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ABSTRACT. In [Na-4] we presented an abstract framework in which the spec-
trum of a linear operator can be computed through a characteristic equation. In
the present note this is combined with the Perron - Frobenius spectral theory for

positive operators in order to obtain simple stability criteria for the solutions of

the associated Cauchy problem.

1. INTRODUCTION

“Stability” is the most searched for property of solutions of linear abstract Cauchy
problems

u'(t) = Au(t), u(0)==o. (ACP)

Here, A : ’D(A) C X — X is a linear operator on the Banach space X and,
supposing (ACP) to be well posed, the (mild) solution is given by

u(t) = T(t)zo

with (T'(t)):>0 the semigroup generated by A. It is well known that stability
properties of the semigroup (T'(t)):>0 can be characterized by spectral properties
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of the generator A. We refer to [Ne] for a recent and systematic discussion of
these phenomena (see also [Ar-2]) and concentrate here on (uniform) exponential
stability which means that there exist constants M > 1,€e > 0 such that

1T < Me™*

for all ¢ > 0. In many (but not all) cases uniform exponential stability is implied
by the negativity of the spectral bound of A, i.e.,

s(A) :==sup{Re A : A € 0(4)} <0

(see [Ne], Chapter 3). It therefore remains a primordial task to determine (or to
estimate) the spectrum o (A) or the spectral bound s(A) of the operator A. In
[Na-4] we proposed an abstract framework how this can be done through so called
characteristic equations. However, these equations can be quite complex making it
difficult to estimate s(A). In this note we show how positivity assumptions on the
operators involved facilitate considerably this task and yield some simple stability
criteria. For the necessary background on positive semigroups and their spectral

theory we refer to [Na-1].

2. ABSTRACT FRAMEWORK

Our setup will be similar to the one in [Na-4], but we now add hypotheses involving

ordered Banach spaces and positive operators.

2.1 Assumptions. Throughout this section we allways assume the following.
(A1) The Banach space X := X; x X3 is the product of two Banach lattices X;
and X. :

(A2) The unperturbed operator Ay : D(Ag) C X — X is the generator of
a strongly continuous semigroup of positive operators. Hence, it has a
positive resolvent (see [Ar-1]) which is given as a 2 x 2 operator matrix, i.e.,
there exists w € R such that

0 < R(A, Ao) = (Rij(N))2xz

for all A > w.

(As) The perturbation B : D(Ag) C X — X is a positive operator such that
0 <BR(M Ap) € L(X) for all A > w. - ‘
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(A4) The operator we are interested in is
.A = .A() + B

with D(A) = D(Ao).
Under these assumptions we can apply Theorem 2.4 from [Na-4] in order to de-
termine (parts of) the spectrum o(A) through a characteristic equation in Xj.
However, being mainly interested in s(.A) ouly, we now use the Perron - Frobe-

nius spectral theory from [Na-1]. Its fundamental result is stated in the following
lemma (see [Na-1], C-III, Theorem 1.1).

2.2 Lemma. Let A:D(A) C X — X be a linear operator with positive resolvent

on the Banach lattice X. Then its spectral bound s(A) is characterized as

s(A) =inf{) € p(A)NR: R(\, 4) > 0}

and satisfies

s(A) € a(A).

Note also that for bounded positive operators T' € L(X) the spectral bound s(T)
coincides with the spectral radius r(T) := sup{|]A\| : A € o(T)} and therefore
the same statements hold for r(T). Combining the perturbation techniques from

[Na-4] with the above lemma enables us to obtain our main result.

2.3 Theorem. Let the operators A, Ag and B satisfy the assumptions (A1) —(A4)

0 B
and assume that B is of the form B = (0 0 ) . Then for every (¢t > w the following

assertions are equivalent.

(a) s(A) <p.

(b) r(BRn () <1

(b*) (Id — BRg31(p)) is invertible with positive inverse.
(b*) S, (B Ras ()" < co.

Before proving this result we briefly comment on the implication (b) = () stating
that in order to have Re A < p for all complex numbers A € o(.A) it suffices to look
~ at the value of the real valued function £ : A — £()) := r(BRz1())) at the point
A = p. Here, BR3;()) is a positive operator on the Banach lattice X; satisfying
BR31(A1) < BR31()A2) for w < A2 < A;. Therefore {(-) is a decreasing function
and in order to have s(A) < p it suffices to test the value of £(-) in A = p only.
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/Prbof of Theorem 2.3. We first observe that for A > w one has A € p(A4o) and
therefore the operator
(\ = A) = [Id = BR(\, Ao))(A — Ao) (%)

is invertible if and only if y

Id 0 /0 B RI;(A) Ri2(N)
[Id = BR(A, Ao)] = ( ) - ( > ( . )
0 Id 00 R21()\) Raz(N)
Id — BRz'] (/\) - BR22(/\)
( 0 Id >

is invertible. This is the case if and only if (Id — BRy;())) is invertible on X;.

