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ABSTRACT. A non-classical initial boundary value problem for the non-homogeneous one-
dimensional heat equation for a semi-infinite material x > 0, with temperature or heat flux
boundary conditions on the face x = 0 is studied. It is not an standard heat conduction problem
because a heat source ®(x) ‘:'F(t)[,] is considered, where ¢ is a real function and G‘F(t) is a
functional on the heat flux uy(0,.), for all t > 0. Existence and uniqueness of solution is proved
under suitable assumptions on data. A priori estiinates, continuous and monotone dependence

upon the data and thé asymptotic behavior of the solution are also analized for the particular
case F(, (V(.),.) =F(V(t),t)

L. INTRODUCTION
In this paper, the following nonlinear one-dimensional initial boundary-value problem for the
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heat conduction equation for a semi-infinite material is considered
\ (). ut(x,t) “uxX{xat') =®(x) (‘f}( ‘lx(ov-)a . )) (t) , x>0,t>0

(P) (2)  u(0,t)y=g(t) , for t >0

() u(x,0)=h(x) , for x> 0.

In problem (P), ®, h and g are real functions defined on Rt. Fis a functional, that is for any
t>0 and uy(0,.), %,y is a given function of t given by F(,)(uy(0,.),.) = (F(ux(0,.),)) ®)-

Some particular and interesting cases are the following

(4) %) (V(.),.);F(V(L),t), t>0,
t .

(5) ‘:‘F(t)(V(.),.)=F( JV(T) dr,t), t>0,
0

where F is a given function of two real variables.

Such problems can be thought as motivated by the modelling of a system of temperature
regulation in isotropic mediums, with the non-uniform source term &(x) ‘?F(t)(ux(o,.),.)
whichprovides a cooling or heating effect depending uppon the properties of ¥ (or F) related to

the course of the heat flux uy(0,t). For example, in cases such as (4) is supposed, when
(6) ®(x) >0 and  ug(0,t) Fug(0,0),6) > 0 if ug(0,t) # 0.

the source term is a cooler if uy(0,t) < 0 and a heather if uy(0,t) > 0.

For the case of a bounded domain, a class of problems when the heat source is uniform and
belongs to a given multivalued function from R into itself, was studied in [KePr] regarding
existence, uniquenees and asymptotic behavior. Other references on the subject are [GISpl,
GISp2, Ke]. Some results concerning the particular situation in which ®(x)=const >.0, g(t)=0,

':',F(L) given by (4), were obtained in [Vi, TaVi].

In Section 1I, existence and uniqueness of solution for (P) is proved. The solution u of problem
(P) has an integral representation given by (I[-10) where V(t) = uy(0,t) must satisfy a
functional integral equation of Volterra type given by (II-12). We give sufficient conditions on
data in order to obtain the existence and uniqueness for the corresponding integral equation; this
result is obtained by a generalization of the theory on intégral equation developed in chapter 8
and 20 of [Ca].

A priori estimates, continuous and monotone dependencé upon the data and an asymptotic
behavior of the solution are explicited in Scction: III for the case (4).

In Section IV, we also consider the following initial-boundary value problem for the

one—dimensional heat equation



101
(1) vi—Vax=0(x) ‘L'F(t)(v(O,.),.) , Xx>0,t>0,
(P (8) v(x,0)=hg(x) , x>0,
(9 vx(0,t)=go(t) , t.> 0.

We recall that problem (P’) can be reduced to the problem (P) by using the transformation (IV-
1) or (1V-3).

1. EXISTENCE AND UNIQUENESS
Let K be the fundamental solution of the one-dimensional heat equation, G and N the Green

and Neumann fynctions for x > 0, given by

e f ) — ] —(x-£)?
(l) }\(X,L,E,T)— 2\/7l'(t—-1') exl)( 4(L—T) )'y x,&>0, t > T,
(2) G(x,t;{,r):K(x,t;§,r)—K(-bx,t;'ﬁ,r), x,§>0, t > 7,
3) N(x,t; &, 7) = K(x,t; &, 7) + K(—x,t;¢,7), x,£>0, t >,

For data h=h(x), g=g(t) and €F=€F(t) in problem (P) we shall consider the following

assumptions:

