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ABSTRACT. The representations of the symmetric group were studied initially
by Frobenius, Schur and Young. In more recent, work , James ([3] and [4]) describes
the irreducible representations of S, in terms of Specht modules, and Farahat-Peel
([2]) in terms of ideals in the group algebra.

In this work we present a realization of the irreducible representations of the
symmetric group S, in the ring of polynomials in n indeterminates.

The objective of these realizations is to develop the theory of representations of
the symmetric group, taking advantage of the structure of the ring of polynomials.
To begin \\vith, we treat the case where K is a field of characteristic zero. In this
case, the politabloids concepts and Specht modules in the language of [4] have a
natural realization.

The constructions in the case of characteristic zero, with slight modifications, are
used later in section 2, to obtain the irreducible representations of S, on a field
of characteristic different from zero.

1. ORDINARY REPRESENTATIONS.

Let K be a field and let' Ny be the set of de non negative integers. We consider
the polynomial ring A = K[y, ..., ¥,] in the indeterminates xy, ..., