
Revista de la 
Union M atematica Argentina 
Volumen 4 1 ,  I ,  J 998. 

9 1  

STABILITY CRITERIA THROUGH CHARACTERISTIC 
EQUATIONS OF LINEAR OPERATORS 

Rainer Nagel-

Mathematisches Institut , Ulliversitat Tiibingen, 
Auf der Morgenstelle 10 ,  D-72076 Tiibingen , Germany 

e-mail: rana@michelangelo.mathematik.uni-tuebingen. de 

D edicated to the memory of J. Bouillet 

ABSTRACT.  In [Na-4} we presented an abstract framework in which the spec­

trum of a linear operator can be computed through a characteristic equation . In 

tIle present note this is combined with the Perron - Frobenius spectral theory for 

positive operators in order to obtain simple stabili ty cri teria for the solu tions of 

tIle associated Cauchy problem. 

1 .  INTROD UCTION 

"Stability" is the most searched for property of solutions of linear abstract Cauchy 

problems 

u' (t )  = Au (t) , u (O) = Xo • (ACP) 

Here, A : D(A) C X --t X is a linear operator on the B anach space X and ,  

supposing (ACP) to be well posed , the (mild) solution i s  given by 

u(t )  = T(t)xo 

with (T(t ) k ::o the semigroup generated by A. It is well known that stability 

properties of the semigroup (T(t)h>o can be characterized by spectral properties 
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of the generator A. We refer to [Ne] for a recent and systematic discussion of 

these phenomena (see also [Ar-2] ) and concentrate here on (uniform) exponential 

stability which means that there exist constants M � 1 ,  € > 0 such that 

for all t 2: o .  In many (but not all) cases uniform exponential stability is implied 
by the negativity of the spectral bound of A, i .e. , 

s (A) : =  sup{Re A : A E. O'(A)} < 0 

(see [N e] , Chapter 3 ) .  It therefore remains a primordial task to determine (or to 
estimate) the spectrum o- (A) or the spectral bound s (A) of the operator A. In 
[Na-4] we proposed an abstract framework how this can be done through so called 
characteristic equations. However , these equations can be quite complex making it 

difficult to estimate s (A) . In this note we show how positivity assumptions on the 
operators involved facilitate considerably this task and yield some simple stab.ility 

criteria. For the necessary background on positive semigroups and their spectral 
theory we refer to [N a- I] . 

2 .  ABSTRACT FRAMEWORK 

Our setup will be  similar to the one in [Na-4] , but we now add hypotheses involving 
ordered Banach spaces and positive operators . 

2 . 1  Assumptions. Throughout this section we always assume the following. 
(AI ) The Banach space X : =  Xl X X2 is the product of two Banach lattices Xl 

and X2 • 
(Az ) The unperturbed operator Au : D(Ao ) C X -t X is the generator of 

a strongly continuous semigroup of positive operators . Hence, it has a 
posi tive resolvent (flee [Ar- I ] )  which is given as a 2 x 2 operator matrix , i .e . , 

there exists w E R such that 

for all A > W .  

(A3 ) The perturbation B : D(Ao ) C X -t X i s  a positive operator such that 

o � BR(A,  Ao ) E £(X) for all A > w .  
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(A4 ) The operator we are interested in is 

A := Ao + B 
with D(A} = D(Ao ) .  

Under these assumptions we can apply Theorem 2 . 4  from [Na-4] i n  order t o  de­
termine (parts of) the spectrum O"(A) through a characteristic equation in Xl ' 
However , being mainly iuterested in s eA) ouly, we now use the Perron - Frobe­
nius spectral theory from [Na- I ] .  Its fundamental result is stated in the following 
lemma (see [Na- I ] ,  C-III, Theorem 1 . 1 ) .  

2 . 2  Lemma. Let A :  DCA) e X  -t X b e  a linear operator wi tb positive resolven t 

on tile Banacb lattice X .  Tben its spectral bound s eA) is cllaracterized as 

s eA) = inf{A E peA) n lR : R(A ,  A) 2: o} 

and satisfies 

s eA) E O"(A) . 

Note also that for bounded positive operators T E C(X) the spectral bound s eT) 
coincides with the spectral radius reT) : =  SUp{ I A I  : A E O"(T) }  and therefore 
the same statements hold for reT) . Combining the perturbation techniques from 

[Na-4] with the above lemma enables us to obtain our main result . 

2 . 3  Theorem. Let tbe operators A, Ao an d B satisfy tile assumptions (AI ) - (A4 ) 

an d assume that B is of tile form B = ( 0 B
) . Then for every ft > w the following 

. 0 0 
assertions are equivalen t. 

(a) 
(b) 

s eA) < j.L. 
r (BR21 {ft) )  < 1 .  

(b* ) (I d - BR2l (ft) )  is inverti ble with posi tive inverse. 

(b* * )  I:�=o l l (BR2 l ( '.L) ) n l l  < 00 .  

Before proving this result we briefly comment on the implication (b) => ( a) stating 

that in order to have Re A < ft for all complex numbers A E O"(A) it suffices to look 
at the value of the real valued functio� � : A -t � (A ) := r(BR2l (A ) )  at the point 
A = ft. Here, BR2l (A )  is a positive operator on the Banach lattice Xl satisfying 

BR21 (A l ) :s; BR21 (A 2 )  for w < A2 :s; AI ' Therefore � ( - )  is a decreasing function 

and in order to have s eA) < ft it suffices to test the value of �( . ) in A = ft only. 
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Proof of Theorem 2. 3 . We first observe that for A > W one has A E p(Ao ) and 

therefore the operator 

(A - A) = [I d - BR(A , Ao)J ('\ - Ao) 
is invertible if and only if 

(

Id 0 ) ( 0 B

) 

(Rl 1 ('\) R12 (A)

.

) 
[Id - BR(A , Ao )] = - . o Id 0 0 R21 (A) R22 (A) 

= 
C

d - B

�

' (A) �:R"(A» ) 

is invertible. This is the case if and only if (I d � B R21 (,\  ) ) is invertible on Xl . 
The matrix rules for operator matrices (see [Na-2] or [En] )  then yield 

( Rl l  ( /\) R1 2 (A) )  ( (I d - BR21 (A))- l (I d - BR21 (,\) ) "",1 BR22 (A) ) 
R(A , A) = . 

: R21 (,\) R22 (A) 0 I d 
We now show ( a) =} (b) . From Lemma 2 .2  we know that s (A) < /l. if and only if 
/l. E p(A) and R(/l. , A) is positive. Then the above identities ( * ) and ( * * ) imply 

1 E p(BR21 (/l.) ) . Since 

r(BR21 (/l.) ) = inf{'\ E p(BR21 (/l.) )  n IR :  R(A , BR21 (/l.) )  � O }  ( * * * ) 
(see the observation following Lemma 2 .2 ) it suffices to show that 

R := R( 1 , BR21 (/l.) )  = (Id - BR21 (/l.)) -1 

is a positive operator. Assume to the contrary that there exi�ts 0 < X l  E Xl ' such 

that RXI 1. O . Since R(/l. , Ao ) * X+. is weak" -dense in X+ ' we find 0 :::; ( :: ) E 

X; :>< X; = X* satisfying 

This implies that 

(R(�, A) ( "; ) , ( :: ) ) = ( ( � 
R
�
R
"
(
�» ) ( "; ) , R(� , Ao ) ' e: ) ) 

is negative, thus contradicting the positivity of R(/l., A) .  (b) =} (a) . By the above 

considerations we immediately obtain /l. E p( A) . Moreover , since R(/l. , Ao ) is 

positive ,  we conclude from the above matrix representation that R(/l., A) is positive 
whenever (Id - BR21 (/l.) ) - 1 is positive. This follows since BR21 (/l.) is a positive 

operator satisfying r(BR21 (/l.) )  < 1 .  The equivalences (b) ¢;. (b* ) {:? (b** ) are 

consequences of standard spectral theory and the characterization of the spectral 

radius of a bounded, positive operator as in ( * * * ) . 

( 
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In order to obtain a stability criterion it suffices to assume w < 0 and take fJ. = 0 

in the above theorem. This becomes particularly useful if the factor space X1 is 

finite dimensional . In this case we identify the operator BR.l.1 (O)  E 'c(Xd with a 

n X n - matrix alllI write (BRzl (O ) h X k  for the upper left k X k - sulHlUL�l'ix for 
each 1 :S k :S n .  