(H1) h and g are continuously differentiable functions on Rt with
(4) h(0)=g(0) , |h(x)| < coexp(c;x’™€) , ¢ >0 , ¢, >0, € >0, forallx > 0;
(H2) @ is uniformly Hlder continuous in x for each compact subset of R ;

(H3) There exists
M=M(wat') > 0/ g(tz)(v(')’ ')_‘J(tl)(v(')")| <M |t’2—'t’1| y VYV e Sw(Uat')
(5)

forall0 <ty, t, <t ,

where Sy,(0,t) is the set of piecewise continuous functions on the interval [0,t] such that
(6) IVIg= sup |V(r)| £ w.
T €[0,t]

Roughly speaking, we say that “.F(t) is uniformly Lipschitz continuous for any subset of
Sw(0,t)x[0,t] for each t > 0 ;

(H4) There exists a positive and locally bounded function L=L(t), defined for t > 0, such that
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(7) . q(t)(vz(.), .)-—‘iF(t)(Vl(.),.)| S L) V= Vily s for all Vi, V, €S4(0,8) ;
(H5) Fy)©:)=0 , Vi> 0;

(H6) Function @ is such that there exists a positive monotone increasing function A =A(t),

defined for t > 0, which verifies

ty

(8) J’H,(tz—‘r)];(r)d‘r < A(tg—t) , >t >0
by

with

9 ‘ lim  A(t)=0

(9) 1m+ (t)

t—0

where R is defined, in function of @, by (14) (see below).
Under the preceding assumptions the theory developed in chapter 20 of [Ca] can be generalized

to obtain the following representation for the solution of problem (P)

t +oo
(10) u(x,t)=-2 JKx(x, t;0,7) g(r) d7 + I G(x,t;&,0) h(€) d€ +
0 0 ’

t
|
0

+o00 \
( [ G0 006 a6 3V ¢r
0

where the function V=V(t) defined by
(11) V(L) =uy,(0,t) , t >0

must satisfy the following functional integral equation of Volterra type

t
(12) V(t)=1(t) + J R(t=7) F(y(V(),.) dr

0
where

i & t &)
: =1 A exp(Z3) 0! - T T
(13) f(t)—\/;< i Jr el @ ae l t_Td)

T el
(14) Rz)=—21—— | cex o) ®(6) de .
2\/7r—zs/z !
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THEOREM 1.= Assume (H1) to (HG), then there exists a unique piecewise function V solution
of the functional integral equation (12). Therefore, u given by (10) is the unique solution of the

problem (P) in the class of functions which satisfies a growth condition of the form
(15) lux, Y| € C, exp(Cyx?)

where C, and Cjy are positive constants.

Before to prove the theorem 1 we shall give some sufficient conditions on data in order to clarily

the above hypothese.

Remark 1.— (I14) and (H5) imply tlxat.if(t) is bounded for bounded t and V € S,(0,t), that is

(16) 3C=C(w,t)/ I?f(t)(V(.), )I < C, for all V such that V], < w, with w>0,
with
(17) C=L(t) w. o

Remark 2.— If function ® verifies the inequality

(18) 0 < ®(x) < Cgexp(Cyx¥) , Vx>0 withCy >0,C; >0

then
. 4C 1 . 1
i R(t) < o if t < i
) @) O = VTt (1-4Cyt) 4G
ty
R ar < =S ¢ 4,—t) i C <l
(i1) J (t,=7)dr < —\/?—a oltz—ty) 1 1 T(t,—t;)
1

where {, = f(t), defined by

1+2/Ct
(20) ro(t)=1og<%—ﬁi_-:—)

is a monotone increasing function over the domain [0,4—%3—) with lim +fo(t)=0 . u]
1 t—

Remark 3.— If ® verifies condition (18) and

(21) L(t) < Lyt" , n=0,1,..
then
to n
2C,Lyt
(22) JR(tZ—T) L(r)dr < _\/‘%_(_%2 fo(ty—t,) . O

151
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Remark 4.— If function & is given by

(23) ®(x) =&, . x", ®,=const. > 0, n=1,2,... .
then ‘
P n-1
(24) R(t) = —\—/—_% apt 2
where ‘
(25) oAy, =4""m! agm-1=2""1 2m-n m=1,2,...
Moreover
‘ by 20, ay n+1
(26) . JR(tz—r) dr = NoAT3! (ta—ty) % . 0
b
Proof of Theorem 1.— From (7) we deduce
(27) [R(t=T)F V() ) = R(AE=7) F(V(), )| S|R(E=7)| L(7) | Vo= Vilr s

where V; , V,€5y(0,t) and 0 <7 <t. Taking into account (II5), (8), (9) and (27), the

conclusion of the Theorem follows applying Th.8.2.1 of [Ca). u]

Remark 5.— (i) If the [unctional ‘Ef(t) is given by (1-4) then (5) and (7) must be replaced

respectively by
(28) , |F(Vit) =F(V,t)| < M(V) |tp—ty| , forall0<ty,t;<t,

(29)

F(Vyit)=F(V,t)| < L(t) | Vo= V4| , forallt>0
for all V, V, and V, in compact sets into R, and similarly condition (H5) must be replaced by
(30) : F(0,t)=0 , Vt>0.

(ii) If the functional ‘I( V) is given by (1-5) then (5) and (7) are verified whenever

(31) |F(V3,t) ~F(V3,0)] < Lo(t) [Va=V4|
(32) IF(V,t) = F(Vot)| € Ly(V) [zt
t
(53) L1< [vin dr> < LIV,
0
with
(31) M= ()4 La0)] - IV i) 0 6)

(35) L(t)=t Ly(t) in (7). o
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LEMMA 2.— Under the assumptions (H1), (112), ® € L*( R+) and

t t
There exist JL(T) dr and J L(r) dr for each t > 0
0

Vt—-71
(117) 0
h g b and 5§ € L2(RH)

the following estimates for the solution V=V(t) of the integral equation (12) and the function
u=u(x,t), given by (10), are obtained

@ IVl <, e p("q’" [ — df)
0

v e
t
6D Juxb)] < gl + Il +”¢"oo< [1e) “’)”V"t
where ’ |
@8 Il < Inlo+2 i, VE -

Proof. Taking into account (H7), (38) follows from (13). On the other hand, by (7), (H5) and
(H7), from (12) we find

t
» Il f L(r)
(39) VI < 0l + 7 l\/ﬁ'w"

and (30) follows from (39) by using a Gronwall’s inequality. The inequality (37) follows from
(10), taking into account (117) and the fact that

R
(40) £ OK s, 130,7) dr = —%( —erf(z\/"_))

+00 .
(41) l Gx, 4 €,7) d{:erf(z—\/rx-__—T-) ,

where
X .
(42) erf(x) = 2 Jexp( —u?) du ,
ﬁ 0
is the error function. a

II. QUALITATIVE ANALYSIS

In this section we shall consider the case (1-4), that is

(1) Ty (VO ) =PV (1) t>0
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where F satisfies the aditional condition

V.F(V,t) >0 , YV #0, Vt>0,
(2)

F(0,t) =0, Vt>0.

Moreover we suppose the following hypothese for data in problein (P)

(118) w'ot) >o, h(x) >0, Vx>0,
(1Y) gt) <0, Vi>0,

(1110) ¥(x) 20 , VYx>0.

LEMMA 3.- Under assumptions (H1), (H2), (H6), (1I-28), (11-29), (11-30), (2), (H8), (H9) and
(H10) we have that

(3) Vi) >0 , t>0

4) u(xt) >0 , x>0, t>0.

Proof.— We have V(0)=h/(0") > 0. On the other hand, the function v=v(x,t) defined by
(5) v(x,t) =uy(x,t)
satisfies the following heat conduction problem
Vi = Vex =P'(x) F[v(0,t),t] , x> 0,t >0
6) - vy(0,t) =g(t) — ®(0) F(v(0,t),t) , t >0
v(x,v 0)=h'(x) ., x>0 .
Then, we suppose that there exists a time t; > 0 such that
) V(t))=v(0,t) =0, V(t) = v(0,t) >0 , 0< t <t;.
Therefore, we have
(8) V(%) = Vg (X, 8) =@/(x) F(v(0,8),8) > 0 , x>0 , 0 <t <t,
and, from the maximum principle it follows
9) ‘ vix,t) 20 , x20,0<t<t .