The matrix rules for operator matrices (see [Na-2] or [En]) then yield
RO\ A) = <R11(/\) RIZ()‘)> ((Id — BRy (M)~ (Id— BR21(>\))_IBR22(>\)> .
i Ra1(N) Raz(\) 0 1d
We now show (a) = (b). From Lemma 2.2 we know that s(A) < u if and only if
p € p(A) and R(u, A) is positive. Then the above identities (*) and (**) imply
1 € p(BR31(p)). Since

r(BRai (1)) =inf{\ € p(BRy1(p)) NR: R(A, BRa1(p)) 20} (¥ %)

(see the observation following Lemma 2.2) it suffices to show that

" R:=R(1,BRy () = (Id — BRyy (1))~}

(#)

is a positive operator. Assume to the contrary that there exists 0 < 3 € X, ‘such

: ¢
that Re; 2 0. Since R(u,Ao)*X] is weak*-dense in X}, we find 0 < ¢1 €
: » 2 '

X7 x X7 = X* satisfying

Rz \ | Kz
(e
This implies that
z] ?1 3 R RBR3;(p) T . [ ¢
(e () (2 )) =006 ) (5) e ()

is negative, thus contradicting the positivity of R(u,A). (b) = (a). By the above
considerations we immediatcly obtain p € p(A). Moreover, since R(u,Ao) is
positive, we conclude from the above matrix representation that R(y, A) is positive
‘whenever (Id — BRy;(p))~! is positive. This follows since BR21(u) is a positive
operator satisfying r(BR2; (1)) < 1. The equivalences (b) & (b*) & (b**) are
consequences of standard spectral theory and the characterization of the spectral

radius of a bounded, positive operator as in (% * *). &
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In order to obtain a stability criterion it suffices to assume w < 0 and take u =0
in the above theorem. This becomes particularly useful if the factor space Xjis
finite dimensional. In this case we identify the operator BR;;(0) € £(X,) with a
n X n - matrix and write (BR2;(0))kxk for the upper left & x & - submatrix for
each 1 <k <n.

2.4 Corollary. In addition to the assumptions of Theorem 2.3 let w < 0 and
suppose dim X; = n. Then the following assertions are equivalent.

(a) s(A)<0

(b) r(BR:(0)) <1

(c) (=1)¥1det ((BR2;1(0) — Id)kxk) <0 for 1 <k < n.

Proof. It suffices to observe that BRy;(0) — Id is a matrix with positive off-

diagonal elements and that (b) implies
S(BRzl (0) — Id) <0.

Apply now one of the many characterizations from [Be-P]] for so called M-matrices

in order to obtain (c) or other equivalent statements. &

3. EXAMPLE

All the examples discussed in Section 3 of [Na-4] fit into the above framework
once (in Example 3.1 and 3.2) some natural positivity assumptions are added. We
therefore restrict ourselves to one more example and consider hyperbolic systems
with dynamic boundary conditions as studied in [N-Sr-L], [Na-3], Section 4 or [En],
Chapter II, Example 2.18. To the equations ‘

u(t, z) = aug(t, )

v(t,z) = —dvg(t, )
for 0 < z < 1,0 <t we associate the dynamic boundary conditions
d
—(ﬁ(»—au(t, 0) +v(¢,0)) = u(¢,0)+ v(¢,0))

= (u(t,1) - o(t,1))

H

‘u(t, 1)+ v(t, 1)

and the initial conditions

u(0,-) =uo, v(0,-) = vo.
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This situation can be described by the following operator theoretic model. On
= (L'[0,1] x L'[0,1]) x (C x C) take the operator matrix

(aﬁ 0 ) 0 0
_{\No0o —af) 0 o0
Ao := 0 0 0 0
0 0 0 0
with domain
; | f(0) ‘ (0)
! o g 1, ] —af(0 +g\0 = T
D(AO)'_ z f,gEW ,yGC f(l)—ﬂg(l) =y
Y
Given '
0 0 0 O
B = 0 0 0 0} (0 O
T do do _ 0 0]~ \B 0
& & 0 O :

as perturbing operator we want to estimate the spectral bound s(.A) of
A = Ao + B.

In order to satisfy the positivity assumptions in Theorem 2.3 we assume
0<e¢d,a,pB.

As a first task we have to compute R(),Ap). This can be taken from [Na-3],
Section 4, Step 4. Omne only has to observe that we changed here the sign in the first
boundary condition in order to obtain positivity. Using essentially the notation
from that paper and noting that the operator Ao has positive resolvent (see [Na-
3], Section 3.3) we obtain the following explicit representation for R‘(A‘, Ap), thus
satisfying Assumption (Az) for w := sup(0, a“fb In(af3)). Here, we write €,(s) 1=
et for0<s<1land ueC

3.1 Lemma. Take 0# A £ C and ¢ := —(a + d)/ad such that
€M) :=1—afe £0

c -A/a
Ky = — (ﬁeA eva € e )

e-xje ce My
Then X\ € p(Ao) and the resolvent is

and define
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Since the perturbing operator B is positive we can apply Theorem 2.3 and Corollary

2.4 in order to obtain the following stahility criterion.

3.2 Proposition. Under the above assumptions and for p > w the following

assertions are equivalent.

(a)
(b)
(b*)

(c)

s(A) < p.
(LBIK,) < 1.

The spectral radius of the 2 x 2-matrix

- 1 1 4 BeH© (1+a)e"‘/“
B.K;l, = Z(_/E <(1 +ﬁ)e—p/d 14 aekhc )

is smaller than .

The inequalities

1+ Betc
— <1
IZ40)
and
(I+a)(1+B)e < (1 +ae® — pé(p))(1 + Be* — pug(p))
. hold.
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