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A priori estimates, Lagrangian coordinates
and the regularity of nonlinear diffusion equations *

Juan Luis Vazquez !
dedicated to the memory of our friend Julio Bouillet

1 Introduction

The second half of the XXth century has seen enormous progress in the application of
the techniques of {unctional analysis to investigale in a mathematically rigorous way
the properties of nonlinear partial dillerential equations and systems whiclh appear in
the different branches of continuum physics. Among the variety of problems which
received attention in this time from engineers, physicists, applied mathematicians and
analysts arc the problems of nonlinear diffusion and nonlinear heat propagation which
can be expressed in mathematical terms as nonlinear parzbolic equations. Some of these
equations are degenerate parabolic since the diffusivity matrix, which depends on the
solution u, vanishes for some values of u. The most typical example of such behaviour is
maybe the porous medium equation

(1) - u=Au™, m>1.

We can also consider a more general nonlinearity and then we get the so-called filtration
equation '

(2) ) Uy = Aq)(u)’

where @ is for instance a continuous increasing real function. ‘In this generality it
encompasses the famous Stefan problem, which as is well-known represents the simplest
model of heat propagation involving two phas:s and the presence of a latent heat in the
process of phase change. ‘

In the spring of 1983 I met Julio in Minneapolis, a rather happy time when both ol us
were visiting the School of Mathematics of the Univ. of Minnesota, a major institution
in the world of nonlinear PDEs, and problems like the above were a large part of our
frequent conversations on mathematics, an interest, that both of us kept and which in
later years we shared with a number of [riends. Julio was always enthusiastic (in his
rather pessimistic way) about these problems and in my opinion he deserves quite a share
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of the credit for the creation of an actie interest in Buenos Aires around such problems
in particular, and more generally in the mathematics of continuous media.

Belore proceeding with the mathematical contribution I would like to add a personal
comment on what [ recall about the work on the filtration equations at that time and also
on some of the people who influenced or were connected with us in that respect. Even
though such equations were already posed by Boussinesq at the beginning of the century in
the study of ground water infiltration, cf. [4], progress was slow for a long time. In the 50’s
the Moscow school contributed the first serious attack and basic results about exislence
and uniqueness of weak solutions as wecll as the property of linite speed of propagation,
with the corresponding existence of a {ree boundary, were established after the work of
such personalitics as . Polubarinova, Ya. Zeldovich, A. Kompaneets, G. Bareublatt, O.
Oleinik and collaborators. A program of investigation was gradually organized around
the problems of existence and uniqueness of suitable solutions for general data, regularity
(even continuity was a serious problem) of such solutions, behaviour and regularity of the
free boundary, asymptotic behaviour,... Such problems turned out to be far from trivial.
It was only around 1970 that the West became involved in the study through the work of
D. Aronson. A great activity ensued in the 70’s and early 80’s with beautiful analytical
results by a number of distinguished people, among them two Argentinian rescarchers,
professors in Minnesota at the time, L. Calffarelli and C. Kenig. The above-mentioned
program was almost completed in the 80’s, we were involved in it with a number of other
colleagues, among them N. Wolanski, and I will let the recollection at this point, not
without recalling that the preceding lines do not pretend to be a historical survey and
many important names and facts are omitted. The interested reader is referred to works
like [1], [14], [20] for more details on the suthors involved and the most recent mathematics.
Let me just say that Julio and I continud to keep a certain subject affinity and I will give
an example: several years ago we touchad the subject of large-time behaviour for solutions
of the PME with changing sign, a subject that had been settled by A. Friedman and S.
Kamin, [12], for nonnegative solutions. There was a paper by Kamin and myself [15] and
then another one by Ph. Bénilan and J. Bouillet [5], where they improve considerably our
results. On the other hand, I would like to mention that Julio was always interested in
travelling waves, finite propagation, shocks and particularly in the work of J. M. Burgers.
I was attracted to those subjects years later.

