  = 6(:1: ) and <P�.M (:c )  = 0 M ( x ) ,  and s i s  always set equal 
to O. Thus,  I']J (m)  = DP OJ\,f ( - m ) , which can be ca.lcu lat.ed using Theorem 3 .2 .  Note 
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that , in this  case the above · formula,tion is just the collocation method, and equation 
( :JG )  reduces to 

( 38) 
for all 1 E Z ,  where xi = 12-;. 

The foll owing result is a co nsequence of the relations (32) and (33) . 

Theorem 4 . 1  Let Al = N + N* be an even inl e.qer. Then the system of ordinary 
dilJercnlial equations (.'17) depends ouly on M .  
Proof. Let us consider the case of odd integers N and N* . Usi ng i ntegrat. ion by 

parts,  a.nd the relat ion of derivati ves and primitives (32) and (33) , we have 

fl" N,N· (m) = ( _ I )a+1 f
a 

DP-a-l �N,N. (y ) D8+1 �N(Y  + m)dy 
= ( - l ) S+ l f

a 
DP-s-l �N,No (y) lr [�N-l (Y  + m) - �N-l (Y + m - 1 )] dy 

= ( - 1 )" f
a 

DP-s-l [�N,N ' (Y + 1 )  - �N,N ' ( Y )] DS�N_ l (Y + m)dy 
= ( - 1 )" fa DP-S'PN_l ,N°+1 (y)DS'PN_l (Y + m)dy 
= fp,N- l ,N ·+ l (m) . 

The case of even N and N* can be considered i n  a.n analogous way. 0 
I II [3] t he au thors establ ish the eq u i valence of the l i near system arising in a wavelet-

- G alcr k i n  form ulation using Daubed;ies'  scaling fU Ilctions of compact support and 
those coming from a collocation method based on approximating trial spaces gener­

ated by t.heir au tocorrelation fun ctions .  Therefore, by vi rtue of the above theorem 
and of Remark 3 . 1 ,  the fol lowing results hold.  

Corollary 4 . 1  Let  M = 2[( . Ap(l 1·t from the choice of inicial (lata  U ( O ) ,  lhe lol­
lowing 11 1L 1 I L e 1 'ical methods jor problem (34) are eqlLivalent:  

• The Petrov-Galerkin method using biorthogonal spline scaling junctions 'P = 
�N and <{)* = �N,N0 with N + N* = M .  

• Th e Galerkin method using � = �* = /\ <l> ,  the orthogonal Da-ubechics ' scaling 
function S'UllPll1'l cd in [0, 2]( - 1 ] . 

• The collocation me thod based on the interpolatory scaling junctions SM . 
\Ve can also prove that the methods mentioned above may provide very accurate 
approx i m ations of exact regular solut ions at the nodes with a superconvergence rate 
O(2-i(M -II'» ) ,  provided that the approximate ini t ial data is chosen properly. The 
proof uses qui t.e sta.ndard argumen ts  that have already been successful ly ap p l ied for 
usual spl ine based methods [3 1] as well as in the wavelet context ( [ 1 4] ,  [ 1 5] ) .  
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5 FINAL REMARK S 

Iu t h i s  paper we discllss �he use of lUult irec:olu l. i o l l  analyses and their associ at.ed 
scaling functions as bases in Galerkin ,  Petrov- G alerkin and collocation methods.  
W<' a.l I alyse the  speci fi c  case of scal ing  fuuctions whose refinemen t m asks cOllle from 

d i fferen t. factoriut\,iolls of the same l inear- pha.se halfballd maxflat fi l ter. We :-;l low 
t.he equ i valellce of these methods w hen they are applied to l i near constant coclli­
cients di fferential equ a.t. ions with periodic  boundary couditions.  However , t.here arc 
s i t ll at. io l l fl  where these schemes m ay be really d i ffercu i .  Th is  is the subject. of (l, ncx t 
1 >'\.1)('1' w h i ch is in progress . For i ll fl t.ance, i n  the ] HeIJenCe of nOl l-coll s t all t. codIi ­
cien t s ,  1 I0nl inear terms or nonperiod i c  boulldary cOll di tions.  Fu rthermore, the mai l l  

advan tages o f  methods based o n  multiresol ution analyses a.re better a.pp reciated i f  
the problems are discretized with wavelet basis instead o f  t h e  scal ing fU Il ct io ll hasis  
( 1 9] . When a.p plied to i rregular s ituf).-t.ions showing local ized s ingular behaviou r ,  t he 
multiresol ution structu re of wavelet. bases provi des a simple way to a.dapt cOlll p u t a­

tiona.! refinements  to the local regu larity of the solution (d. [22] , [23] , [  1 ] ,  [ 18] ,  [5] and 
[8] ) .  The wavelet framework also allows sparse and well-cond itioned representation 
of operators ( [4] , [9] , [6] ) .  In all t 1 lCse applications , a spli ne biorthogollal set.t i ng 
m ay show several good properties , as discussed in [2 1 ] .  
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