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ABSTRACT: Studying smooth families of certain subspaces of a Banach space X entails
a construction of a Grassmann manifold defined over the similarity class of a projection .
in a Banach space. Standard principles of fiber bundle theory can be adapted to describe
these families in terms of smooth maps from a possibly infinite dimensional paracompact
manifold to the Grassmannian.

1 INTRODUCTION

Let X be a Banach space and let Proj(X) be the set of all bounded (nontrivial) projections
in X . For a given Py € Proj(X), take Py = Sim(P) to be the similarity class of By in
X . In this paper we outline an ezplicit construction of the Grassmannian Gr(FPp, X)



of images of projections in Py . It is shown to be a Banach analytic manifold modelled
on the Banach space £(Im Py, Ker P) (cf: [CPR 1]). It is worth stressing that such an

explicit description of the manifold structure of Gr(FPp,.X) is needed in applications which
necessitate computing over coordinate charts.

An outline of the paper is as follows. After stating several background results in §2, we
proceed in §3 to give the explicit details of constructing Gr(Fy, X) along with a core-
sponding principal bundle S(Fy, X) . Accordingly, our approach is quite different in spirit
from the more abstract theory as pursued by other authors. In §4, we give an important
application by showing that there exist decompositions of X smoothly parametrized by
points in M, the latter taken to be a smooth contractible manifold which is a subset of
some Hilbert space. It entails implementing an extension of the well-known smoothing
lemma of Steenrod [St] to the case of fiber bundles with Banach spaces as fibers over M .
Since to the best of our knowledge, the precise result'does not appear to be known in the
literature, it is necessary for us to establish this as one of our main results (Theorem 4.3).
Consequently, the results of §4 can be used to generalize some known results and applica-
tions for matrix-valued functions over finite dimensional vector spaces (for the latter, see
e.g. [FGP]). The authors express their gratitude to Professors G. Corach and H. Porta for
informative discussions on this subject. :

2 COMPLEMENTED SUBSPACES AND PROJECTIONS

Firstly, some remarks concerning a notation which is used frequently. If f is a mapping
from a set A to aset B, and if C' is a subset of A, then f|, denotes the ordinary restriction
of f to C. If D is any set containing the image of f, then f]D denotes the mapping from
A into D defined by le(a:) = f(z) for all € A . Combining these two. operations, if E
is any set containing f(C), then we denote by flg the mapping from C into E defined by
f|g(x) = f(z) forallz € C .

Henceforth X and Y denote Banach spaces. Let £(X,Y) denote the Banach space of all
bounded linear operators from X into Y with £(X) = £(X, X) . The set of isomorphisms
Isom(X,Y) from X to Y is an open subset of £(X,Y); in particular GL(X) is open in
L(X) (seee.g. [Ha,4.4.5.8]). If X is the algebraic direct sum of nontrivial vector subspaces
X, and Xy, then the pair (X, X3) is an algebraic complementary pair of subspaces of X .
Further X = X| @ X, is a topological direct sum if in addition X; and X, are closed.
Consequently, X, and X are complemented in X and (X, X?) is said to be a topological
complementary pair. Note that in X it is always possible to select a complement X; of
cach complemented subspace X such that X, depends continuously on X, [PR 2]. If X
is the algebraic sum of non-trivial vector subspaces X, and X, then the projection of X
onto X along X, is denoted by P,}’]’ and is given by

P))((l’(zl+xg)=zl, Ve, € X1,z € Xy .

The following lemma is elementary.

Lemma 2.1 Let (X, X;) be a topological complementary pair of subspaces of X .-Let
Y1, Y, be closed vector subspaces of Y. For ®, € L(X,,Y]) and ®; € L(X,,Y?) the direct
sum :

By ® Py = By|" 0 PEZ + @ 0 PY)



satisfles 1 ® &, € L(X,Y) .

