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A priori estinlates , Lagrangi an coordinates 

and the regularity of nonlinear diffusion equations * 

Juan Luis Va�quez t 

dedicated to the memory of our friend Julio Bouillel 

1 Introduction 
The second half of the XXth century has seen enormous progress in the appli cat ion of 
the techniques of functional analysis to investi gate in a mathematically rigorous way 
the properti es of nonli near partial differential equat ions and systems which appear in 
the different branches of continuum physi cs , Among the variety of problems which 
received attention in this time from engineers , physicists, applied mathematicians and 
analysts are t he problems �f nonlinear diffusion and nonlinear heat propagat ion which 
can be expressed in mathematical terms as nonlinear parabolic equations. Some of these 
equations are degenerate parabolic since the diffusivity matrix, which depend:; 011 the 
solu tion u ,  vani shes for some values of u .  The most typical example of such behaviour is 
maybe the poro us medi um eq uation 

( 1 )  

We can also consider a more general nonlinearity and then we get the so-called filtration 
equa.tion 

(2) Ut = 6<l>(u) ,  
where <l> is  for instan ce a cont inuous increasing real function. . In t h i s  generali ty i t  
encompasses t h e  famous Stefa.n problem, which as is  well-known represents the simplest 
model of heat propagation involving two phas'2s and the presence of a latent heat i n  the 
process of phase change . 

. In the spring of 1 983 I met J ulio i l l  Minneapolis ,  a rather happy time when both of us 
were visiting the S chool of Mathematics of the Univ.  of Minnesota, a maj or institution 
in the world of nonlinear P D Es ,  and problems like the above were a large part of our 
frequen t conversat ions  on m at hematics ,  a n  i nL(� res1. t h at both of us kept and w h i ch i n  
laLer yeats w e  sh ared �i1;h a nu mber o f  fri end s .  J u l io  was always enthusiastic  ( in h i s  
rather pessimistic way ) a b o u t  these problems and in my opinion he deserves quite a shate 
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of the credit  for the creatioll of all acti"e intere�t in B uenos Aires around such problems 
in particular ,  and more generally in the mathematics of continuous me<1ia. 

Before proceed ing wi t h  t he llI athenl<.l.tical contr ibution I would l ike to add a persona.l 
comment ou what I recall about the work on the filtration equations at tha.t t:mc and also 
on some of the people who influenced or were conneded wi th us in  that respect. Even 
though such equations were already posed by Boussinesq at the beginning of the century in 
the study of ground water infiHration , cf. [4 ] ,  progress was slow for a long time. In the 50's 
the Moscow school cotltributed the first serious attack and basic results about  exis tence 
and uniqueness of weak solutions as well as the property of !inite speed of propagation, 
w i th the corresponding existence of a free boundary, were established after the work of 
such personal i t ies as P. Pol u bari llova, Ya. Zddovich,  A .  Kompaneets,  G .  Bareublat t ,  o.  
Oleinik and collaborators . A program of  investigation was gradually organized around 
the pro blems of exis tence and ulliqueness of suitable solutions for general data, regularity 
(even continui ty was a serious problem ) of such solutions , behaviour and regularity o[ the 
free boundary, asymptotic behaviour, . . .  Such problems turned out to be far from trivial. 
It was only around 1 970 that the West became involved in the study through the work of 
D .  Aronson . A great act ivity ensued in the 70's and early 80's with beautiful aualytical 
results  by a. l I u m ber of dist inguished pe()p l (� ,  arnong t hem two Argent in i an researchers , 
professors in Minnesota at the time , L. Caffarelli and C. Kenig. The above-ment ioned 
program was almost completed in the 80 's ,  we were involved in  it with a number of other 

col leagues , among them N.  Wolanski , and I will let the recollection at this point , not 
wi thout recalling that the preced i ng lines do not pretend to be a h i storical survey and 
many im portant names and facts are omitted. The interested reader is referred to works 
like [ 1 ] , [ 14] , [20] for more details on the ; , uthors involved and the most recent mathematics. 
Let me j ust say that Julio and I contim .. · ;d to keep a certain subject affinity and I will give 
an exarnpl e:  several years ago we touch. ,d the subject of large-time beh aviour  for solutions 
of the p Nt E w i th chaugi ll g  sign , a subject that had been sett led by A. FrieJmall aad S. 
Karnin,  [ 1 2] , for nonnegat i ve solutions. There was a paper by Kamin aud myself r 15] anti 
then another one by Ph.  Bcnilan and J. Bouille t [5] , where they improve considerably our 
results .  On the other hand , I would like to mention that Julio was always i nterested in 
travelling waves , fini te propagation, shocks cend particularly in the wOlk of J .  M. Burgers. 
I was attracted to those subj ects years later . 

Let us now turn to the contents of the present paper. It deals with the reg ularity theory 
of the PME anti other simi lar equations. The solutions of such equat ions have a limited 
regul arity and one of the classical approaches to the qualitative theory proceeds through 
obtain ing suitable a priori estimates . In the case of the PME Aronson and Benilan [2] 
d iscovered a type of pointwise est imate w i th s urprising propert ies : i t  is simple-looking, 
i t is  universal for the class of nonnegative solutions and it has far-reaching implications 
i n  domains as d ifferent as existence, asymptotic behav iour or free boundary regularity. 
U n fortunately, the u s u al derivations of such estimates seem rather ad hoc. This  is why 
it i s  i nterest ing to find a met.hod to derive them from <general and basic propert ies of 
the eq uat ion s under considerat ion . A will propose below one such method whose m ain 
ingredients are the homogeneity of t l ,e equations , the transformation into Lagrangian 
coordina.tes and the MaximuIll PrinciFle [or the transformed equation. The method can 
be applied to a number o[ equations sharing a few basic properties , and some of them will 
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be discussed below. Unfort.unately, the argument does not work i n  more than one space 
d imension and the fai lure is not only tedmical: the simplest corresponding result that the 

same method wou ld prod uce in several dilllcllsiow; is false. Sincc t,he type of estiulCttcs 
holds in several dimensions, an open problem worth considering is to find similar or other 
methods to prove the n-dimensional results. 

2 Pointwise a priori estimates 
We start with a continuous and nonnegative function u(x, l) defined in Q = R x (0, 00) 
which solves in distribution sense the PME equat ion . 

(3) 

and takes initial data 

(4) U(x, O) = uo(x) ;::: 0, x E R, 
in some weak sense. Because of known density results we may assume for our purposes 
that Uo is continuous and then the initial data are taken continuously. We may also 
assume that Uo E L1 n Loo . 

Our purpose at this stage is to review the a priori estimates on which the current 

regularity theory for the PME is based. One of the first results ( 1950) in the theory of 
the PME was the expl icit construction of a class of solutions which came to be known 
as the source type solutions and also Barellblatt �;olutions and are given by the formula 
(valid in n dimensions) 

(5) 

where 

( 2 ) l/(m-l) 
-k X U(x, t) ::;: t C - D -;-:-/ ' F.' n + . 

k = (m - 1  + 2/n)-1 , D = k(m - 1)/2mn, C > 0 arbitrary. 

For n = 1 we have I,; = l /(m + 1 ) .  These solutions turned out to be in many respects 
the nonlinear equivalent of the fundamental solutions of the linear heat equation and as 
such fu ndamental ill the ensuing theory, particJlariy in the work of Caffarelli . B u t  at the 
same time they exposed one of the main difficulties of such theory: these solutions are 

not smooth.  In fact , for m > 2 they are not even C1 in space or time! Thus, the theory 
had to call upon the concept of weak solutions. The problem is then to iuvestigate which 
is the maximal regularity that general solutions satisfy. 

In this respect it can be observed i ll (5) that the function Um-1 has a Lipschi tz 
smoothness independent of the expoenent m.  Indeed , the use of ( 1 )  to model the flow of 
an isentropic gas through a porous medium suggests consideri ug the fUllction 

(6) 7r = �um-l , 
m - l  

which represents the pressure of the flow and satisfies the equation 

(7) 
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Then it is easily seen that the pressure II of the source type solution (5) has an inverse 
parabolic shape as a function of x and more precisely it satisfies in the positivity set the 
csLimate 
(8) 
Since 11 has Laplacian 0 011 the null set {U = O} and since on the free boundary the 
Laplacian is ( in the distribution sense) a positive measure, we finally obtain the inequality 

(U) k 
L),Il > -- - t 

in V'(Q) .  
Establishing that this one-sided estimate holds for every nonnegative weak solution of 
the PME was a turning point in the theory anci the basis of many later developments. 
This was done by Aronson and Benilan in a justly famous 3-page Note to the Comptes 
Rendus de l 'Academie des Sciences de Paris in lU7U, [2] , which extends even to the range 
o < m < 1 ( called the fast diffusion equation) .  

