NATURALLY REDUCTIVE HOMOGENEOUS STRUCTURES ON 2-STEP NILPOTENT LIE GROUPS

JORGE LAURET

FAMAF, UNIV. NAC. DE CÓRDOBA, ARGENTINA

ABSTRACT. We give an alternative proof of the description of the naturally reductive 2-step nilpotent Lie groups endowed with a left-invariant metric, as an application of the characterization of naturally reductive spaces by homogeneous structures of class \mathcal{T}_3 . We also prove that if (N, \langle , \rangle) has no euclidean factor, then there exists at most one naturally reductive homogeneous structure (or of class \mathcal{T}_3) on (N, \langle , \rangle) .

1. Introduction

In [AS], Ambrose and Singer gave a characterization of the homogeneous Riemannian manifolds by a local condition which is to be satisfied at all points. They proved that a connected, simply connected and complete Riemannian manifold (M,g) is homogeneous if and only if there exists a tensor field T of type (1,2) such that $\nabla g = \nabla R = \nabla T = 0$, where $\nabla = \nabla - T$ and ∇R denote the Levi-Civita conection and the curvature tensor of (M,g) respectively. Such T is called a homogeneous structure.

Afterwards, F. Tricerri and L. Vanhecke characterized the naturally reductive homogeneous spaces as above adding the condition $T_x x = 0$ for all vector field x on M (see [TV1]). In this case T is called a naturally reductive homogeneous structure or a homogeneous structure of class T_3 .

In [K2], A. Kaplan showed that the only naturally reductive *H*-type groups are the Heisenberg group and its quaternionic analogue. F. Tricerri and L. Vanhecke give in [TV2], as an application of the characterization of naturally reductive spaces by homogeneous structures stated in [TV1], an alternative proof of Kaplan's result. In [Go] C. Gordon studies naturally reductive metrics on homogeneous manifolds. It is proved that if the manifold admits a transitive nilpotent group of isometries then the group is at most 2-step nilpotent. Moreover a necessary and sufficient condition for a 2-step homogeneous nilmanifold is given to be naturally reductive.

In this work we start giving in §3 an alternative proof of the description of naturally reductive 2-step nilpotent Lie groups given in [Go], as another application of the theory of homogeneous structures. We also study in §4 the set of all homogeneous structures of class \mathcal{T}_3 in any nilpotent Lie group endowed with a left-invariant metric (N, \langle , \rangle) . We shall prove that if (N, \langle , \rangle) has no euclidean factor then there is at most one homogeneous structure of class \mathcal{T}_3 on (N, \langle , \rangle) .

Supported by a fellowship from CONICET and research grants from CONICOR and SeCyT UNC (Argentina).

Acknowledgements. This paper is part of my thesis work. I wish to express my gratitude to my advisor, Isabel Dotti, for her invaluable guidance.

2. Geometric preliminaries

We consider simply connected real nilpotent Lie groups N endowed with a left-invariant metric, denoted by (N, \langle, \rangle) , where \langle, \rangle is the inner product on the Lie algebra n of N determined by the metric.

The full group of isometries of a nilpotent Lie group (N, \langle , \rangle) is given by

(1)
$$I(N,\langle,\rangle) = K \ltimes N \qquad \text{(semidirect product)},$$

where $K = \operatorname{Aut}(\mathfrak{n}) \cap O(\mathfrak{n}, \langle, \rangle)$ is the isotropy subgroup and N acts by left translations (see [W]). Thus the structure of $I(N, \langle, \rangle)$ is completely determined by K. Note that, since N is simply connected, we make no distinction between automorphisms of N and \mathfrak{n} .

Let N be a 2-step nilpotent Lie group and let \langle , \rangle be an inner product on \mathfrak{n} . Denote by \mathfrak{z} the center of \mathfrak{n} and set $\mathfrak{v} = \mathfrak{z}^{\perp}$. For each $a \in \mathfrak{z}$ we define $J_a : \mathfrak{v} \longrightarrow \mathfrak{v}$ by

(2)
$$\langle J_a x, y \rangle = \langle a, [x, y] \rangle, \qquad x, y \in \mathfrak{v}.$$