Let Proj(X) = {P € £(X, X): P? = P} be the set of all bounded (non-trivial) projections
in X. As a straightforward consequence of the definitions we obtain the following:

Proposition 2.2 Let (X, X;) be an algebraic complementary pair of vector subspaces
of X. Then ] )
(P32)* = Pg?, ImP{? = Xy, Ker P{? = X, .

X3 P X X2 X X X Xa
Further, Py} is nontrivial, PX; =idy — Py, and P‘l2 oPyl=0= Px;.' o Py?.

Conversely, if P is a nontrivial projection in X, then (Im P, Ker P) is an algebraic comple-

mentary pair of vector subspaces of X, and F = PR, If (X3, X2) is another algebraic

complementary pair of vector subspaces of X, then

.‘(2 Xo Xg
Pl o Py, =Pyl .

Theorem 2.3 (see e.g. [TL Theorems 1V.12.1 and [V.12.2]) Let (X1, X2) be an algebraic
complementary pair of vector subspaces of X. Then (X1, X5) is a topological complemen-
tary pair of vector subspaces. of X if and only if the linear operator P)}(f is bounded.

Corollary 2.4 We have X = Im P @ Ker P for all P € Proj(X) .

Lemma 2.5 Let (Lo, Lj) be a topological complementary pair of subspaces of X and L a
vector subspace of X . Then L is a topological complementary subspace to Ly if and only

VL i an _
if P[ﬁf Lo € Isom(L, Lo) whereby we have (P,’j;‘ Lo) - Pl’:o

Lo

Proof. Let P, = Pf:f . Then Py € L(X) by Theorem 2.3. If L is a topological comple-
mentary subspace to Ly then again from Theorem 2.3 we have Pf" € L(X) . Now for
z9 € Lo, 71 = Pf;’(zo) and zf) = Pfa(zo), we have z¢9 = 2, + 2{ by Proposition 2.2. It
follows that ‘

Poflo o P

1. (20) = Po( PL (20)) = Po(a) = Pozo — z4) = 20 ,

|k
and so Py|f° o P1° o

Lo )
Py|ke =idy, . Thus Po|ke € Isom(L, Lo) and (Po|k0) ™" = P

1 |L
=1idr, . By interchanging the roles of Lo and L, we obtain PI{“’ L
0

L

Lo

Conversely, suppose that PO|II:° € Isom(L, Lo) . Let S = (P, f")_l and take P = S|X0Po .
Then it follows that P € £(X) and

P’ =S¥oRoS|¥oR=5"o(Rl"oS)on =5 oids,0 =5 o B =P,

so that P € Proj(X) . Clearly, InP = S(R(X)) = S(Lo) = L, and the relation
P= SIX o Py implies that Ker Py C Ker P . Furthermore,

PyP=Pyo S| o Py=idp,|¥ o (Pt 0 S) 0 Py = idp,|¥ oidsy0 Py = Py




which implies that Ker P C Ker By . Thus Ker P = Ker Fy, in other words we have
Ker P = L} . Therefore, by Proposition 2.2, we have PI[:" = PlerP = P € Proj(X) which
implies by Corollary 2.4 that X = L& Lg . : |

We say that A, B € £(X) are similar in £(X) if and only if there exists S € GL(X) such
that A = SBS~! . Given A € £(X), we danote by Sim(A) the set of all operators in
L{X) that are similar to A .

Lemma 2.6
(a) Let Py, P» € L(X) be similar. Then P, € Proj(X) if and only if Py € Proj(X) .

(b) Let P, P, € Proj(X) . For every i € {1,2}, let L; = Im P; and L} = Ker P; .
Then P, and P, are similar if and only if the subspaces Ly and Ly are isomorphic and the
subspaces L} and Lj are isomorphic.