Taking into account (7), the maximum principle implies that v (0,t;) > 0 which is

contradictory with
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(10) Vx(0sty) = §(t1) — 2(0) F(V(ty),41) = g(t1) < 0.

Hence, we conclude that (3) and (4) hold. ‘ ]

Now , we shall consider the continuous dependence of the [unctions V=V(t) and u=u(x,t)
given by (II-12) and (II-10) respectively upon the data h, g, ® and F.

Let us denote by V;=V;(t) (i=1,2) the solution of (II-12) and u;=u;(x,t) given by (1I-10)
respectively for data b, g;, ¢, and F (i=1,2) in problem (P). Then we obtain the following

results.

THEOREM 4.— Let us consider the problem (P) under assumptions. (Hl),‘(H2), (H6), (1I-
28) — (11-30), (2) and (H7) for L = L(t) and furthermore hi' 9,8 € L°°(R+) (i=1,2) . Then,

we obtain

: t
: L(r
(1) [Vo(®) = Vy(®)] < P(t)exp((||<1>1uLm(RJr)+|]<1>2||L0‘,(R+))2\1/7_r "[\/%dr), 0<t<T
where
. N 2 Ny s
12— 1]l oot b L)
(R™) L(r)
+§ = (IValeHvalh) l T
- (13) Juy(x,t) —uy(x,t)| < 82— "L°°(R+)+"h2"h1 "L°°(R+)+
‘ . t A
{105 0l g IV Vil 0 0 (¥l #1210 [y de

‘We recall that estimates for |Vo—V, ||y, ||Vy||gs || V2|¢ can be obtained from (11) and (11-36)
to be inserted in (13).

Proof.— From (II-12)—(1I-14) we can write
t

1) ViO-ViO=H0 6O+ [ (Ralt=r) FVyr) 1) =Ry(t=1) F(Vy(r), 7)) dr
0 .

and using the equality given by
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Ry(t=7) F(Vy(r), ) —Ry(t=7) F(Vy(r),r) = 1 {Rz(t —7) (F(V4(r), 1) = F(V4(7), 7)) +
(15) + Ry (6 = ) (F(V(r), 7) = F(Vy(r), 7)) 4 F(Vy(7), 7) (Rt = 7) —.Rl(t -)+
+ B(Vy(7),7) (Ry(t =) - Rl(t.—‘r))} , 0<r<t,
and the fact that - |
(16 0601 < [y + i ey V-

from (14) we find

17) |V2(") - v](t) I < “ h,2 —hll " LOO(R-I-) + _\}27 “ 82-8; ||L00(R+) \/t-‘ +
t Lo
510 oy (Vi 1Vl l T dr+

L(r)_

+ % (II @, ||L00(R+) + " 2, IILW(R+5) i ‘/'—

IVZ(T) V,(7) I dr .

Then, (11) follows from (17) using a Gronwall’s inequality. To obtain (13) we note that from

(11-10) we can write

t +00
(18) ug(x,t) —uy(x,t) = —2 JKx(x, t;0,7) (gz(‘r) - gl(r))d‘( + J G(x,t;&,0) (112(5) - hl(f))d{ +
0 0

+00 .
J J G(x,t;€.7) (I>2(§) F(Vy(r),7) = 2,(8) F(Vl('r),‘r))dfd'r
0 0 . :
Using the inequality
(19) |@5(€) F(V(r),7) = 1() F(Vy(7), 7)| < %(|‘1’1(€)+¢z(€)| |F(Vy(r),7) = F(Vy(7),7) | +
+ IF(V2("')vT) + F(Vl(T)’T)l |¢2(£)—(I>1(E) I)
~and equa;lities‘ (I1-40) and (1I-41), (13) follows from (18). This complete the proof of Theorem 30

Now, we shall consider a monotone property of the functions V;=V;(t) and u;=u;(x,t) for data

b;, g, ®; (i=1,2) and F in problem (P). Then, we obtain the following results.
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THEOREM 5. — Let us suppose the assumplions of Lemma 3 for data by, g;, ¥, (i=1, 2) and F.
Morcover, if I is an increasing function in the first variable, i.c.
(20) _ V, <V, implies F(Vyt) < F(Vy,t) , V>0
and data verify the relations