THEOREM 2 .1. For every classical positive solution of the  porous medium equation 
the pressure v satisfies 

(10) 
k 

L),7r > -- - t in V'(Q) .  
By density the result is true for all nonnegative weak solutions. Actually, the  result holds 
for m > (n - 2)/n . 

Using (as an amusement ) the sophisticated language borrowed from the theory of 
Hamilton-Jacobi equations , we may say that the weak nonnegative solut.ions of the PME 
belong to the cla!)G of semi-su bhannollic functions . Unfortunately, general solutions need 
not be se!11i-convex, though the source solu tion is  because of its radial symmetry. Of 
course , in ID all solutions are semi-convex . 

An important consequence of this fundamental estimate is the following useful estimate 
which says that. u is at least Lipschitz from below with respect to the time variable. 

ConOLLARY 2 . 1 .  For evel'y solution as auove we have 

( 1 1 )  
u Ut > - - kt ' 

(m - 1 )7r  7r t  > - . - ld 
with I. = (m - 1 + (2/n) ) - 1 as defined beJor·c. 

The proof is based on the inequality 7rt ::::: (m - 1 )7rL),7r that follows immediately from 
(7) .  (Le t us mention for the record that in ID 7r is actually Lipschitz,  but the proof is not 
so immediate. The result is false in several dimensions) . In order to grasp the immediate 
consequences of such estimates for the size and regulari ty of the solution the rel1der could 
prove without much effort the following result in lD .  

COROLLARY 2 .2 . Let  u be a solution of the  PME with finite  mass, i. e .  J u(x ,  i )dx = 
M < 00 . Th en it is bounded and -its p7"Cssure has bounded space gradient  JOI'  t ::::: T > O .  
Aforc precisely, w e  have the estimates 

(12) 
( 13 )  

u(x , t )  < cM2/(m+ 1 )r1 /(m+1) 
rn - l  (3 = � . a = --, 
m + l  m + l 
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It is remarkable that these are precisely the decay rates of the source-type solutioll , 
hence they are optimal . Estimate ( 10 )  was alsc- a key t.ool in the proof by Caffarelli

Friedman [8] of the C I - regularity of the i nterface in ID a.ner the watin g  ti me. The 
cl I l I Heq l w l l ceH i l l  I I I O ('(� s pace d i l l lC l i s iom; arc I IOt  a.s i ll l l l lcd i al.e b u t ,  ill  t. he  [muds of U l� l \ i l a l \ 

Craudall-Picrre [7] aud Arollsoll-Call'arelli [3], estimate (10) allowed to produce a. theory 
of existence and uniquelless of solutions wi th optimal initial data. 

So the problem is  posed : such a simple formula necessarily should have a deriva.tion 
based on a few basic aud general fad.s. We will present below one such general argumeut 
tha.t works as we sa.id  in  one space d i mension . We will also show that it can be applied 
to other equat ions with similar power-like struct ure . 

3 The homogeneity argument of B enilall and Crandall 
O ur proof of the a priori estimates is based on the formulation of the equa.tion i n  
Lagrangian coordinates and the applicat ion of a remarkable argument found by Ph.  
Bcnilan and M .  Crandall [6] in 1981 that allows to derive a certain regularity for the 
solutions of evolut ion equations associ ated to a homogeneous operator , and preci sely from 
!. III! h Oi l l ogel lc i l .y p l l l t{  the Max i l l l U I I l  Pri l l c i p le .  M orever , the argu ll l cllt is ex trcmely ea.sy. 
Let us review it here. 