Let us now turn to the contents of the present paper. It deals with the regularity theory
of the PME and other similar equations. The solutions of such equations have a limited
regularity and one of the classical approaches to the qualitative theory proceeds tlirough
obtaining suitable a priori estimates. In the case of the PME Aronson and Bénilan (2]
discovered a type of pointwise estimate with surprising properties: it is simple-looking,
it is universal for the class of nonnegative solutions and it has far-reaching implications
in domains as dilferent as existence, asymptotic behaviour or free boundary regularity.
Unfortunately, the usual derivations of such estimates seem rather ad hoc. This is why
it is interesting to find a method to derive them from general and basic properties of
the equations under consideration. A will propose below one such method whose main
ingredients are the homogeneity of th:e equations, the transformation into Lagrangian
coordinates and the Maximum Principle for the transformed equation. The method can
be applied to a number of equations sharing a [ew basic properties, and some of them will
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be discussed below. Unfortunately, the argument does not work in more than one space
dimension and the [ailure is not only technical: the simplest corresponding result that the
samme method would produce in several dimensions is false. Since the Lype of estimates
holds in several dimensions, an open problem worth considering is to find similar or other
methods to prove the n-dimensional results.

2 Pointwise a priori estimates

We start with a continuous and nonnegative {unction u(z,!) defined in @ = R x {0, 00)
which solves in distribution sense the PME equation

(3) Uy = (um)a:z.
and takes initial data
4) u(z,0) = uo(z) >0, =z€R,

in some weak sense. Because of known density results we may assume for our purposes
that up is continuous and then the initial data are taken continuously. We may also
assume that ug € L' N L.

Our purpose at this stage is to review the a priori estimates on which the current
regularity theory for the PME is based. One of the first results (1950) in the theory of
the PME was the explicit construction of a class of solutions which came to be known

as the source type solutions and also Barenblatt solutions and are given by the formula
(valid in n dimensions)

?

2 \ /(m-1)
. —k T

where ‘
k=(m-1+2/n)"", D=k(m—-1j/2mn, C > 0 arbitrary.

For n = 1 we have k = 1/(m 4+ 1). These solutions turned out to be in many respects
the nonlinear equivalent of the fundamental solutions of the linear heat equation and as
such [undamental in the cnsuing theory, particularly in the work of Calffarelli. But at the
same time they exposed one of the main difliculties of such theory: these solutions are
not smooth. In fact, for m > 2 they are not even C! in space or time! Thus, the theory
had to call upon the concept of weak solutions. The problem: is then to investigate which
is the maximal regularity that general solutions satisfy.

In this respect it can be observed in (5) that the function U™! has a Lipschitz
smoothness independent of the expoenent m. Indeed, the use of (1) to model the {low of
an isentropic gas through a porous medium suggests considering the function

(6) : m= o _ymt

m—1

which represents the pressure of the flow and satisflies the equation

(7) m = (m — D)wAr - |Vr|2
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Then it is easily seen that the pressure II of the source type solution (5) has an inverse
parabolic shape as a function of z and more precxsdy it satisfies in the positivity set the
eslimate k

(8) All= -2,

Since 11 has Laplacian 0 on the null set {U = 0} and since on the free boundary the
Laplacian is (in the distribution sense) a positive measure, we finally obtain the inequality

(9) . Al > -% in T'(Q).

Establishing that this one-sided estimate holds for every nonnegative weak sclution of
the PME was a turning point in the theory and the basis of many later devclopments.
This was done by Aronson and Bénilan in a justly famous 3-page Note to the Comples
Rendus de ’Académie des Sciences de Paris in 1979, [2], which extends even to the range
0 < m <1 (called the fast diffusion equation).

THEOREM 2.1. For every classical positive solution of the porous mediumn equat:on
the pressure v satisfies

(10) Ar > -é in D'(Q).

By density the result is true for all nonnegative weak solutwns Actually, the result holds
Jorm > (n—2)/n.

Using (as an amusement) the sophisticated language borrowed from the theory of
Hamilton-Jacobi equations, we may say that the weak nonnegative solutions of the PME
belong to the class of semi-subharmonic functions. Unfortunately, general solutions need
not be semi-convex, though the source solution is because of its radial symmetry. Of
course, in 1D all solutions are semi-convex.