Proof. (a) This follows immediately from the properties of P and P, . For part (b), first
suppose that P; and P, are similar. Then there exists S € GL(X) such that P, = SP.S!.
Consequently,

Ly=ImP, = P(X)= SPI.S"‘(X) =SP(X)=S(ImP,)=S(Ly),
and since S € GL(X), it follows that S

I € Isom(Ly, Ly) . Furthermore,
Py (S(Ly)) = P S(LY) = SP(L}) = S(Pi(Ker Py)) = {0},
which implies that S(L}) C Ker P, = Lj. On the other hand,
Py (STH(Ly)) = PLSTH(LY) = STIPy(Ly) = ST' Py(Ker P3) = {0} .

Consequently, S~1(L}) C Ker P, = L} . Hence L, C S(L}) C L} and so Ly = S(L}) .
Since S € GL(X), it follows that S ;‘? € Isom(LY, L}) .

Conversely, assume that there exist ® € Isom(L, L,) and P ¢ Isom(L}, L) . Then by
Theorem 2.3, we have X = L;® L’ for each i € {1,2}. Let S = ®@®®’' . Then S is bijective
with $=1 = &~ ¢ &' and by Lemma 2.1, S € GL(X) . It follows from Proposition 2.2

that P; = Plf‘f for each 1 € {1,2} . Let Q, = Pf,l‘ ,‘'we have then
PS=P (2@ d)=P(OP +D'Q)) = ,OP =3 o P
=¥ o P+ 0P = (®|Yo P +0|Y0Q,)P, =5P,

and since S € GL{X), it follows that P, and /% are similar. ]

3 THE BANACH GRASSMANNIAN CGr(P, X) AND ITS PRINCIPAL BUN-
DLE

Definition 3.1 Taking P € Proj(X) and 7 = Sim(P), we denote by Gr(P,X) the
Grassmannian of images of projections in I’ where

Gr(—ﬁ,y.‘«‘{) = {lnQ| Qe P}.



“In the following we take L = Im P and L' = I{er P and denote by Up ‘the set of all
topological complementary subspaces to L' in X . Further, let

L*(P,X)={T€L(L,X): InT € Gr(P, X), T|'"™T ¢ Isom(L,ImT)} .

As £*(P,X) C L(L,X), we grant £*(P, X) the topology induced by the topology of
L(L,X) . Further, let 7p the mapping from £*(P, X) into Gr(P, X) defined by mp(T) =
ImT forall T € L*(P, X) . :

Lemma 3.2 Let P € Proj(X) and ﬁf Sim(P) . For P,, P» € P and for each i € {1,2},
let T; denote the final topology of Gr(P, X) associated to wp, . Then Ty =T, .

Proof. Let L; = Im P; for each i € {1,2} and take (3,7) € {(1,2),(2,1)} . Since P; and
P; are similar, there exists an isomorphism ® € Isom(L;, L;) given by Lemma 2.6 (b).

Let U : E( 5+ X) = L(L;i, X) be defined by \D(T)_ Tjo® forall Tj € L(Lj, X) . Then
clearly, U(T;) € L(L;, X) for all T; € L(Lj, X), ¥ is linear and ||¥|| < ||®|| < o . So it
follows that E: € L(L(Lj,X),L(Li, X)) .

Let T € £*(P;, X) and T; = U(T;) . Then
Ty = T5((Ly) = T5(L;) = Im T € Gr(P, X) ,
because T € £*(P;, X) . Therefore,
T,-[I"'T‘ = (Tjo <I>)|h"T T; ‘““ " o® € Isom(L;, ImT;) = Isom(Li, ImT3) .

This implies that U (T;) = T; € £ (P,-,X) and so W(L*(Pj, X)) C L*(P;, X) . In this way

we obtain a well-defined map '
~|C*(P;,X)

U= ‘1’|c-'(P,,.\') )

‘satisfying
w0 W(Ty) = T (B(L)) = T5(L;) = m(Ty) . VI € L°(P;, X)
in other words m;o U = m; . If U € T;, then n7'(U) is open in £*(P;, X) and it is

straxghtforwarcl to see that 7; C T; for all (i,7) € { (1,2),(2,1)} . Hence it follows that
i=T. |

Let P € Proj(X)_.and P = Sim(P) . We grant Gr(P, X) the final topology associated
with the mapping mq for any Q € P . By Lemma 3.2, this topology does not depend on
the choice of Q € P .

Lemma 3.3 Let P € Proj(X), P =Sim(P) and P, € P. Then Up, is an open neighbor-
hood of Im Py in Gr(P, X) .

Proof. Let Lo = Im Py and L) = Ker Py . By Corollary 2.4, Ly € Up, . If L € Up,, then
-L is-isomorphic to Lo by Lemma 2.5 and therefore PI{’:’ € P, = P by Lemma 2.6 (b). Since
L=1Im Pl{':’ by Proposition 2.2, it follows that L € Gr(P,X) . Thus Up, C Gr(P, X) .
Consider the map 0. L(Lo, X) = L(Lo) defined by

U(T) = Ro|*oT, VT € L(Lo,X).



Then it is clear that 7 is linear, ||\TJ|| <|IPo]l < 00 and ¥ € L{L(Lo, X)~,E(L6)) '

Setting ¥ = \-I}lc'(Po,X)’ we proceed to show that WEOI(UPO) = U1 (GL(Lo)) . First of

all take T € W;ol(Upo) and L = mp (T), following which L € Up, . We have Py = Pfi"
by Proposition 2.2. and hence P0|ﬁ° € Isom(L, Ly) by Lemma 2.5. Since we have T €
L*(Po, X), it follows that T|* € Isom(Lo, L) and

W(T) = Po|k° o T|E € GL(Lo) . |

In other words, T € ¥~!(GL(Lo)) . Furthermore, 73! (Up,) C ¥~ (GL(Lo)) .

Conversely, if T € U~ (GL(Ly)), then ¥(T) € GL(Lo) . Let L = ImT . By definition
of ¥, we have T € L*(Fy,X) and so T|L € Isom(Lg, L) . Consequently, the relation
P0|II:° o TlL = U(T) implies that

Poli’° = ¥(T)o (T‘L)"l € Isom(L, Lo) .

Therefore L € Up, by Lemma 2.5, that is, 7p,(T) € Up, and hence T € w;ol(Upo) . T‘.h'is
shows that n,?o‘(Upo) = U~} (GL(Lo)) . Since GL(Lo) is an open subset of £(Lo) and ¥
is continuous, then w,}ol(Upo) is an open subset of £*(Fp,X) and consequently Up, is an

open subset of Gr(P, X) . |

Let P € Proj(X), P = Sim(P) and P, € P . As Up, C Gr(P, X) by Lemma 3.3, we can

grant Up, the subspace topology induced by the topology of Gr(P, X) .

Lemma 3.4 Let Py € P, LY = Ker Py and ® denote the mapping from Up, C Gr(P, X)
into £L(X) defined by ®(L) = P[[‘"’ for L € Up, . Then & is continuous.

Proof. Theorem 2.3 guarantees that ® takes its values in £(X) . By Lemma 3.3, Uéo
is an open subset of Gr(P,X) . Let Lo = Im Py and Py = P,i;’ . By Lemma 3.3., Up,'is
an open subset of Gr(Bp, X) . If V = ﬁ,?ol(Upu), then by definition of the final topology

Vp is an open subset of £*(P, X) and it will be sufficient to show that (®o 7rp0)|v is
o

continuous. Let Ty € Vp, Ly = 7p,(T}) and 7~‘1 = TIIL‘. Fore > 0, set

< 1
4 = min y ~ , —— i
" {QHPf."IlHPf;,’HHTF‘H 2nP£:’nnTr‘n}

) ~ | L .
Let T € Bge(py,x)(T1,8), L=np(T)and T = P,{l" Ll oT . Since L € Up, it follows from