( i )  We consider an evolut ion equation of the form 

( 14 )  Ut  = A(u) ,  

where A is an operator acting o n  u i n  a homogeEeous way, i .e. , there is a k such that for 
all A > O  
( 1 5 )  .,.4( .\11. ) = .\r A(n) .  
We will need to assume that A is  nonl inear , 1' i- 1 .  Typically A i s  a differenti al openttor 
involving ollly space derivatives . 

( i i ) We assume the in it ial-value problem for eq uatiolt ( 1 4) adm i ts a unique solution for 
data u(O )  = ltu in a. cer tain lincar space X of real fUllct ions or a convex subspace thereof. 
Such solutioll can be classical or generalized . Let us denote by u( t )  the solution at time 
t .  A semigroup 8t is then generated by the rule 

( 1 6) 8t : Uu t--t u(t ) .  
We also assume that 8t (0) = 0 for every t .  

( i i i )  We assume the Maximum Prin ciple which i s  equivalcnt t o  say that the semigroup 
is ordered , i .e � ,  Uo ;::: vo implies St Cuo) ;::: St (vo) .  

( i v )  Final ly, the class of sol utions m u s t  be invariant under the natural scaling in the 
seuse ,th at for every sol ut ion tt ( t )  ( with init ial data ttu) also the fuuctioll 
( 1 7) u),(t )  = .\tt (.\° t ) ,  ex = r - 1 

is a solution (preci sely the one with initial data Atto) . In other words, 

( 1 8) 
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Assume now that Uo � 0 and >'  > 1 .  Then >.uo � 0 ,  so that by the M�ximum Principle 
St (>'uo) � St (uo) . This can be wri tten as 

>'(S.\o t (uu) - St (uo ) )  + (>' - l )St (uo) � O. 

Let now >. 1= 1 and divide everything by (>. - l ) l .  We get 

u ( >.at ) - u (t ) > -�u(t ) . (>. - l )t - t 
Let now A -t 1 for fixed t .  Since 0: = r _. 1 we get 

THEOREM 3 .1 .  Unde1' the above asst:.mptions 

( 1 9 )  

The last step of  the proof and the formula offer a difficulty of  interpretation when 
we work in an abstract setting. Below we will either take it as pointwise when we work 
with classical solutions , or in the distribution sense for generalized solutions of nonlinear 
diffusion equations. 

We want to apply the above result to the Cauchy problem for the PME. When doing 
a direct application we observe that the conditions on the semigroup listed above are 
sat i sfied , therefore we get estimate ( 1 9) with r = m, m 1= 1 .  This has the same form as 
( 1 1 )  but tIle constant is llot optimal since for m > 1 k is always greater than l/ (m - 1 )  
(the optimal cons tant plays a role i n  some of the consequences) , while for m < 1 we find 
different sings in the inequali ties . Moreover , there is no way of obtaini ng the stronger 
est imate ( 1 0 ) ,  which is the result we are heading for .  

4 Lagrangian coordinates 
We need now to consider the method of Lagrangian coordinates. Briefly stated , it  amounts 
to the following: we think of the PME as the equation of mass conservation for the densi ty 
u of a certain  continuous :;ubstance which moves in time. We thus wri te ( 1 )  in the form 

(20) Ut + 'V ' (UV) = O , 

and in this way we identify the velocity of the flow as 

(2 1 )  

Given a solution with velocity v we n{ay consider the movement with equat ions 

(22) 
dx dt = V(X( T/ ,  t ) ,  t ) ,  X (17 , 0) = 1] .  

This  allows to follow in time the  particle with initial pos i tion 1] . In th is  way w e  may 
obtain a transformation of space- ti me 

(23) (q ,  l )  � (x ,  t ) .  
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It is a standa.rd result (proved in all texts of continuum mechanics) that this t rans r9r
mation has Jacobian matrix 'Uo/u. In ID it is convenient to introduce a new spatial 
Lagrangian coordinate by meal l s  of the formula 
(24) 

This is called the mass variable. The inverse transformation allows us to pass from 
the original ,  so-called Euler variables (x ,  t) to the Lagrange variables (� ,  t ) .  Let I be a 
function of (x ,  t) and thanks to (23) of (� ,  t ) .  It is usual to denote by Dd the derivative 
of a function I with respect to t for fixed � while keeping the sign It for the Eulerian time 
derivative . The relation between both time derivatives is given by 

(25) 

while in I D  
(26) 

Dd = It + v ' ''I, 

1 
Ie = -j� . u 

The change of space variables in several dimensions is more involved. 