An important conseduénce of this fundamental estimate is the following useful estimate
which says that u is at least Lipschitz from below with respect to the time variable.
COROLLARY 2.1. For every solution as above we have
. U (m—-1)m
11 > —— >0 T
(11) W2 g M2
with k = (m — 1+ (2/n))™! as defined before.
The proof is based on the inequality m; > (m — 1)m A7 that follows immediately from
(7). (Let us mention for the record that in 1D = is actually Lipschitz, but the proof is not
so immediate. The result is false in several dimensions). In order to grasp the immediate

consequences of such estimates for the size and regularity of the solution the reader could
prove without much effort the following result in 1D.

COROLLARY 2.2. Let u be a solution of the PME with finite mass, i.e. [u(z,1)de =
M < oo. Then it is bounded and ils pressure has bounded spuce 4 gradien! fm t>7>0.
More precisely, we have the estimales

(12) u(z,t) < cMAmHD=1/m+1)

: m—1 m
o < eM*tP = , B= .
. (13) |7r | = ¢ o @ m+1 m+1
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It is remarkable that these are precisely the decay rates of the source-type solution,
hence they are optimal. Estimate (10) was alsc a key tool in the proof by Caffarelli-
Fricdiman (8] of the C'-regularity of tle interface in 1D after the wating time. The
conscquences in more space dimensions are nob as immediate but, in the hands of Bénilan-
Crandall-Picrre 7] and Aronson-Callarelli [3], estimate (10) allowed to produce a theory
of existence and uniqueness of solutions with optimal initial data.

So the problem is posed: such a simple formula necessarily should have a derivation
based on a few basic and general facts. We will present below one such general arguinent
that works as we said in one space dimension. We will also show that it can be applied
to other equations with similar power-like structure.

3 The homogeneity argument of Bénilan and Crandall

Our proof of the a priori estimates is based on the formulation of the equation in
Lagrangian coordinates and the application of a remarkable argument found by Ph.
Bénilan and M. Crandall [6] in 1981 that allows to derive a certain regularity for the
solutions of evolution equations associated to a homogeneous operator, and precisely from
the homogeneity plus the Maximum Principle. Morever, the argumeut is extremely casy.
Let us review it here.

(i) We consider an evolution equa'tion_of the form
(14) uy = A(u),

where A is an operator acting on v in a homogereous way, i.e., there is a &k such that for

allA >0
(15) A(M) = AT A(w).

We will need to assume that A is nonlinear, r # L. Typically A is a differential operator
involving only space derivatives.

(ii) We assume the initial-value problem for equation (14) admits a unique solution for
data ©(0) = w in a certain lincar space X of real [unctions or a convex subspace thereof.
Such solution can be classical or generalized. Let us dencte by u(t) the solution at time
. A semigroup S, is then generated by the rule

(16) : St : ug > u(t).
We also assume that S¢(0) = 0 for every t. .

(iii) We assume the Maximum Principle which is equivalent to say that the semigroup
is ordered, i.e., up > vo implies S;(uo) > St(vo)-

(iv) Finally, the class of solutions must be invariant under the natural scaling in the
sense (hat for every solution u(l) (with initiad data ug) also the function

(17) ' up(t) = Mu(A*t), a=r-1
is a solution (precisely the one with initial data Aug). In other words,

(18) St(Aug) = AShar(ug).
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Assume now that uo > 0and A > 1. Then Mug > 0, so that by the Maximum Principle
Si(Aug) = Si(uo). This can be written as

A(Sxee(uo) — Se(uo)) + (A — 1)Si(uo) > 0.
Let now A # 1 and divide everything by (A — 1)t. We get
| U()E,\t')_ 1)1;(0 2 _%”(t)'
Let now A — 1 [or fixed ¢. Since a =7 — 1‘ we get
THEOREM 3.1. Under the above assumptions

(19) (r—Du > -7

The last step of the proof and the formula offer a difficulty of interpretation when
we work in an abstract setting. Below we will either take it as pointwise when we work
with classical solutions, or in the distribution sense for generalized solutions of nonlinear
diffusion equations.

We want to apply the above result to the Cauchy problem for the PME. When doing
a direct application we observe that the conditions on the semigroup listed above are
satisfied, therelore we get estimate (19) with » = m, m # 1. This has the same form as
(11) but the constant is not optimal since for m > 1 k is always greater than 1/(m — 1)
(the optimal constant plays a role in some of the consequences), while for m < 1 we find
different sings in the inequalities. Moreover, there is no way of obtaining the stronger
estimate (10), which is the result we are heading for.