0 < By(0) < @4(0) , 0L9/(x) <Pf(x) , Vx>0,
(21) 0 <h)/(0) < h/(0) , 0<h)/(x) <h/(x) , Vx>0,
Bi(t) S By(t) <0, VE>0

then we have the following monotonicity propertics

(22) 0< Vy(t) SVy(t) » YE>0,
uzx(x,t) < ulx(x,t) y, Vx>0 , Vt>0.
Proof. — We define
(23) W(x,t) = uzx(x, L)v - ulx(x, t)
and we suppose that
(24) 0 < Vy(t) S V() , Vie(ty) , and Vy(ty) = V(ty).
Then, forx > 0 and 0 < t < t,, we oblain:
(25) Wi(x,t) = Wyx(x,t) = ,'(x) F(V,y(t), t) — @,'(x) F(V,(t), t) <

< B/(3) [F(V(0),1) = F(V,(0), 0] <0,

(26) W(x,0) = hy/(x) — b/(x) <0 ,
(27) W(0,1) = V(1) = V,(t) < 0 and W(0,t,) =0
(28) Wy(0,t) = g,(t) = &1(t) + 2,(0) F(V(1), t) — @,(0) F(Vy(t), t) >

> ©,(0) F(V4(t), t) — @,(0) F(Vy(t), t) = [P1(0) — 5(0)] F(Vy(t), t).

Therefore W < 0 and W(0,t,) = 0. From the imaximum principle we obtain that

W4(0,t,) < 0 which is contradictory with
(29) Wy(0,15) > [21(0) — @(0)] F(Vy(tg), t5) 20

Then, we have (22). n]
COROLLARY 6. — If the relation

(30) gt) < g(t),t>0
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is also assumed in Theorem 5 then we obtain the inequality
(31) uy(x,t) < uy(x, 1), x20,1>0. o

Now, let u;=uy(x,t), V;=V;(t) (i=1,2) be the functions given respectively by (lI-10) and
(11 — 12) for data F; and F,.

THEOREM 7.— If we consider the problem (P) under assumption (H1), (H2), (H6), (H7), (1I-
28) — (I1-30) and furthermore assume ¢ € L°°(|R+); then, the following continuous dependence

for u is obtained

(32) lug(x,t) —uy(x,0)| < B | I

2~ Fifym o x20,0<L T

with E is a positive constant, which depcnds on

(33) E:E(unbuLm(RJr),T).

The number M and the expression | Fy — T, "t M are defined by
)

el T
© M= (g 2l VE) exp< L®) [ 1o, dr>
0

and
(35 F,-F = sup Fo(z(r), 7))~ F(z(7), 7)| .
) IF2—Fiflg,m lzutSMIZ(()) 1(a(7), )|
0<7r<t

Proof.— From (1I-12) we have

<+ J goxp(- 4“ ) 5)d£)(F2(V2(T),'r)-—Fl(Vl(r),T)) dr

{
(36) Vi) =Vy) = - \‘/;i |

Taking into account the assumption on @, (34), (11-29) and the inequality
(37) le(Vz(")v 7)=F(Vy(7),7) ] < | Fa(Vy(r), 1) = Fy(Vy(7),7) l"‘ l Fo(Vi(r), 1) = Fy(V4(7),7) |

from (36) we obtain

2 H<l>||[c,o([R )
(38) [Vy(t) — Vi(t)] < *—‘\7—;—— IF2=Fyfle m vi+

LSS T L(r)

Vi Vs

and using a Gronwall’s inequality it follows that

[Va(r) = Vy(r) | dr
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2 el el oorpts b
(R : "LO®Y) [ L(7)
|\’2(t) - Vl(t)ls ———-L—-(——) ” Fy—TF, ”t,M \/E exp( (®T) !; ( ’T dT)

VT VT

(39)
0<t<T

On the other hand, in view of (35), (37) and (I[-29), from (1I-10) we find

t
qu(x,t) = uy(x, t)| < "q,"L°°([R+) | Fy—Fy "t.,M t + jL(‘r) |V2(T)—VI(T)|dT
(40) | 0

0<t<T
and (32) follows from (39) and (40). a

Now, we shall give a result on the asymplotic behavior of the solution u(x,l) when t goes to

infinity.

THEOREM 8. — Let us suppose the assumptions of Lemma 3 and
(11) h(x) > 0, ®(x) <0 inRT.
We obtain the following results :

(i)Ifg=0in Rt , then

(12) 0 < u(x,t) <ug(x,t) , x>0 ,t>0
where

+00
43) - uo(x,t)=I G(x,1;€,0) h(€) de .

0.

Moreover, we have

(44) u(x,t)=0, uniformly for x > 0.

lim
t,-—too

(i) 1f _
(45) Llim g(t)=0, g(t) >0, 0<-g(t) < Kexp(-at) (withK>0,a>0),1>0,
—00

then the aymptotic behavior of the solution u is also given by (44) for compact sets in R +.
Proof. — (i) The Lemma 3, conditions (41) and the maximum principle imply inequalities (42).
Then (44) follows from'(42) and (43).

(ii) From (11-10) we have

2 2/ L—T

t
(46) g(t) < u(x,t)=uy(x,t)+g(t) —g(0) erf( i(/i) - [erf( X )g(r)dr +
' 0
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t ,+oo
+ J ( J G(x, ;€ 7) B(E) (lf) F'(V(r),r)dr <
0 0

8

+

—

ax?) erf(z)
pr((lzz) 5 dz .

< ug(x,t) 4+ g(t) —5(0) crf(—\7.—-) + l\——exp( at)

|,

§

Taking into account that the following limit

+0o0
. 2 2 erl'(a) 1 f(
4 n X ol — el _ Lon(—x) =
(47) th»lgoo D exp(—al) J exp({1 zz) 3 dz tﬂ:zl]-oo & er .Z\/E) 0,
2\/5 '
then we obtain (44) for coinpact sets in R +. ' o

Remark 6. — Sowme results concerniug the fact that the control process (P) (with the source
term) is asymptotically faster than the corresponcing heat conduction problem (without the

source term) for the case g=0, that is

) 1
(18) TR c.51)

- =0
=400 UO(X,\Z) » X2 0 ’

are given in [Be'l'aVi]. o

Now, we shall present two examples with explicit solution for problem (P) in order to illustrate

cases in which the source ”controls” the difference l u(x,t) — ll(x)| in time.

Example 1.— Ve cousider

L
3

(19) ‘ff(t)(\/'(‘r),r)= J'V(a) de h(x):%- , g=0 , ®(x)=—x .

0
From (11-10), (11-12) we find

-3

(50) V(t)=2sent , u(x, t) =—§— + 2xsent .
Hence
(51) |u(x,t)—h(x)| < 2xlsin t] <2x , Vt>0 , Vx>0, u]

Example 2.— We consider
3

(52) FyV(Dri=d V), d>0 h(x)=%-, g=0 , @(x)=-

In this case, we find



113

. i « i 3 o
(53) V(t):%l-(l-—exp(—-dt)) , ulx, ) =2+ f_lx (1—exp(—dt)). .
Hence
(1) |u(x,t)-—h(x)] < —(2Tx (1 ~—exp(—dt)) g%x , Ye>0 , Vx>0,

Moreover, we see that there is a monotonicity dependence of u(x,t) upon the parameter d > 0

in the sense

(55) 0<dy <d; implies 0< u(d,l)(x,t) < u(dz) (x, ty, x>0 , t>0. 0O

IV. A GENERAL REMARK

A this point it is opportune to note that the procedure outlined in previous sections to study
problém (P) also applies to the analysis of problem (I').

In fact, problem (P’) can be reduced to problem (P), defining the function u=u(x,t) by

. X t
(1) u(x,t):Jv(z,t)dz+ Jg(,(r)dr,x>0,t>0.
0 0

LEMMA 9. — If v is a solution of problem (P’) then u, defined by (1), is a solution of problem

(P) with the following relations among data

X X t
(2) B(x)= Jd;(z) dz h(x)= J hy(z) dz g(t)= Igo(r) dr .
0 0 0

Conversely, if u is a solution of problem (P) then v defined by
(3) v(x,t) = uy(x,t)

is a solution of problem (P”) with the following relations among data

(4) PN =P, L) =), gell) = BV B(0) F()(uy(0,),.) O
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