Lagrangian coordinates have been sucessfully applied to the PME and other nonlinear 
parabolic equations by several authors after the work of M. Gurtin, R. McCamy and E. 
Socolovski [1 3] and the Novosibi rsk school , d. [ 1 7] .  It is  a very useful tool ' in the study of 
free boundaries , since in the new coordinates the free boundaries become ' straight lines , 
� =const ,  [ 18] .  Recently, S .  Shmarev and the author have shown how to adapt the method 
to reaction-diffusion equations where the ba:, ic  conservation equation (20) is  violated , d. 
[ 19] . This allows the authors to obtain the regularity of the interfaces. 

5 The estimates for the PME 
We now write the  PME in Lagrangian coordinates . We work i n  1D .  We start from the 
equation 
(27) Ut  = a (um )",,,, = am(um- 1 u",)", . 
The exponent m is larger than 1 in the PME but we can admit m = 1 ( classical heat 
equation) and even less than 1 (fast diffusion) . The lat ter case will be reviewed for 
convenience in the next section. The inessential parameter a > 0 will be useful later . We 
write (27) in the form 

. 

(28) 
or, equivalently 
(29) 
i . e . ,  
(30) 

Ut + (uv)", = 0,  v :;  -amum-2u", = - 11'"" 

+ ( m-2 ) Ut vu'" = -uv", = arnu u Ux x , 

D 2 ( .  m-l ) tU = -amu u Ue e . 
The existence of classi cal solut ions of this equation for positive data �omes from 
transforming the solutions of the PME. By virtue of the results of Section 3 we have 

THEOREM 5 . 1 .  For all nonnegative solutions of Cauchy problem for the PME in ID 
we have 

(31 )  u . 
Dtu � - (m + I ) l  in V'(Q) .  
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Before giving the proof let us observe that 

(32) 

so that (:31) implies estimate ( 1 1 )  with best constant .  On the other hand,  we can write 
(29) as 
(33) Dtu = U7r",,,, 

which shows that (31 ) is just equivalent to the fundamental estimate ( 1 0 ) .  

Proof. ' The second member i s  a nonlinear second-order differential operator , homoge
neous or degree r = m + 2. We need to verify the I:tSsumptions listed in Section 3 . It is 
well-known that in Eulerian coordinates the PME generates a semigroup of contractions 
in LI (R) , that this semigroup admits the scaling law ,  that the Maximum Principle applies · ·  
and that positive solutions are smooth a nd dense in the set of  all nonnegative solutions . 
This allows us to perform the change to Lagrangian coordinates for smooth positive initial 
data and obtain thus the desired properties for a dense set of solutions of equation (30) . 
Let us point out that the Maximum Principle has to b e  checked directly for equation 
(30) , but it offers no difficulty. 

6 Fast diffusion equations 
Actually, nothing in the proof forces m to be larger than 1 .  We only need to assume 
that m + 2 =F 1, i . e . ,  m =F - 1 .  This opens the way for the application to the linear heat 
equation (m = 1 ) ,  and to the fast-diffusion range m < 1. In the sub-range 0 < m < 1 no 
novelty arises and Theorem 3 . 1  holds verbatim for the solutions of equation (3) . When 
- 1  < m :::; 0 this formula does not produce any more a parabolic equation. The way out 
is use the variant consisting in formally putting am = 1 so that 

(34) ( ' n - I  ) Ut = a u Ux X l  a >  O • •  
In the case m = 0 this can further be written as Ut = a(log u)xx . Cf. the details of [9] , 
[23] .  

The situation is  differe ; lt  for m < -1 .  The application of Thorem (3 . 1 ) gives a uniform 
upper estimate for t Dtu/u in  the form 

(35) Dtu :::; . 
(m + l ) t · 

u 

which holds for every positive solut ion of equation (34) with m < - 1 . In this cl:tSe however , 
the estimate is worse than the one obtained from the application of Theorem 3 . 1  to the 
direct Euler formulation, since this one reads 

(36) 
U 

Ut :::; 
( 1  _ m)t " 

and,  as we have seen in (32) Dtu :::; Ut . Information about the theory of this type of fl:tSt 
diffusion problems can be found ill [2 1 ]  and its references. 
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7 The p-Laplacian equation 
The salTle arguments can be applied J11u ta/,js mutandis to the other popular model of 
llolll i llcnr tliJrusioll ,  the so-called p-· Laplaciau equ atiou ( P LE) 

(37) 
which for p = 2 becomes the classical heat equation. Here '\711 denotes the spacial gradient 
of u. It is well-known that this equation generates a semi group of contractions in all U 
spaces , q ;::: 1 ,  it is a scaling law with exponent r = p - 1 and the Maximum Principle 
applies . 

To apply the above ideas we can write (37) in the form (20) wi th velocity 

(38) 

(39) 
is the so-cal led nonlinear potential ,  d. ( 10) ,  [22) . Let us continue from now on in ID .  The 
passage to Lagrangian coordinates produces the equation 

( 40)  

or in fully Lagrangian terms 

(1\ 1 )  
We immediately get the conclusion 

THEOREM 7 . 1 .  F07' all nonnegative solutions of the PLE we have the estimate 

(42) 
u 1 

2(p - I ) t ' 2(p - I )t ' 
As a consequence, 

(43)  11 Ul > - �----:-
- 2(p - l ) t ' 

These are again sharp estimates satisfied with equality sign by the source-type or 
Barenblat t solutions. They were originally proyed in [ 10) .  They admit a several-dimension 
version which was proved in [ 1 1 ]  and which we cannot obtain by the present methods. 

Again, the restriction to p > 2 plays no role in the argument and we can consider the 
fast-diffusion l>- Laplacian version with 1 < p < 2 wi th same results . The case p < 1 has 
never been studied. Once the appropriate qualitative results are veri fied , the application 
of the theory gives (as in the PME) a uniform upper estimate for tD1uju ,  instead of the 
uniform lower estimate obtained in (42) . 
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8 The doubly nonlinear equatiOl:l 
We can combine both types of nonlinearities into the so-called doubly nonlinear beat 
eq uation (D N L) 
(44) Ut = c(u' !ux ! p-2U",),,, , 

where s � 0, p > 1 ,  c > O . We can write it also as 

(45) 

with (m - l ) (p - 1)  = s ,  amP-1 = c. The velocity is now 

(46) 

and the potential 

(47) 
We get the equatiollS 
(48) 

or in fully Lagrangian terms: 

(49) 

Since the second-member operator hall homogeneity .,. = s + 2p - 1 = (m + l ) (p - 1) +1  
we get 

TH EOIlEM 8 . 1 .  Fo.,. all nonnegative solutions of the DNL equation with (m+ l ) (p- 1 )  > 
o we have the estimates 
(50) 

U 
Dtu > - , - (m + l ) (p - 1 )t  

1 
� 11' > - ..,.------:--:-----:--

P - (m + l ) (p - l ) t  

As a consenquence, 
(5 1 )  U ti t > - . - (m + 1 ) (p - 1)t  

This  was precisely the result proved in  [ 1 0] .  The estimates are sharp. Corresponding . 
inequali ties with reversed sign hold for (m + 1 ) (p - 1 )  < O. We can also consider cases 
where s ::.:; O .  

9 C o nvection mo dels 
Though homogeneity is a strong restrict ion it is not difficult to find examples of equations 
similar to the PME for which the method we have outlined works . We will explain two 
of them which will allow us to see a bit deeper into the technique. 

9 .1. We can consider the following diffusion-convection 

(52) 
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for some constants a, b, m, n > o .  Working as before we get a conservation law with 
velocity 
(5:� )  v = -amum-2u", - bun-I . 
Now we do not know how to get a potential ,  but we discover that such a concept , though 
convenient , is not essential .  Proceeding further we get the Lagrangian equation 

(54) D 2 2 ( ni - l  + b n-l )  tU = -UV", = - U  Ve = U arnu Ue U e . 
In order to get a homogeneous nonlinear operator we Heed the conditions 

(55) m i= l , n = m + l . 

. In th i s  case we arri ve at the following es timate val id for general nonnegative solutions, 

(56) u 
Dtu > - , - (m + l ) t  

which in  terms of the  velocity gives 

(57) 1 
v", :::; , 

(m + l ) t  

that i s  exactly equivalent to  the  'lr",,,, estimate of the PME,  and shows that the pressure is  
not necessary. Of course, (56) immediately implies the Eulerian ut-estimate ( 1 1 ) .  

Let u s  remark that equation (52) admits for the n = m + 1 a source type solution of 
the selfsimilar form 
(58) u(x , t ) = Caf(y ) ,  y = xt-a , 

with ex = l / (m + 1 ) .  The profile f � 0 must then satisfy the equation 

Integrating one gives 
(59) 

Dividing now by f we get in the set {f > O} the equation 

amfm-2 fy + br-1 + exy = 0 ,  

which upon differentiation gives 

(60) 1 (arnfm-2 f + br-1 ) = - -- .  Y Y m + 1 

This is equivalent to saying that estimates (57) and (56) are ·exact OIl the positivity set 
of such solution . Hence they are sharp . 

9 . 2 .  It is interesting to revisit the purely convective case, 

(61 ) Ut = b(u71 ) ""  
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corresponding to putting a = 0 in equation (52) . Let us take b =f:. O. A well-posed is 
obtained when we consider th� class of entropy solutions which are usually kn.own as 
Kl'Uzhkov solut ions. The littel'al reproduction of the calculations just performed hiads, 
under the restriction n f. 1, to an estimate of the form 

(62) 
u 

Dtu > - - nt ' 

valid for all nonegative entropy solutions. In terms of the velocity v . 
v", ::::; l / (nt ) ,  i .e. , 

(63) b(un-t ) > _.!..  '" - nt 

= _bun-t gives 

Observe that for b < 0 this is an upper estimate, while for b > 0 it is a lower estimate. This 
estimate is exactly satisfied by the explicit solutions of the problem which start at t = 0 
from a Dirac delta and which as is well-known have the formula (we put for simplicity 
b = 1 )  
(64) 

X 
u (x ,  tt-t = 

nt 
for - ret) ::::; x ::::; 0 ,  

being zero otherwise. The radius 7 ' ( t )  is  .given by 

(65) re t )  = Cl � .  
and C > 0 i s  a free constant . These solutions with triangular shape are fundamental i n  the 
theory, for instance they represent the large-time asymptotics, cf. [LP] . The reader will 
easily check that the homogeneity argument in Eulerian coordinates leads to an estimate 
similar to (62) , but with non-opt imal constant . 

1 0  A comment 011 several dimensions 
The method of proof that we have proposed fails in several space dimensions because the 
coordinete transformation cannot be reduced to an equation. We then have to deal with a 
system where the Maximum Principle fails. On the other hand, the method as described 
above would automatically lead to an estimate of the form 

1 
'V .  v ::::; (r _ l ) t ' 

where r is the homogeneity degree of the seconJ-member operator in Lagrangian 
formulation. Now, it is difficult to see how such a number can fit the actual optimal 
estimate that for instance for the PME gives 

(66) C -.0.71' = 'V . v < -
- t '  

1 
C =  , m - 1  + (2/n) 

which depends on n.  Let us finally recall that the direct application of the homogeneity 
result of [6] to the original PME gives the valid estimate 

(67) u 
(m - I ) l ' 
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cf [6] , which is neither optimal for the Cauchy problem nor implies in any way a .6.11" 
estimate. On the other hand, it is to be remarked that such estimate is act,ually optimal 
for the Cauchy-Dirichlet problem with zero boundary data, as can be checked from the 
separa.ble solut ions 

(68) u(x , t )  = rf3 f(x ) ,  1 j3 = - . . m - l  
Similar remarks apply to the PLE and the DNL. 

11 Final comments 
The rigorous proof of the above statements is easy in the case of the PME where 
approximation by smooth solutions can be done by merely smoothing and making positive 
the data. In the other cases there is a technical work which we postpone for a specific 
publication. 

The author is grateful to Ph. Bellilan for .his crit ical reading of the mathematical 

contents of this work. 
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