2.4 Corollary. In addi tion to tbe assump tions of Tbeorem 2. 3 let w < 0 and 

suppose dim Xl = n .  Tllen tbe following assertiol1S are equivalent .  

(a) s (A) < 0 

(b) l' (BR2 1  (0 ) )  < 1 
(c) (_ I ) k+1  det ( (BR2 J (0) - I dh x k ) < 0 for 1 :S k :S n .  

Proof. I t  suffices to  observe that BRz I  (0) - I d is a matrix with positive ofl'­

diagonal clcments and that (b) implics 

s (BR21 (0 )  - I d) < O .  

Apply now one of the many characterizations from [Be-PI] for so  called M-matrices 
in order to obtain (c) or o ther equivalent statements .  

3 .  EXAMPLE 

All the examples discussed in Section 3 of [N a-4] fit into the above framework 
once ( in Example 3 . 1  and 3 .2 )  some natural positivity assumptions are added. We 
therefore restrict ourselves to one more example and consider hyperbolic systems 
with dynamic boundary conditions as studied in [N-Sr-L) , [Na-3 ] ' Section 4 or [En] , 
Chapter II ,  Example 2 . 1 8 .  To the equations 

1i ( t , x )  = aux (t , x)  

v ( t , x )  = -dvx (t , x)  

for 0 :S x :S 1 , 0 :S t we associate the dynamic boundary conditions 

d 
dt (- au (t , 0) + v( t ,  0 ) )  = u(t , O ) + v( t ,  0) )  

::
t 

(u ( t ,  1 )  - f3v(t ,  1 ) )  = u(t , 1 ) + v( t ,  1 ) 
and the initial conditions 

u (O , · ) = uo , v (O , · ) = vo . 
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Ao := _�-iL ) dx o 
o 

with domain 

{ ( � ) 

1 1  "., -o:f(O) + g(O) D(Ao )  := � :  f, g E W ' ; x , y E 1\...; f( l ) _ f3g( l )  

Given 
( 0 

13 : = . (�o 
01 

o 0 
o 0 

�� ) � 

= 
= 

as perturbing operator we want to estimate the spectral bound s eA) of 

A := Ao + 13 .  

In order t o  satisfy the positivity assumptions i n  Theorem 2 . 3  w e  assume 

O < a , d, o: , f3 . 

On 

As a first task we have to compute R(A ,  Ao ) .  This can be taken from [Na-3] , 
Section 4 ,  Step 4 . .one only has to observe that we changed here the sign in the first 
boundary condition in order to obtain positivity. Using essentially the notation 
from that paper and noting that the operator Ao has positive resolvent ( see [Na-
3] , Section 3 .3 )  we obtain the following explicit representation for R(>.. , Ao ) ,  thus 

satisfying Assumption (A2 ) for w := sup(O, a'1b In(o:f3) ) . Here, we write fp (S) : =  

eP·' for 0 ::; S ::; 1 and f-l E C. 

3 . 1  Lemma. Ta.ke 0 ¥- A E C a.nd c : =  - (a + d) /ad such tl1a.t 
�(A)  := 1 - o:f3ec>, ¥- 0 

arld define 
1(>. :

= 
_1_ ( f3e>,cf>./a 
e (A) C>./d 

Then A E p(Ao )  and the resolvent is 

R(A A ) = ( R(A ,  Ao ) 
, 0  \ 0 
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Since the perturbing operator B is positi ve we can apply Theorem 2 .3  and Corollary 
2.4 in order to obtain the following sta1Jility criterion. 

3 . 2  Prop osition.  UllJcr tIle abovc W:J8Ulllp tiow; allJ for /1, > w the following 
n.'ls(::1'tioI1l; nre equivalcnt;. 
(a) s (A) < fJ, .  
(b) r( tBI<,.. ) < 1 .  
(b* )  TIle spectral radius of the 2 X 2-matrix 

1 ( 1 + {3e"'c 
BI<,.. = e (fJ,) (1 + (3)e-,../d 

is smaller than I), . 
(c) The inequalities 

and 

hold. 
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