4 Lagrangian coordinates

We need now to consider the method of Lagrangian coordinates. Briefly stated, it amounts
to the following: we think of the PMT as the equation of mass conservation for the density
u of a certain continuous substance which moves in time. We thus write (1) in the [orm

(20) u + V- (uv) =0,
and in this way we identily the velocity of the flow as
(21) v = —-mu" *Vuy = -V,

Given a solution with velocity v we may consider the movement with equations

dz
(22) = (el 1),), 2(n,0) =
This allows to follow in tiine the particle with initial position 7. In this way we may
obtain a translormation of space-time

(23) (1, 8) = (z30).
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It is a standard result (proved in all texts of continuum mechanics) that this transfor-
mation has Jacobian matrix ug/u. In 1D il is convenient to introduce a new spatial
Lagrangian coordinate by means of the formula

(24) d€ = uo(n)dn.

This is called the mass variable. The inverse translormation allows us to pass [rom
the original, so-called Euler variables (z,t) to the Lagrange variables (£,t). Let f be a
{unction of (z,t) and thanks to (23) of (€,¢). Il is usual to denote by D.f the derivative
of a function f with respect to ¢ for fixed ¢ while keeping the sign f; for the Eulerian time
derivative. The relation between both time derivatives is given by

(25) D.f = fi+v- V],
while in 1D . |
(26) Je= /s

The change of space variables in several dimensions is more involved.

Lagrangian coordinates have been sucessfully applied to the PME and other nonlinear
parabolic equations by several authors after the work of M. Gurtin, R. McCamy and E.
Socolovski [13] and the Novosibirsk school, cl. [17]. 1t is a very useful tool in the study of
free boundaries, since in the new coordinates the free boundaries become straight lines,
¢ =const, [18]. Recently, S. Shmarev and the author have shown how to adapt the method
to reaction-diffusion equations where the basic conservation equation (20) is violated, cf.
[19]. This allows the authors to obtain the rcgularity of the interfaces.

5 The estimates for the PME

We now write the PME in Lagrangian coordinates. We work in 1D. We start from the
equation ‘

(27) U = a(u™)er = am(u™ ug),.

The exponent m is larger than 1 in the PME but we can admit m = 1 (classical heat
equation) and even less than 1 (fast diffusion). The latter case will be reviewed for

convenience in the next section. The inessential parameter ¢ > 0 will be useful later. We
write (27) in the form ‘

(28) w4 (uv)y =0, v=—amu™ u, = —m,
or, equivalently

(29) ' Uy + vy = —uv, = amu(u™ " ug),,
ie.,

(30) ' D = —amu®(u™ g )e.

The existence of classical solutions of this equation for positive data comes from
transforming the solutions of the PML. By virtue of the results of Section 3 we have

THEOREM 5.1. For all nonnegative solutions of Cauchy problem for the PME in 1D
we have

(31) D,u 2 —m in D'(Q)
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Belore giving the proof let us observe that

(32) . w; = Dyu — vug = Dyu + amu™ ?u? > Dyu,

so that (31) implies estimate (11) with best constant. On the other hand, we can write
(29) as :
(33) Diu = umy,

which shows that (31) is just equivalent to the fundamental estimate (10).

Proof. The second member is a nonlinear second-order differential operator, homoge-
neous of degree r = m + 2. We need to verify the assumptions listed in Section 3. It is
well-known that in Eulerian coordinates the PME generates a semigroup of contractions
in L'(R), that this semigroup admits the scaling law, that the Maximum Principle applies
and that positive solutions are smooth and dense in the set of all nonnegative solutions.
This allows us to perform the change to Lagrangian coordinates for smooth positive initial
data and obtain thus the desired properties for a dense set of solutions of equation (30).
Let us point out that the Maximum Principle has to be checked directly for equation
(30), but it offers no difficulty.

6 Fast diffusion equations

Actually, nothing in the proof forces m to be larger than 1. We only need to assume
that m 4+ 2 # 1, i.e.,, m # —1. This opens the way for the application to the linear heat
equation (m = 1), and to the fast-diffusion range m < 1. In the sub-range 0 < m <1 no
novelty arises and Theorem 3.1 holds verbatim for the solutions of equation (3). When
—1 < m < 0 this formula does not produce any more a parabolic equation. The way out
is use the variant consisting in formally putting am = 1 so that

.

(34) u = a(u  ug)z, a>0.

In the case m = 0 this can further be written as u; = «(log u),_.x; Cf. the details of [9],

(23].
The situation is differeat for m < —1. The application of Thorem (3.1) gives a uniform
upper estimate for t Dyu/u in the form

u

which holds for every positive solution of equation (34) with m < —1. In this case however,
the estimate is worse than the one obtained from the application of Theorem 3.1 to the
direct Luler formulation, since this one reads

(36) uy < A=my

and, as we have seen in (32) D,u < u;. Information about the theory of this type of fast
diffusion problems can be found in [21] and its references.
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7 The p-Laplacian equation

The same arguments can be applied mutatis mutandis to the other popular model of
nonlinear diflusion, the so-called p-Laplacian equation (PLL)

(37) w= A=V (IVul?Vu),p £ 2,

which for p = 2 becomes the classical heat equation. Here Vu denotes the spacial gradient
of u. It is well-known that this equation generates a semigroup of contractions in all L?

spaces, ¢ > 1, it is a scaling law with exponent r = p — 1 and the Maximum Principle
applies.

To apply the above ideas we can write (37) in the form (20) with velocity

(38) v= —hVul‘"’"’Vu,
u
i.e., v = —|Vr|P~2V7, where
(39) o= P L -2/
’ . p—2

is the so-called nonlinear potential, cf. [10], [22]. Let us continue from now on in 1D. The
passage to Lagrangian coordinates produces the equation

(40) Dyu = —uvy = ul\,m,
or in fully Lagrangian terms
(41 Diyu = —utvg = w? (WP ug [P 2ug)e.
We immediately get the conclusion
THEOREM 7.1. For all nonnegative solutions of the PLE we have the estimate
(42) D> < Ay > !
U2 ——— AT D —e——,
S -1y T oAp-1)t

As a consequence,

: u
43 >
“ , =TG-

These are again sharp estimates satisfied with equality sign by the source-type or
Barenblatt solutions. They were originally proved in [10]. They admit a several-dimension
version which was proved in [11] and which we cannot obtain by the present methods.

Again, the restriction to p > 2 plays no role in the argument and we can consider the
fast-diffusion p-Laplacian version with 1 < p < 2 with same results. The case p < 1 lLas
never been studied. Once the appropriate qualitative results are verified, the application
of the theory gives (as in the PME) a uniform upper estimate for ¢ D;u/u, instead of the
uniform lower estimate obtained in (42).



124

8 The doubly ronlinear equation

We can combine both types of nonlinearities into the so-called doubly nonlinear heat
equation (DNL) '
(44) Uy = c(u’|uz|P"*uz)ey

where s > 0, p > 1, ¢ > 0. We can write it also as

(45) ur = a|(u™)el" 7 (u™)o)e
~with (m —1)(p - 1) = s, amP™! = c. The velocity is now

(46) v = —cu” Hu, [Py,

and the potential

(a7) p= A=) etoenio-n g o ),
s4p—2 !

We get the equations ‘ .

(48) - Dy = —uv, = ul\ym,

or in fully Lagrangian terms:

(49) D,u = —-uzvé = cuz(u’+”'2|u5|p'zu¢)6.

Since the second-member operator has homogeneity r =s+2p—1=(m+1)(p—1) +1
we get

THEOREM 8.1. For all nonnegative solutions of the DNL equation with (m+1)(p—1) >
0 we have the estimates

u 1

50 Diuy>—-——-r———r A, >

(50) e ey A
As a consenquence,

u

> ——

oy N ]

This was preciscly the result proved in [10]. The estimates are sharp. Corresponding.
inequalities with reversed sign hold for (m + 1)(p — 1) < 0. We can also consider cases
where s < 0.

9 Convection models

Though homogeneity is a strong restriction it is not difficult to find examples of equations
similar to the PME for which the method we have outlined works. We will explain two
of them which will allow us to see a bit deeper into the technique.

9.1. We can consider the following diffusion-convection

(52) : Uy = a(w™ )z + 6w,
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for some constants a,b,m,n > 0. Working as before we get a conservation law with
velocity

(53) v = —amu™ 2u, — bu™!,

Now we do not know how to get a potential, but we discover that such a concept, though
convenient, is not essential. Proceeding further we get the Lagrangian equation

(54) Diu = —uv, = —uve = u?(amu™ 1y + bu™t),.

In order to get a homogencous nonlinear operator we need the conditions
(55) m#1l, n=m+1.
-In this case we arrive at the following estimate valid for general nonnegative solutions,

U
(56) . o (m+ 1)t’

which in terms of the velocity gives

1

(57) Uz S (m_-l-l)—t’

that is exactly equivalent to the 7, estimate of the PME, and shows that the pressure is
not necessary. Of course, (56) immediately implies the Eulerian u;-estimate (11).

Let us remark that equation (52) admits for the n = m 4 1 a source type solution of
the selfsimilar form

(58) u(z,t) =t"f(y), y=at™,
with @ = 1/(m + 1). The profile f > 0 must then satisfy the equation
a(f™)yy +0(f")y +o(f +yf) = 0.

Integrating one gives

(59) a(f™)y +0f"+ayf =0.

Dividing now by f we get in the set {f > 0} the equation
amf™2f, +bf" 4+ ay =0,

which upon differentiation gives

(60) (amfm™2f, +bf* 1), = —m;-i-l'

This is equivalent to saying that estimates (57) and (56) are-exact on the positivity set
of such solution. Hence they are sharp.

9.2. It is interesting to revisit the purely convective case,

(61) -~ = b(u")g,
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corresponding to putting a = 0 in equation (52;. Let us take b # 0. A well-posed is
obtained when we consider the class of entropy solutions which are usually known as
Kruzhkov solutions. The litteral reproduction of the calculations just performed leads,
under the restriction n # 1, to an estimate of the form

u
(62) D > ey
“valid for all nonegative entropy solutions. In terms of the velocity v = —bu"~' gives
vy < 1/(nt), ie.,
1
6 bu™ ), > ——.
(63) (w2 -

Observe that for b < 0 this is an upper estimate, while for b > 0 it is a lower estimate. This
estimate is exactly satisfied by the explicit solutions of the problem which start at t =0
from a Dirac delta and which as is well-known have the formula (we put for simplicity
b=1)
(64) u(z, )" = —Et- for —r(t) <z <0,

n
being zero otherwise. The radius r(t) is given by

(65) r(t) = Ctn.

and C' > 0isa free constant. These solutions with triangular shape are fundamental in the
theory, for instance they represent the large-time asymptotics, cf. [LP]. The reader will
easily check that the homogeneity argument in Fulerian coordinates leads to an estimate
similar to (62), but with non-optimal constant.

10 A comment on several dimensions

The method of proof that we have proposed fzils in several space dimensions because the
coordinete transformation cannot be reduced to an equation. We then have to deal with a
systemn where the Maximum Principle fails. On the other hand, the method as described
above would automatically lead to an estimate of the form

1

L ——
VoS TToe

where r is the homogeneity degree of the second-member operator in Lagrangian
formnulation. Now, it is difficult to see how such a number can fit the actual optimal
estimate that for instance for the PME gives

C 1
—_ =V < = = —————
(66) Am v t, C 1 (2/ ), |

which depends on n. Let us finally recall that the direct application of the homogeneity
result of [6] to the original PME gives the valid estimatle

(67) U > ——
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cf [6], which is neither optimal for the Cauchy problem nor implies in any way a Am
estimate. On the other hand, it is to be remarked that such estimate is actually optimal

for the Cauchy-Dirichlet problem with zero boundary data, as can be checked [rom the
separable solutions

(68) u(z,t) = t=P f(2), ﬂ = 1

m—=1"

Similar remarks apply to the PLE and the DNL.

11 Final comments

The rigorous proof of the above statements is easy in the case of the PMIi where
approximation by smooth solutions can be done by merely smoothing and making positive

the data. In the other cases there is a technical work which we postpone for a specific
publication.

The author is grateful to Ph. Bénilan for.his critical reading of the mathematical
contents of this work.
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