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Abstract
~ The Picard’s method for solving y/ = f (x,y) , ¥ (z0) = yo is consid-
ered here for |f (z,11) — f (z,y2)| < M (z) L (Jly1 — y2|)- 'T'he method
introduced deals mainly with a majorant differential equation. It is
shown that for rather general functions M and F, the difference of
two conseculive successive approximations converges al exponentially
decreasing rate. The main results are an extension ol the correspond-
ing one already obtained in C, P. Calderén and V. N. Vera de Serio

(1997).
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1 Intro ductioh

Recently [1], we have obtained rather general results on the rate of conver-
gence of the successive approximations of the initial value problem

Y =[(x,y), w(0)=0. (1)

for first order ordinary differential equations satisfying an Osgood’s condition.
The main result there reads as follows:
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If f is a continuous functions on the rectangle h’ = [—a, a] X [—b,b] such
that

1 (@y) = f (@) < F(n—wl), (2)
for |z| < a,|y| < b,i = 1,2, where F' verifies the modified Osgood’s condition

stated below, then the successive approximations

ynl] /f I'Un

satisfy
[Yn 11 (%) = yn ()] < Cr, (3)

for some 7,0 <7 < 1, some C' large enough and |z| < 6, for some positive 6,

where we have chosen lyo ()] < my,mn >0 sufficiently small.

A real valued function F is an Osgood’s furiction if the following condi-
tions are met:

1) I is non-negative continuous and monotone non- decreasmg on (0, 6),
for some § > 0.

2) im0+ [ Fd(’;j =00, for any x, 0 < x < é.

1) and 2) above imply immediately that lim,_+ F' () = 0. We set I (0) = 0.
F is said to be a modified Osgood’s function if it is of the following form:

t)-—1/w e)

where 0 < d < 1 is a given constant and w is a non-negative continuous
non-decreasing function on [0, d], such that

d
/w (S) ds = oo.
0

3
The following finctions are the most common modified Csgood’s ones:

@ (1) = ¢ (log (1/0)) (loglog (1/1))* ... (loglog ... . log (1 /1))
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forsome 0< ;< li=1.... k=1L 0< < lk=12...

In this paper we extend the above result to a case when a modified Montel
or LaSalle’s conditions ([4],[3]) are nsed instead of Osgood’s. Namely, let f
be Borel measurable and in L°° ([—a,a] x [=b,0]),]|f]l <1 and

|/ (1) = f (2, y2)] < M (Jz]) F (lyr — 22)), (4)
for |2| < a,|ys| < b,i = 1,2, where M (z) > 0 is continuous for z # 0.
F (y) > 0 is continuous for y > 0, positive for y > 0. Finally, they satisfy:
‘ a (| w
1 —_ 1(t) dt = oco. 5
[y [y~ .

The above property is known as LaSalle’s condition. Montel’s condition in
addition requires the finiteness of the integral of M :

/‘ M (1) dt < co.
0

The latter case can be reduced to the classical Osgood’s one (Remark 2,
Section 2).

For the LaSalle’s case we will also consider the alternative condition
weaker than (5),

"G dl "
i —_ (1) dt= 6
lim, ./.,(5) ok / A (1) dt = o, (6)
for any non negative function v (z) = o (x) . We will say that I" and M satisfy
the alternative LaSalle’s condition if (6) holds, while M () > 0 is continuous
‘for  # 0 and F (y) > 0 is continuous for y > 0, positive for y > U. Notice

that
(L (L (I[ . -

holds because of (6). Under the alternative LaSalle’s condition the uniqueness
of the solution of the initial value problem (1) follows.

In this context we consider a convenient majorizing differential equation,
" namely:

d=M (m) I (z ) ,
where F' is Osgood, F' and M satisfy LaSalle’s condition and

rh
/ M@ F()dt<h
JO
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for h > 0. Under these assumptions we obtain for the majorizing differential
equation:

(I) The successive approximations

pT .
i (1) = /0 M (1) F (2 (1)) dt
converge uniformly to 0, 0 < & < ¢, for some positive §, provided that the
0-approximation is chosen to satisfy the inequality

20 ()] < .

(II) There exists at least one non-decreasing absolutely continuous func-

tion 3, 3(0) = 0, such that

/aﬁ (t) M (1) dt < o,
Jo
while . B
lim —@;Jdt = 00
e—0t Je F (1)

(II1) If in addition

Y3 (y) =o(£' (y)) and

oyl (LEWY ; : . ' .
Y (y ﬁ(y)) is non-negative monotone non-decreasing in (0, 6).

then the sequence defined in part (I) satisfies the estimate
|z, (2)] < O™, . (8)

|z| < 6, for some 6, C and 7, 6 >0, C largé enough and 0 < < 1.

The method introduced here deals mainly with the majorizing differential
equation, for which LaSalle’s theorem, [3], is not applicable. The use of the
majorant differential equation is introduced to have information on the speed
of convergence of the successive approximations. On the other hand, this
method gives an uniform majorization of the successive approximations for
a large family of differential equations, namely for those functions f that

satisfy (4) for fixed " and M.
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As a by-product of the results obtained for the majorizing differential
equation we have similar results for the initial value problem (1). That is,
the successive approximations

Yn i (;7"> = /f(/, Un (,)) df:
0

< x, converge at least as fast as those of the majorant equation if
=0, for small § > 0. If in addition (III) above is satisfied, then

Y11 () =y (x)] < CP"
forlarge C, 0 < r < 1, |2] < é.

2 Uniquen_ess and convergence of the succes-
sive approximations for the majorizing dif-
ferential equation.

Given the initial value problem (1), where [ satisfies (4), we may reduce the
problem of studying the convergence of the successive approximations

b (@) = [ 10,9, (0) dt,

to the study of the following majorizing differential equation:

2 (x) = M () I (= (),

where we solve by successive approximations the initial value problem z (0) =
0. Here the uniqueness and the convergence of the successive approximations
are the issue, since LaSalle’s theorem is not applicable.

Lemma 1 Let M and F be the functions on the alternalive LaSalle’s condi-
tion. If I’ is monotone non-decreasing and v is an absolutely conlinuous non
negative function on [0,a], v (z) =o(z), then the product M (x) F' (v (x)) is
integrable on [0,a]. Moreover, if [} M (t) di =0(ﬁ?(m) %) then

i "M@OFP@@)d<h for0<h<a. (9)
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Proof. : Let 0 < h < aandlet e > 0 be srﬁall enough. An integration by
parts yields

/E "Mt F(v(t)) dt = ( / "M (s) ds) F(v()+ / ’ (/t M (s) ds’)‘ dF (v (t)).
| (10)
From (7), the first term in the right hand side of (10) is bounded by
N C1C) DR
(/ M (s) d“;) Fo() S K [ Ss? ds < K, (11)

where K is some positive cohstant, because F' is monotone non-decreasing.
Similarly, for the second term in (10), one gets

- ’ ( / * M (s) ds) ar@E) <K [ d ( /@)Ti(;)‘ ds> dI (v (1) < Ka.

(12)
From (11) and (12), it follows that

/ "M F (0 (1) dt < 2Ka < 0.
0 ' o

[roa=o([, )

is the ca_sé, we could take the constant K to be less than 1/2 and (9) follows.
B .

Finally, if

Theorem 1 Let M and F be the fun‘ctions on the alternative LaSalle’s con-
dition. If vy and vy are two solutions of the initial value problem (1), where
f satisfies (4), then vy = vy on a neighborhood of 0.

Proof. Let w be the absolutely continuous function defined By w(zT) =
v1(z) — vo (x) . Then w (0) = w' (0) = 0, which implies that |w (z)| =o(x).
Now,

w(e)= [ (5,00 () = F (s, (s)) s,

hence,

o ()] < [ M (5) 7 (i (5) = 2 ()] i,
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Suppose that w # 0 on every small neighborhood of 0, then {w # 0} =
U (ax, by) , with 0 < a3, < by <'a,w (a;) = 0. We may assume with no loss of
generality that w is positive on (ay, by,), hence

' (@) =1 (=0 (@) = f (2,00 (2))]
< M (2) F (|og (2) — va (2)])
= M( r) I' (|w (x)])
= M(z)I'(w(z))

for any x € (qk, by) . Take a5 < b'k < by, and € > 0 small enough, then
/bk w' (s) J
|Jap4e F' (w(8))
The change of variable t = w (8) in the first integral above yields
: w( b 1
/ (%) dl
w(ak ] “) [’ ( )
and so it follows that

( ) by,
. 11 , N < 1
El‘ljfl;l' /m(‘ak ) F ( ) dt /ak e M (b) ds 0, ( 3)

which contradicts the assumptions that the first integral is not bounded while
the second one is finite when a; > 0. If a;, = 0, (13) contradicts (6). W

' (s)] ,
1= s Tl () S 1 (s) ds.
5. B /ak e I (10 (8)) ds M (s) ds

ax-l-¢

i
/ M (s) ds,

kle

From new on, we will assume that M and [ are functions that satisfy
LaSalle’s condition and the following additional one:

[ ar@a=o (/ 7‘%) . (14)

Lemma 2 [f F is monotone non-decreasing then the product M (x )1 (x) is
integrable on [O a). Moreover, [ M (t YE(t) dt < h, for0<h<a.

Proof. It is entirely analogons to the proof of Lernma 1. W

The following lemma will be used in Section 3.
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Lemma 3 There exists a function 3 with 3(x) > 0 for x > 0, such that

for some locally integrable function a(x) > 0, and such that

An A1) M (1) di < oo
while: _ (t)‘

i e Fo® s
Proof. The finiteness of

/n "B M (1) dt

is equivalent with that of

.. /Oa(/:]\/l’(t)dt)a(m) dz.

Therefore, we shall consider the space L}, (0,a) where du = (f; M (t) dt) dz.
Suppose that the finiteness of

/Oa e () dp

for e (x) > 0 implies that of

‘/Oa(k () ((/: g I(A(,)dl'> L,

or, equivalently that of
o Jo mpdt
—————qa () dp.
/0 M (1) dt” ('f) #
This would indicate that
o _1 ¢

}T F(t) ‘
—_N L°°
mara <O a)
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which is a contradiction because

| / M d=o ( / ’ I«’l(l,)dl'>

(0,a) ,c () > 0, such that

Hence, there is some « (z) € L,

4

‘ tl Y e v. @ 1 3 s —
[) (@) </J ,_———I"(l‘,)(“> da = oo,

“«B(t)
o Tyt =

or equivalently

for - :
. B(x)= /0 e (t) dt. ]

Theorem 2 Let 2 = M (z) " (z), 2 (0) = 0 be the majorizing initial value
problem. for the equalion

\ y=r =y, y0)=0
under Lﬁe condilion _
|f (2, 50) = f (2, 1)] < M (l2]) F (Iyn — ),
for |z| < a,x # 0, ly;] < b3 = 1,2. Suppose that M and F satisfy LaSalle’s

condition, (14) above and, furthermore, I* is monolone non-deercasing. Then,
(i) the successive approximalions for the initial value problem of the majoriz-
ing differential equalion 2’ = M (x) 1" (2) converge uniformly in a neighbor-
hood of the origin, provided ihat the O-upprorimalion is chosen lo salisfy
|2, (2)| < |z|. (i) This solution is unique.

Proof. We seek solutions z such that |z (z)| <'|z|. From Lemma 2,
. h
/ M@ F(t)dt<h,
0
and we could guarantee that -

i1 (1) = [) M (1) F (z, (1)) dt
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can be acbomplished by functions that satisfy 0 < 2, (z) < x, as long as
0Lz (@) <z for0< <4 '
For 0 < x <4, let us set
1 () := limsup 2, (x).

n—oo

Clearly, 0 < p1(z) < z. Notice that p is continuous since the 2, ’s are equicon-
tinnous and, by Fatou’s Lemma,

p(z) < /U:lF M () I (ye(t)) dt < co.

It will be shown that p () vanishes on [0, 6] for some 6§ > 0. Let us assume
that it is not the case, then there is a sequence x; | 0 such that u () > 0.
Hence,

[M(t) P (1)) dt > 0

for 0 < 2 < 6. Let us call (7 () this last integral, then 0 < pz(z) < @ (:r) <z
and _ :
G'(z) = M (2) F (n(z)) < M (2) F (G (),

for 0 < x < 6. It is enough to show that G is null on a neighborhood of the
origin. If it were not the case, a reasoning similar to the one in the proof of
Theorem 1 will show a contradiction: Let U (ay,b;) be the set where G > 0
n (0,6). Note that G (ax) = 0 and take a;, < b}, < bx. Hence, for € > 0 small
enough, ‘ ‘ '

o) 1 v @ (2) o :
—dx = —_—dx < I () dx
/;ak..»s) @™ L7 C ) S ), M@ de<oo,

and so

(2 (b, 1 by,
lim / () ——de— [ " M (&) de <0,
-0t JG(ag1<) J‘(l) ag-t-s

which contradicts the hypothesis. Thus, the function p vanishes in a neigh-
borhood of the origin.

The uniqueness is dealt with in the same manner by cons1der1ng p(z) =
|z (x)| for any solution z different from 0. W

Corollary 1 Let f be Borel measurable in L™ ([—a,a] x [=b,b])) such that
I fllee < 1/2 and

|f (x90) — [ (2, 9m)] < M (|z]) F(

Yy — ),



for|z| < a,x #0,y| < b,i =1,2. Suppose that M and F satisfy LaSalle’s

condition, (14) above and, furthermore, I’ is monotone non-decreasing. Then,
(1) the successive approximations for the integral equation

y(o) = ["f Ly ) di

converge uniformly in a newghborhood of Lhe origin, whenever the O-approzimalion
is chosen to satisfy |yo (z)| < b. (i) This solution is unique.

Remark 1 Notice thal in the laller proof the funcltion M only needs Lo be
locally integrable on (0,a). Moreover, the condition (14) can be replaced by
Lthe following one:

h
/nM(t).F(t) dt<h  h>0.

Remark 2 In this context, Montel's case can be reduced to the classical Os-
good’s one by a C' change of variable. Here M is integrable and we may
assume with no loss of generality thal it is positive. By setting :

o (@) = /0 M @) dt,

|z| < 6, one gets the equivalent differential equation 2’ (s) = F (z (s)). This
is no else bul a majorant differential equation for the referred Osgood’s case.
Therefore, if F' is a modified Osgood’s function, the results in [1] apply to
yield Lhe following eslimale of lhe successive approximalions of lthe majorizing
wnilial value problem.:

loa ()] < C1™ (15)

for x in a neighborhood of lhe origin, for some C and r, where C is large
enough and 0 < r < 1.

3 " Speed of convergence of the successive ap-
‘proximations

Theorem 3 If in addition to the assumptions in Theorem 2, it holds that
the funclion 3 from Lemma 3 salisfy
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(4) yﬁ()'—OU;())and

. l J . ) . , p ’ . . .
(i7) —y=- dy (y —(—lﬁ(y)) is non-neqative and monotone non-decreasing in (0,6),

then, the sequence of successive approzimations of the initial value problem
for the majorizing differential equation, provided that |z, (z)| < |z|, satisfies
the eslimale

|~11( l < Cr N

x| < &, for some 6,C and r, 6 >0, C large (:nouqh and O < r < L.

Proof. Throngh the aid of the function /3, the problem unde1 Cons1derahon
can be reduced to Montel’s case:

2 =M () F(2).

where M (z) = f(z) M (z) and F (y) = F (y) /8 (y). M (z) is integrable

n [0, 6], for some positive 6. Conditions (i) and (i) imply that F'(y) is a
modified Osgood’s function. By taking into account the Remark above, we
may apply the estimate |z, (x)| < Cr™ to the initial value problem 2/ (s) =

F (z (s)), 2 (0) = 0, where we have made the change of variables: s () =
JEN (t)dt. m

Corollary 2 [Let f be Borel mmsmable and in L ([—a,a) x [=b,b]) such
that || fllo, < 1/2 and

1 (,90) = f (2, 2)| < M (J2]) £ (y: = ),

for |z| < a,x # 0, |y < b1 = 1,2. Supposc that M and I satisfy the con-

ditions on Theorcm 2. Then, (he successtoe approvimalions for (he indegral
eqqualion
T
p) = [ty ) a
salisfy the following eslimale:

lyn i (IYT) —Yn (J’f)l S CjT“»

|z| <6, for some 8, C andr, § >0, C large enough and 0 < r < 1.
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Example 1 Let F and Jllf be guven by
Fy)=yogy), 0<v<l,
M (x) = [r(logz)’]”, 0<s<l.
Then,

[ ity Cose)™
Je ['w(",j) !/—— OB". 9
b ] 1-6
/‘ M (z) dz: ~ (loge)

Assume that 0 <1 < 8, and let v > 0 such that v+ <1 < 6§+ . Define

/.){) ‘—'Y'

PAT (10g :‘12')

It is straightforward to show thatl these funclions M, F and 3 salisfy the
conditions of the above theorem.
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