Proposition 2.2 that we have T e Isom(Lg, Ly} . Turthermore,

1

~ -~ Ll LI
T - Tall < IPLPIIT = Thll < WPLYNS € s
: ' 27|

It follows by [Ha, proof of Theorem 3.1.4] that

|7 = T4 < 20T WNT =Tl < T



~ which in turn implies
T < T = T+ <207
Let z € Bx(0,1) and'y = T‘I(PIL:”(z)) . Then

lyll < IPERINT ) < 2PLEINT -

By Propositibn 2.2, we have
T(3) = (PP o P 01y (3) = PV (F() = PR (PE ) = PYo(e)
‘Since (PII::’ - P,ﬁ“)(a:) € Lj, it is straightforward to show that
(@omp,(T) = ®onp (Th))(2) = P (T - Ti)(v)) -
Consequently, for every 2z € By (0,1), we have

1@ 0 7py(T) = ® 0 mp, (T1)) (@)} < IPLHIT = Tulllyl
' . Ly 55—
< 2APNIPL TS < e

Therefore ||® o wp, (T) - ®onmp (T1)|l << forall T € Bee(py,xy(T1,6) . Thus @omp, is
continuous which implies that & is continuous. E

Theorem 3.5 Let Py € Proj{X) . Then Gr(Sim(P), X) is an analytic Banach manifold
~modelled on the Banach space £(Im Py, Ker P) .

Proof. Let Ly = Im Py, Ly = Ker P, and Py = Sim(F) . In order to egtablish the
theorem we need an analytic £(Lo, Lj)-atlas ((Up)pep,, (P) pep,) for Gr(Po, X) . For
every P, € Py, let

p={ImP: PePyand ImnP®KerP, =X} .

By Lemma 3.3, for every P € Fy, Up is an open neighborhood of Im P, a.nd so (UP)PEPO
is an open covering of Gr(Pp, X) .

Let Py € Po, Ly =1m Py, I} = Ker P, and @p, : Up, = L(L1,L}), given by

¢Pl=(PLq°PL)L,v VL e Up, .

1

We shall show that @p, is continuous. Let L, € Up, and £ > 0 . Taking p to denote the
mapping from Up, into.£(X). defined by p(L) = P,f", it follows from Lemma 3.4 that p is

continuous. Hence we can find an open neighborhood Np, of Ly in Up, such that

lla(L) = p(L2)|| < VL€ Ny, .

leL*Il



Since Pf,‘ is linear, it follows that for every L € Ny, ,
1

1Bp, (L) = B (L)l = | PE (P = PEDI| < 1PE llo(2) = p(Lo)l] < < .

hence showing that (p, is continuous.

Now we proceed to construct the inverse ‘lZpl of @p, . First of all consider the map
AP, . L(Ly, L}) — L£(L1, X) ,
defined as follows. For every o € L(Ly, L}), let Ap,(a) € L(L1, X) be defined by
Ap (@) (z1) = 21 + a(zy) Ve, €L,

otherwise expressed by X
Ap,(a) =idp |* +of¥ .

Since Ap, is an affine mapping from L£(L;, L}) into £(Ly, X) it is analytic. Let o €
L(Ly,L}) and {j;pl (@) = ImAp (a) . We shall show that 1,‘5,:1_(01) € Up, . Take then
L, = 1‘/;;:‘ () and let (y,)nen be a sequence of points of L2 converging to a point y € X . By
definition of Lg, there exists a sequence (25 )nen of points of Ly such that y, = Ap, (@) (z)
foralln € N. If z = P, (y), then z € L, and we have :

z=P(y) = P‘(nleoo Yn) = Jim Py(ya) = lim Pi(zn + a(ng)) = Jim 2, .
Hence ‘
y= nleoo Yn = "leoo Ap (@) (zn) = Ap, (@) (nleooxn) =Ap (a)(z) € Ly,
which in turn shows that L, is closed. It is straightforward to.show that L, N L{ = {0} .

Take z € X, z; = Pi(z), z2 = Ap,(a)(z1) and 2} =z —z2 . Then z =z, + 2}, z; € L,
and by Proposition 4.2 we have ‘ '

i=z—-zy=z—-z; —a(r) = (idx — Pllj:‘)(x) -a(z) = Plf‘,l‘(z) —afz;) e L.

It follows th_a;t X = L, ® L, . Therefore L, and L, are isomorphic by Lemma 2.5.
Since P, € Py, we know that Ly = Lo and L} = L{ by Lemma 2.6 (b). Also from
this Lemma, PI{‘:‘ € P, and hence 'zzpl(a) € Up,, thus sho(ving that 1’/;;:1’ is a ma.ppir{g
from L(Ly,L}) into Up, . Since mp, is continuous and Ap, is analytic, we find that
'(‘[;pl =Tp t:)z\pl € C(ﬁ(Ll,L;),Upl) . '

Now we show that Jp, is the inverse of @p, . For L € Up, we have

(PL o PLY)

L, .
L = ldLl )

by Lemma 2.5. and so obtain

A (B (D) = 4] + B (0] = (PE 0 P, (P o P,
! . 1

= (PLi+ PR o PL|, =P, .



1t follows that $p, (Fp, (L)) = Im Ap, (3p, (L)) = Im P,f"‘lLl = L and hence $p, o Fp, =
idy,, - .

Conversely, consider o € £(Ly,L}) . Let L = 9p,(a) and &, € L; . Then by definition

of Ap, (a), we have z; = Ap (a)(z)) ~ a(z,) with Ap,(a)(z,) € -L and —a(z,) € L] .

Hence by definition of PL’“", we have Pp'(z;) = Ap,(@)(z1) . Thus P”*[ L = Ana) .

Usmg the definition of ‘@, a routine claculation shows that $p (¥p,(2)) = @ and so
01/)1:l ld(Lth Hence we obtain wpl = <,9P‘ .

Since P, € Sim(Fp) there exist by Lemma 2.6 (b) corresponding isomorphisms ® €
Isom(L,,Lo) and ®' € Isom(L{, Ly) . Let S: L(Ly,L}) = £(Lo, Ly) be the map defined
by :

S(@) =9 0cacd™!, Ve € L(Ly, LY) .

Then S is invertible with inverse determined by

S Ya)=d"'oaod,  VaeL(LyL}).
Clearly, S and S~i are linear, ||S]| < 4||<I>’||||<I>“|| and ||S7Y < ||<I>'-1||||<I>||, so'that S €
Isom(L(Ly,LY),L(Lo, Ly)) . Let ¢op, = So @p,. Since $p, is an homeomorphism from

Up, onto L£(Ly, L}), it follows that ¢p, is an homeomorphism from Up, onto £(Lg, Lg) .

Let P, P, € P be such that. Up, N Up,_,> # @ . Then by Lemma 2.6 (a) we have Py,
P, € Proj(X) . Our next step will be to show that the change of chart

(¢p, 0 95

wpy (Up NUp,) '

is analytic. For each ¢ € {1,2},let L; = Im P;, L} = Ker P, and L € Up, N Up, . Since
LeL;, = X and L; ® L} = X for each i € {1,2}, we deduce from Lemma 2.5 that

v |L ch
Pfl i,n € Isom(L;,L) and Pyt Ly _ Pf” :

before, we have PII""IL'A = Ap,(a), since L = t,apl (e ) A routme calculation shows :
1

"€ Isom(L,Ls) . Let @ = ¢p, (L) . Just as

(<pp,o<p;,‘)(a)=.sap,(L) (5P orni@) o (Bl orn @)

Since ‘/\Pl is analytic, the abo?e change of chart @p, o g,a,',ll is also analytic. ]
Consider now: |

S(Po,X)={T € L*(P,X): T(X)=Q(X), QeR , T
Let 7 = wp|s(p,.x) : S(Po, X) ~— Gr(F. X) be given by #(T) = ImT . The following
two results follow directly from the propertics of a typical onblt of similarity in PrOJ(X)

as outlined in [CPR 1], [CPR 2] and [Ma] :

Proposition 3.8 The fiber space {S Py, X). (ll(Po, X),GL(Xo)} defines a smooth
locally trivia! principal GL(Xo)-bundle.