Note that J_a is skew-symmetric for all $a \in \mathfrak{z}$ and $J:\mathfrak{z} \longrightarrow \operatorname{End}(\mathfrak{v})$ is linear. The maps $\{J_a\}_{a\in\mathfrak{z}}$ give the relationship between the Lie bracket of \mathfrak{n} and the metric \langle,\rangle and thus carry a lot of geometric information about the Riemannian manifold (N,\langle,\rangle) (see for example [K1], [E1], [E2]). It is easy to prove that the isotropy group is given by

(3)
$$K = \{ (T, \phi) \in O(\mathfrak{v}) \times O(\mathfrak{z}) : TJ_aT^{-1} = J_{\phi a}, \quad a \in \mathfrak{z} \}.$$

Let \mathfrak{k} be the Lie algebra of K. Thus $\mathfrak{k} = \operatorname{Der}(\mathfrak{n}) \cap \mathfrak{so}(\mathfrak{n}, \langle, \rangle)$ and

$$\mathfrak{k} = \{ (A, B) \in \mathfrak{so}(\mathfrak{v}) \times \mathfrak{so}(\mathfrak{z}) : AJ_a - J_aA = J_{Ba}, \quad a \in \mathfrak{z} \}.$$

If $[\mathfrak{n},\mathfrak{n}] \neq \mathfrak{z}$ then $N \simeq N_1 \times R^k$, where $N_1 = \exp(\mathfrak{n},\mathfrak{n})$ and $R^k = \exp([\mathfrak{n},\mathfrak{n}]^\perp \cap \mathfrak{z})$ (exp: $\mathfrak{n} \longrightarrow N$ is the usual Lie exponential map), thus (N, \langle,\rangle) is isometric to $(N_1, \langle,\rangle|_{\mathfrak{n}_1 \times \mathfrak{n}_1}) \times R^k$. In this case, we will say that (N, \langle,\rangle) has euclidean factor. It is easy to see that (N, \langle,\rangle) has Euclidean factor if and only if there exists a nonzero $a \in \mathfrak{z}$ such that $J_a = 0$.

The Levi-Civita conection has been computed in [E1]. We have

$$\begin{cases} \nabla_x y = \frac{1}{2}[x, y] \\ \nabla_a x = \nabla_x a = -\frac{1}{2}J_a x \\ \nabla_a b = 0, \end{cases}$$

where $x, y \in \mathfrak{v}$ and $a, b \in \mathfrak{z}$ are regarded as left-invariant vector fields on N. For arbitrary $x, y \in \mathfrak{n}$ we recall that the Ricci tensor of (N, \langle, \rangle) is defined by $\rho(x, y) = \operatorname{tr}(z \to R(z, x)y, z \in \mathfrak{n})$, where R denotes the curvature tensor defined by $R(x, y) = [\nabla_x, \nabla_y] - \nabla_{[x,y]}$. For the Ricci tensor we obtain (see [E1])

- (i) $\rho(x,a) = 0 \quad \forall \ x \in \mathfrak{v}, a \in \mathfrak{z}.$
- (ii) If $\{a_1, ..., a_m\}$ is an orthonormal basis of $(\mathfrak{z}, \langle, \rangle)$ then

$$\rho(x,y) = \langle (\frac{1}{2} \sum_{i=1}^{m} J_{a_i}^2) x, y \rangle \quad \forall \ x, y \in \mathfrak{v}.$$

(iii)
$$\rho(a,b) = -\frac{1}{4} \operatorname{tr}(J_a J_b) \quad \forall \ a,b \in \mathfrak{z}.$$

In particular ρ is negative definite on $\mathfrak{v} \times \mathfrak{v}$ and ρ is positive semidefinite on $\mathfrak{z} \times \mathfrak{z}$. If (N, \langle , \rangle) has no euclidean factor then ρ is positive definite on $\mathfrak{z} \times \mathfrak{z}$.

3. Naturally reductive 2-step nilpotent Lie groups

Let M be a connected homogeneous manifold. Further let G be a Lie group acting transitively and effectively on the left on M as a group of isometries and denote by K the isotropy subgroup at some point $p \in M$. Let \mathfrak{g} and \mathfrak{k} denote the Lie algebras of G and K respectively. Suppose \mathfrak{m} is a vector space complement of \mathfrak{k} in \mathfrak{g} such that $\mathrm{Ad}(K)\mathfrak{m} \subset \mathfrak{m}$ (i.e. $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ is a reductive decomposition). Thus we may identify \mathfrak{m} with $\mathrm{T}_p M$ via the map $X \longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}|_0 \exp tX.p$ and we denote by \langle , \rangle the inner product on \mathfrak{m} induced by the Riemannian metric of M.

Definition 3.1. The manifold M is said to be naturally reductive if there exists a Lie group G and a subspace m with the properties described above and such that

(5)
$$\langle [X,Y]_{\mathfrak{m}},Z\rangle + \langle Y,[X,Z]_{\mathfrak{m}}\rangle = 0 \qquad \forall X,Y,Z \in \mathfrak{m},$$

where $[X,Y]_{\mathfrak{m}}$ denotes the projection of [X,Y] on \mathfrak{m} with respect to the decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$.

An important observation is that a Riemannian homogeneous space M=G/K might be naturally reductive although for none reductive decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$ of \mathfrak{g} the condition (5) holds. It is clear that if we want to find out whether M is naturally reductive or not we first have to determine all transitive isometry groups G of M and then consider all the $\mathrm{Ad}(K)$ -invariant complements of \mathfrak{k} in \mathfrak{g} .

Because of this ambiguity the following result has been proved by F. Tricerri and L. Vanhecke in [TV2] (see also [TV1]).

Theorem 3.2. [TV1] Let (M,g) be a connected, simply connected and complete Riemannian manifold. Then (M,g) is a naturally reductive homogeneous space if and only if there exists a tensor field T of type (1,2) such that

(AS)
$$\begin{cases} \text{(i) } g(T_x y, z) + g(y, T_x z) = 0 \\ \text{(ii) } (\nabla_x R)(y, z) = [T_x, R(y, z)] - R(T_x y, z) - R(y, T_x z) \\ \text{(iii) } (\nabla_x T)_y = [T_x, T_y] - T_{T_x y} \end{cases}$$
(iv) $T_x x = 0$

for all $x, y, z \in \chi(M)$, where ∇ denotes the Levi-Civita conection of (M, g) and R is the Riemann curvature tensor defined by $R(x, y) = [\nabla_x, \nabla_y] - \nabla_{[x,y]}$.

Note that if $\tilde{\nabla} := \nabla - T$ then the conditions (AS) can be writen as follows

(AS)
$$\begin{cases} (i) \tilde{\nabla} g = 0 \\ (ii) \tilde{\nabla} R = 0 \\ (iii) \tilde{\nabla} T = 0 \end{cases}$$

The conditions (AS) are the Ambrose-Singer conditions and the existence of a tensor T satisfying these conditions is equivalent to the homogeneity of the manifold

(see [AS]). Note that (AS) is a generalization of Cartan's condition $\nabla R = 0$ for symmetric spaces, in this case the tensor $T \equiv 0$ satisfy (AS).

Definition 3.3. A tensor field T of type (1,2) is said to be a homogeneous structure if it satisfies (AS) and is said to be a naturally reductive homogeneous structure if T satisfies (AS) and (iv) of Theorem 3.2.

As an application of Theorem 3.2, there is in [TV2] an alternative proof of the classification of naturally reductive H-type groups (see [K2]). Nilpotent Lie groups endowed with left-invariant metrics (N, \langle , \rangle) which are naturally reductive have been studied by C. Gordon. It is proved in [Go] that any naturally reductive nilpotent Lie group (N, \langle , \rangle) is at most 2-step nilpotent. Moreover a characterization of the naturally reductive 2-step nilpotent Lie groups is given (see Theorem 3.4). We next give an alternative proof of this theorem applying naturally reductive homogeneous structures.

Theorem 3.4. [Go] Let (N, \langle, \rangle) be a 2-step nilpotent Lie group without Euclidean factor. Then (N, \langle , \rangle) is naturally reductive if and only if

- (i) $J_3 = \{J_a\}_{a \in \mathfrak{z}}$ is a Lie subalgebra of $\mathfrak{so}(\mathfrak{v}, \langle, \rangle)$. (ii) $\tau_a \in \mathfrak{so}(\mathfrak{z}, \langle, \rangle)$ for any $a \in \mathfrak{z}$, where τ_a is given by $J_aJ_b J_bJ_a = J_{\tau_ab}$ for all $a, b \in \mathfrak{z}$.

We note that (ii) is equivalent to $(J_a, \tau_a) \in \mathfrak{k}$, i.e. is a skew symmetric derivation of n (see (4)).

Alternative proof of Theorem 3.4. Let (N,\langle,\rangle) be a 2-step nilpotent Lie group without euclidean factor. Let ρ denote the Ricci tensor of (N, \langle , \rangle) . If $x, y \in \mathfrak{r}$ and $a, b \in \mathfrak{z}$ then (see Section 2)

$$\begin{cases} \nabla_x y = \frac{1}{2}[x, y] \\ \nabla_a x = \nabla_x a = -\frac{1}{2}J_a x \\ \nabla_a b = 0 \end{cases} \begin{cases} \rho(x, y) = \langle S_1 x, y \rangle \\ \rho(a, x) = 0 \\ \rho(a, b) = \langle S_2 a, b \rangle \end{cases}$$

where S_1, S_2 are negative and positive definite symmetric transformations on v and srespectively.

Suppose first that (N, \langle , \rangle) is naturally reductive. By Theorem 3.2 there exists a tensor field T of type (1,2) satisfying (AS) and $T_x x = 0$ for any vector field x.

By (AS),(ii) we have that $\nabla R = TR$, it is clear then that $\nabla \rho = T\rho$. If $x \in \mathfrak{v}$ and $a, b \in \mathfrak{z}$ with $S_2b = \lambda b$ we obtain

$$(\nabla_a \rho)(x, b) = (T_a \rho)(x, b)$$

$$\rho(\nabla_a x, b) + \rho(x, \nabla_a b) = \rho(T_a x, b) + \rho(x, T_a b)$$

$$0 = \lambda \langle T_a x, b \rangle + \langle S_1 x, T_a b \rangle$$

$$0 = -\lambda \langle x, T_a b \rangle + \langle S_1 x, T_a b \rangle$$

$$0 = \langle (S_1 - \lambda I)x, T_a b \rangle.$$

Since S_2 is positive definite and S_1 is negative definite we have that $(S_1 - \lambda I)$ is non-singular, thus $T_ab \in \mathfrak{z}$ for any $a \in \mathfrak{z}$ and any eigenvector $b \in \mathfrak{z}$ of S_2 . We choose a basis of \mathfrak{z} of eigenvectors of S_2 , and by linearity we obtain

$$(6) T_a b \in \mathfrak{z} \forall a, b \in \mathfrak{z}$$

It follows from (AS),(i) that $T_a \in \mathfrak{so}(\mathfrak{n}, \langle, \rangle)$, thus

(7)
$$T_a x \in \mathfrak{v} \qquad \forall \ a \in \mathfrak{z}, \ x \in \mathfrak{v}.$$

Note that (6) and (7) hold for any homogeneous structure on (N, \langle , \rangle) , since we have not used (iv) of Theorem 3.2 yet.

Now, by another application of $\nabla \rho = T \rho$ and using (iv) of Theorem 3.2, for $x, y \in \mathfrak{v}$ and $a \in \mathfrak{z}$ with $S_2 a = \lambda a$ we have

$$(\nabla_x \rho)(y, a) = (T_x \rho)(y, a)$$

$$\rho(\nabla_x y, a) + \rho(y, \nabla_x a) = \rho(T_x y, a) + \rho(y, T_x a)$$

$$\frac{1}{2} \langle [x, y], S_2 a \rangle - \frac{1}{2} \langle S_1 y, J_a x \rangle = \langle T_x y, S_2 a \rangle + \langle S_1 y, T_x a \rangle$$

$$\frac{1}{2} \langle J_{S_2 a} x, y \rangle - \frac{1}{2} \langle S_1 J_a x, y \rangle = -\langle T_x S_2 a, y \rangle + \langle S_1 T_x a, y \rangle$$

$$\langle \frac{1}{2} \lambda J_a x - \frac{1}{2} S_1 J_a x, y \rangle = \langle \lambda T_a x - S_1 T_a x, y \rangle,$$

hence

$$\frac{1}{2}(\lambda I - S_1)J_a x = (\lambda I - S_1)T_a x \qquad \forall \ x \in \mathfrak{v}, \ a \in \mathfrak{z} \text{ with } S_2 a = \lambda a.$$

Since $(\lambda I - S_1)$ is non-singular, we obtain as before (6) that

(8)
$$T_a x = \frac{1}{2} J_a x \qquad \forall \ a \in \mathfrak{z}, \ x \in \mathfrak{v}.$$

It follows from (AS),(iii) that for all $x, y \in \mathfrak{v}$, $a \in \mathfrak{z}$, we have

$$(\nabla_a T)_x y = (T_a T)_x y$$

$$\nabla_a T_x y - T_{\nabla_a x} y - T_x \nabla_a y = T_a T_x y - T_{T_a x} y - T_{\bar{x}} T_a y.$$

Now, using (6),(7),(8) and (iv) of Theorem 3.2, we obtain for all $b \in \mathfrak{z}$ that

$$\frac{1}{2}\langle T_{J_ax}y, b \rangle + \frac{1}{2}\langle T_x J_a y, b \rangle = \langle T_a T_x y, b \rangle - \frac{1}{2}\langle T_{J_ax}y, b \rangle - \frac{1}{2}\langle T_x J_a y, b \rangle$$

$$\frac{1}{2}\langle y, T_b J_a x \rangle + \frac{1}{2}\langle J_a y, T_b x \rangle = \langle y, T_x T_a b \rangle - \frac{1}{2}\langle y, T_b J_a x \rangle - \frac{1}{2}\langle J_a y, T_b x \rangle$$

$$\frac{1}{4}\langle J_b J_a x, y \rangle - \frac{1}{4}\langle J_a J_b x, y \rangle = -\frac{1}{2}\langle J_{T_a b} x, y \rangle - \frac{1}{4}\langle J_b J_a x, y \rangle + \frac{1}{4}\langle J_a J_b x, y \rangle.$$

This implies that

$$\frac{1}{4}J_bJ_a - \frac{1}{4}J_aJ_b = -\frac{1}{2}J_{T_ab} - \frac{1}{4}J_bJ_a + \frac{1}{4}J_aJ_b \qquad \forall \ a,b \in \mathfrak{z},$$

therefore

$$(9) J_a J_b - J_b J_a = J_{T_a b} \forall a, b \in \mathfrak{z}.$$

So we have that $J_{\mathfrak{z}}$ is a Lie subalgebra of $\mathfrak{so}(\mathfrak{v}, \langle, \rangle)$ and since $\tau_a b = T_a b$, it follows from (AS),(i) that $\tau_a \in \mathfrak{so}(\mathfrak{z}, \langle, \rangle)$.

Converselly, suppose that (i) and (ii) of the theorem hold. It is not hard to check that the tensor field of type (1,2) defined on left-invariant fields by

(10)
$$\begin{cases} T_x y = \frac{1}{2}[x, y] \\ T_a x = -T_x a = \frac{1}{2}J_a x \\ T_a b = \tau_a b \end{cases} \forall x, y \in \mathfrak{v}, a, b \in \mathfrak{z}$$

is a naturally reductive homogeneous structure. Thus (N, \langle, \rangle) is naturally reductive by Theorem 3.2. \square

We show in the following theorem that in naturally reductive 2-step nilpotent Lie groups we have no ambiguity problem with respect to the different transitive groups and decompositions as observed after Definition 3.1.

Theorem 3.5. Let (N, \langle , \rangle) be a 2-step nilpotent Lie group without euclidean factor. Then (N, \langle , \rangle) is naturally reductive if and only if it is so with respect to the full isometry group $G = I(N, \langle , \rangle)$ and the decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where

$$\mathfrak{m} = \{x + a + D_a : x \in \mathfrak{v}, a \in \mathfrak{z}\}$$

and D_a is the element in $\mathfrak k$ given by $D_a|_{\mathfrak v}=J_a$, $D_a|_{\mathfrak z}=\tau_a$.

Proof. Suppose that (N, \langle, \rangle) is naturally reductive. Using that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{n}$ (see (1)), it is easy to see that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ is a direct sum of vector spaces. We note that if $D \in \mathfrak{k}$ then [D, x] = Dx for all $x \in \mathfrak{n}$, and thus $Ad(\varphi)x = \varphi x$ for all $x \in \mathfrak{n}$, $\varphi \in K$.

We first prove that m is Ad(K)-invariant. If $\psi \in K$ and $x + a + D_a \in m$ then

$$Ad(\psi)(x+a+D_a) = \psi x + \psi a + \psi D_a \psi^{-1}.$$

Since $\psi J_a \psi^{-1} = J_{\psi a}$ (see (3)) we also have that $\psi \tau_a \psi^{-1} = \tau_{\psi a}$, thus $\psi D_a \psi^{-1} = D_{\psi a}$ and hence $\mathrm{Ad}(K)\mathfrak{m} \subset \mathfrak{m}$.

We now prove (5) for the decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$. Let \langle,\rangle_e denote the inner product on \mathfrak{m} determined by the Riemannian metric of (N,\langle,\rangle) . It is easy to see that $\langle x+D,y+D'\rangle_e=\langle x,y\rangle$ for all $x,y\in\mathfrak{n},\ D,D'\in\mathfrak{k}$. Thus, for any $x,y,z\in\mathfrak{n},\ a,b,c\in\mathfrak{z}$, we have

$$\langle [x+a+D_a,y+b+D_b]_{\mathfrak{m}},z+c+D_c\rangle_{\mathfrak{e}} =$$

$$= \langle ([x,y]-J_bx-\tau_ba+J_ay+\tau_ab+[D_a,D_b])_{\mathfrak{m}},z+c+D_c\rangle_{\mathfrak{e}}$$

$$= \langle [x,y]-J_bx+J_ay+2\tau_ab,z+c\rangle$$

$$= \langle J_cx,y\rangle - \langle J_bx,z\rangle + \langle J_ay,z\rangle + 2\langle \tau_ab,c\rangle$$

$$= \langle y,J_cx\rangle - \langle y,J_az\rangle - \langle J_bx,z\rangle - 2\langle b,\tau_ac\rangle$$

$$= -\langle y+b,[x,z]-J_cx+J_az+2\tau_ac\rangle$$

$$= -\langle y+b+D_b,([x,z]-J_cx+J_az+2\tau_ac+[D_a,D_c])_{\mathfrak{m}}\rangle_{\mathfrak{e}}$$

$$= -\langle y+b+D_b,[x+a+D_a,z+c+D_c]\rangle_{\mathfrak{e}}.$$

This proves (5), concluding the proof, since the converse is obvious. \Box

4. Homogeneous structures of class \mathcal{T}_3 on 2-step nilpotent Lie groups

The naturally reductive homogeneous structures (see Definition 3.3) are also called homogeneous structures of class T_3 (see [TV1],[P],[ChG1],[ChG2] for further information about the classes of homogeneous structures).

F. Tricerri and L. Vanhecke determined in [TV1] all the homogeneous structures on the 3-dimensional Heisenberg group, obtaining that they are parametrized by $\{T(\mu): \mu \in R\}$. Further, $T(\mu)$ is of class \mathcal{T}_3 if and only if $\mu = \frac{1}{2}$.

In [ChG2] the homogeneous structures on the (2p + 1)-dimensional Heisenberg group H_p are characterized. They gave a large class of explicit examples

$$\{T(r, s, t_1, ..., t_p) : r, s, t_i \in R\}.$$

Analogously to the case p=1 one has that $T(r,s,t_1,...,t_p)$ is of class \mathcal{T}_3 if and only if r=s=0 and $t_1=...=t_p=\frac{1}{2}$.

The homogeneous structures on the generalized Heisenberg group H(1,r) are also characterized (see [ChG1]), and this group does not admit any homogeneous structure of class \mathcal{T}_3 .

In this section we study the set of all homogeneous structures of class \mathcal{T}_3 in any nilpotent Lie group endowed with a left-invariant metric (N, \langle , \rangle) . We shall prove that if (N, \langle , \rangle) has no euclidean factor then there is at most one homogeneous structure of class \mathcal{T}_3 .

It follows from Theorem 3.2 that (N, \langle , \rangle) is naturally reductive if and only if there is on (N, \langle , \rangle) a homogeneous structure of class \mathcal{T}_3 . Thus, if a nilpotent Lie group (N, \langle , \rangle) has a homogeneous structure of class \mathcal{T}_3 then N is at most 2-step nilpotent.

Theorem 4.1. Let (N, \langle , \rangle) be a naturally reductive 2-step nilpotent Lie group without euclidean factor. The tensor field T of type (1,2) defined in (10) is the unique homogeneous structure of class T_3 on (N, \langle , \rangle) .

Proof. Let T' be a homogeneous structure of class T_3 on (N, \langle, \rangle) . In the proof of Theorem 3.4 (see (8) and (9)) we have obtained

$$\begin{cases} T'_a x = \frac{1}{2} J_a x \\ T'_a b = \tau_a b. \end{cases} \forall x \in \mathfrak{v}, a, b \in \mathfrak{z}$$

Using that $\nabla \rho = T'\rho$, for $x, y \in \mathfrak{v}$, $a \in \mathfrak{z}$ with $S_2 a = \lambda a$, we have

$$(\nabla_{x}\rho)(y,a) = (T'_{x}\rho)(y,a)$$

$$\rho(\nabla_{x}y,a) + \rho(y,\nabla_{x}a) = \rho(T'_{x}y,a) + \rho(y,T'_{x}a)$$

$$\frac{1}{2}\langle[x,y], S_{2}a\rangle - \frac{1}{2}\langle S_{1}y, J_{a}x\rangle = \langle T'_{x}y, S_{2}a\rangle + \langle S_{1}y, T'_{x}a\rangle$$

$$\lambda\langle \frac{1}{2}[x,y],a\rangle - \frac{1}{2}\langle S_{1}y, J_{a}x\rangle = \lambda\langle T'_{x}y,a\rangle - \frac{1}{2}\langle S_{1}y, J_{a}x\rangle$$

$$\lambda\langle \frac{1}{2}[x,y],a\rangle = \lambda\langle T'_{x}y,a\rangle$$

$$\lambda\langle \frac{1}{2}[x,y],a\rangle = \lambda\langle T'_{x}y,a\rangle,$$

hence

(11)
$$(T'_x y)_{\mathfrak{z}} = \frac{1}{2} [x, y] \qquad \forall \ x, y \in \mathfrak{v}.$$

We then obtain that

$$\left\{ \begin{array}{l} T_x'y = T_xy + T_x^1y \\ T_a'x = T_ax \\ T_a'b = T_ab, \end{array} \right. \quad \forall \, x,y \in \mathfrak{v}, \, \forall a,b \in \mathfrak{z}$$

where $T^1: \mathfrak{v} \times \mathfrak{v} \longrightarrow \mathfrak{v}$ is a skew-symmetric bilinear form. Thus, we should prove that $T^1 \equiv 0$.

We can see T^1 as a field tensor of type (1,2) putting $T^1_a x = T^1_x a = T^1_a b = 0$ for all $a,b\in\mathfrak{z},x\in\mathfrak{v}$. So we have $T'=T+T^1$. It follows from $\nabla T'=T'T'$ (see (AS),(iii)) that

$$\nabla T + \nabla T^{1} = TT + TT^{1} + T^{1}T + T^{1}T^{1}.$$

Since $\nabla T = TT$, for all $x, y \in \mathfrak{v}$, $a \in \mathfrak{z}$, we have

$$(\nabla_x T^1)_y a = (T_x T^1)_y a + (T_x^1 T)_y a + (T_x^1 T^1)_y a$$
$$-T_y^1 \nabla_x a = -T_y^1 T_x a + T_x^1 T_y a - T_{T_x^1 y} a$$
$$\frac{1}{2} T_y^1 J_a x = \frac{1}{2} T_y^1 J_a x - \frac{1}{2} T_x^1 J_a y + \frac{1}{2} J_a T_x^1 y,$$

and this implies that

(12)
$$T_x^1 J_a = J_a T_x^1 \qquad \forall x \in \mathfrak{v}, \ a \in \mathfrak{z}.$$

Now, for any $x, y, z \in \mathfrak{v}$ we obtain

$$\begin{split} (\nabla_x T^1)_y z &= (T_x T^1)_y z + (T_x^1 T^1)_y z \\ \nabla_x T_y^1 z &= T_x T_y^1 z - T_{T_x^1 y} z - T_y T_x^1 z + T_x^1 T_y^1 z - T_{T_x^1 y}^1 z - T_y^1 T_x^1 z \\ &\frac{1}{2} [x, T_y^1 z] &= \frac{1}{2} [x, T_y^1 z] - \frac{1}{2} [T_x^1 y, z] - \frac{1}{2} [y, T_x^1 z] + T_x^1 T_y^1 z - T_{T_x^1 y}^1 z - T_y^1 T_x^1 z, \end{split}$$

and since all brackets are in 3 then

(13)
$$T_{T_x^1 y}^1 = T_x^1 T_y^1 - T_y^1 T_x^1 \qquad \forall \ x, y \in \mathfrak{v}.$$

Since T^1 is bilinear and skew-symmetric it follows from (13) that $[x,y]_1 := T^1_x y$ defines a Lie algebra structure on $\mathfrak v$. Furthermore, we have that $T^1_x = \operatorname{ad} x$, where ad denotes the adjoint representation of the Lie algebra $(\mathfrak v,[,]_1)$.

From (AS),(i) we obtain that ad $x \in \mathfrak{so}(\mathfrak{v}, \langle, \rangle)$ for all $x \in \mathfrak{v}$. This implies that there exists an orthogonal decomposition $\mathfrak{v} = \mathfrak{v}' \oplus \mathfrak{c}$ with \mathfrak{v}' a compact semisimple ideal of $(\mathfrak{v}, [,]_1)$ and \mathfrak{c} the center of $(\mathfrak{v}, [,]_1)$. Denote by $\mathfrak{v}' = \mathfrak{v}_1 \oplus ... \oplus \mathfrak{v}_r$ the orthogonal decomposition of \mathfrak{v}' in simple ideals.

By (12) we have that J_a ad $x = \operatorname{ad} x J_a$ for all $x \in \mathfrak{v}$, $a \in \mathfrak{z}$. Thus J_a must preserve the ideal \mathfrak{v}_1 for all $a \in \mathfrak{z}$, since it is skew-symmetric and $\mathfrak{v}_2 \oplus ... \mathfrak{v}_r \oplus \mathfrak{c} = \cap_{x \in \mathfrak{v}_1} \operatorname{Ker}(\operatorname{ad} x)$.

We now consider the complexification of \mathfrak{v}_1 , i.e. the complex vector space $(\mathfrak{v}_1)_C := \mathfrak{v}_1 \otimes_R C$. The maps $\operatorname{ad} x$ and J_a extend naturally to $(\mathfrak{v}_1)_C$, and clearly they still commute with each other. Further, since \mathfrak{v}_1 is a compact simple Lie algebra, we have that $(\mathfrak{v}_1)_C$ is a simple complex Lie algebra. Hence the maps $\{\operatorname{ad} x\}_{x\in\mathfrak{v}_1}$ act irreducibly on $(\mathfrak{v}_1)_C$.

We then obtain by Schur's Lemma that $J_a = cI$ with $c \in C$ on $(\mathfrak{v}_1)_C$. Since $J_a\mathfrak{v}_1 \subset \mathfrak{v}_1$ we have that $c \in R$. Using now that J_a is skew-symmetric we obtain that $J_a|_{\mathfrak{v}_1} \equiv 0$ for all $a \in \mathfrak{z}$. This implies that $\mathfrak{v}_1 \subset \mathfrak{z}$ (see (2)), which is a contradiction.

Therefore v' = 0, i.e. $(v, [,]_1)$ is an abelian Lie algebra and thus $T^1 \equiv 0$. \square

REFERENCES

- [AS] W. AMBROSE, I. SINGER, On homogeneous Riemannian manifolds, Duke Math. J., 25(1958), 647-669.
- [E1] P. EBERLEIN, Geometry of 2-step nilpotent Lie groups with a left invariant metric, Ann. Sci. Ecole Norm. Sup. (4) 27(1994), 611-660.
- [E2] P. EBERLEIN, Geometry of 2-step nilpotent Lie groups with a left invariant metric II, Trans. Amer. Math. Soc. 343(1994), 805-828.
- [ChG1] D. CHINEA, C. GONZÁLEZ, An example of an almost cosymplectic homogeneous manifold, Lect. Notes in Math. 1209(1986), 133-142, Springer-Verlag.
- [ChG2] D. CHINEA, C. GONZÁLEZ, Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p,1), Proc. Amer. Math. Soc. 105(1989), 173-184.
- [Go] C. GORDON, Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37(1985), 467-487.
- [K1] A. KAPLAN, Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11(1981), 127-136.
- [K2] A. KAPLAN, On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15(1983), 35-42.
- [P] A. M. PASTORE, On the homogeneous Riemannian structures of type $T_1 \oplus T_3$, Geom. Dedicata 30(1989), 235-246.
- [TV1] F. TRICERRI, L. VANHECKE, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Ser. 83(1983), Cambridge University Press, Cambridge.
- [TV2] F. TRICERRI, L. VANHECKE, Naturally reductive homogeneous spaces and generalized Heisenberg groups, Compositio Math. 52(1984), 389-408.
- [W] E. WILSON, Isometry groups on homogeneous nilmanifolds, Geom. Dedicata 12(1982), 337-346.

FAMAF, UNIVERSIDAD NACIONAL DE CÓRDOBA, 5000 CÓRDOBA, ARGENTINA E-mail: lauret@mate.uncor.edu

Recibido en agosto de 1997