10

Let Ly € Gr(Po, X) . If we take T € S(P,X) and 4 € GL(X), then we observe that

7m(AT) does not depend on the choice of 4 . Define the map .
#: GL(X) — Gr(B, X) ,

by #(A) = ALo . Consider now the subgroup H C GL(Xj) defined by

H=#""(Lo)={h € GL(X): hLo = Lo} .

Proposition 3.7 The homogeneous fibration
#: GL(X) — GL(X)/H 2 Gr(P, X) ,

is a smooth locally trivial principal H-bundle.

A more extensive account of infinite dimensional Banach homogeneous spaces such'as
Gr(Py, X) = GL(X,)/H that are modelled on Banach algebras, can be found in e.g. [PR
1], [Ra], [Ma], [MR] and [Wi] (see also references therein).

4 APPLICATION TO SMOOTH FAMILIES OF SUBSPACES

We commence with the following well-known result between smooth maps and principal
bundles :

Lemma 4.1 (see e.g. [Hu]) Let f € C°(M, Gr(Po, X)) . Then with respect to the
diagram
£8P X)) —Lo S(Po, X)
J'(")l "l
M 2, Gr(—ﬁo,X)
the bundle f*(r) :f*(S(PO,JY)) — M, is a smooth principal GL(Xo)-bundle and f is an

equivariant bundle morphism.

Theorem 4.2 Let M be a smooth manifold and let f : M — Gr(_ﬁo,X) be a'smooth
family of subspaces parametrized by M. Then we have the following equivalent statements:

(1) f € C=(M,Gr(Po, X)) .

(2) For every xo € M there exists an open neighborhood V;, of zo together with a
family of maps ¢; € C*®(Vy,, X) such that {(i(z)}ier is a smooth subspace of f(z),for all
z €V . :

(3) For every =9 € M, there exists an open neighborhobd Vi, Of zo in M together
with a map fz, € C°(V;,, GL(X)) such that

f(@) = fao(®) - f(o)
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for all z € Vg, -

Proof. Firstly we recall that if Ls € Gr(Po,.X) and L} is a complementary subspace to
Lo in X, and U is the set of all complementary subspaces of L{, then we have seen that
Uy is an open neighborhood of Ly . To establish the equivalence of (1) and (2), we first of
all suppose that (1) holds. Let V,, = f~!(Up) and z € V4. We ta.ll\'e the {Ci(wo)}icr as a

smooth subspace f(z¢) . Then for L = f(2¢) we define (;(2) = Pf" (Ci(z0)) . Conversely,
let A(z) € S(Po, X) be the projection to the image of {¢;(z)}. Then we may define an
element f € C®(M, Gr(FO,X)) such that f=mToAon Vy, .

To prove the equivalence of (1) and (3), let f € C'°°(M,Gr(Fo,X) . Let Uy be such that
for 2o € M, f(zo) € Up and let V,, = f~'(Up) . Then with regards to the principal
H-bundle # : GL(X) — Gr(Po, X), we take a local smooth section 3 : Uy = GL(Xo)
and for each z € V, set f(z) = 5 (f(z)) . We define fzo € C*(Vge, GL(X)) by

AOESORUCY
such that f(z) = fro(2) - f(zo) . Let Lo = f(zo) . If (3) holds, namely
f(.’l?) = fl‘o(n") ‘ LO )

then the pointwise evaluation of the image of f is smooth and from this we can conclude

f € C®(M,Gr(Po, X)) - =

In order to obtain the global version of Theorem 4.2, we will need the following smoothing
approzimation :

Theorem 4.3 Let M be a paracompact smooth (Hausdorff) manifold which is taken to
be a subset of a Hilbert space. Let (P,m,M) be a smooth locally trivial fiber bundle
with fiber F a Banach manifold. Assume that there exists a global continuous section
So : M — P. Then there exists a global smooth section s : M — P . '

Proof. This entails modifying the smooth approximation theorem of [St 6.7] (see also [Ho
V.4.1]) where the local compactness property is to be replaced by the paracompactness of

M.

Let {Uqa}aer be an open covering of M where for each o € I, we have a smooth local
trvialization U, x F — U, that we elect to call property S. As M is paracompact and
Hausdorff we obtain a o-discrete refinement {V4}aes of this cover and as property S is
hereditary on open sets, then each member of this new open cover has this same property.
By forming the union of each of the discrete subfamilies of which there are only countably
many, we obtain a countable open cover of M in which each member has property S. Since
this cover admits a locally finite refinement {A,}qex it follows from [D, VIII] that it must
have a precise open locally finite cover {Bgy}aer of M (i.e. K = L and B, C A, for each
«). In turn we obtain a countable locally finite open cover of M.in which each member
has property S.

Now the same o-discrete argument allows us to assume that we have a corresponding
cover of the continuous section sp : M — P by open sets with typical fiber diffeomorphic
to the Banach space on which the fiber F' is modelled. The approximating arguments
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of [St] then can be applied verbatim by replacing the (¢, §)-inequalities by open sets.
The compactness property required in [St] enables the Stone —Weierstrass theorem to be
implemented locally so as to achieve the smooth approximation. Here it is replaced by the
existence of local smooth partitions of unity that is ensured by taking M to be a subset
of a Hilbert space (see [La II,3]). |

Theorem 4.3 is in the spirit of the neighborhhood (NEP) and section (SEP) extension
property of sections for more general classes of fibrations as considered in [Du 1] and [Du

2.

Theorem 4.4 Let M be as in Theorem 4.3 and let M be contractible. Take a smooth
map f € C®(M,Gr(Po, X)) . Then

(1) There exists a Q € Proj(X) such that f(z) =ImQ and X = ImQ @ kerQ is a
decomposition of X depending smoothly on z, for all z € M .

(2) There exists a map f € C°(M,GL(X)) and a subspace Lo € Gr(Po, X) such
that f(z) = f(z)Lo , for all z € M . In particular, we have
f@) = f(z)- f(wo)™" - f(=o)
for all z,z0 € M .
Proof. From Lemma 4.1, the smooth GL(Xp)-bundle f*(S(Ps, X)) = M admits a global
continuous section by the contractibility assumption on M . In turn, by Theorem 4.3,
there exists a global smooth section s : M — f*(S(P, X)) . From the definition of
S(Po,X), for all z € M, (f o s)(z) defines an injective linear map T which corresponds

to a projection @ € Proj(X) such that T(X) = Q(X) . Further, Q is continuous as a
bounded linear map and has closed image in X given by :

o fos)(z) = flz) .
Sgtting f(z) =ImQ, part (1) follows.

For (2) we apply essentially the same principle as we did in proving (1) in view of the
diagram

F(GLX)) -  aLx)
M —L Gi(Po, X)

where s’ is a global smooth section. We take f'= flos' and Lo = n(T) where T € S(Pp, X),
so that by the definition of #, we obtain the global version of Theorem 4.2 (3):

f(z) = (7o f)(z) = f(z0) - Lo
|

The finite dimensional versions of Theorems 4.2 and 4.4 are [FGP, IV-1-2] and [FGP,
IV-2-3] respectively.
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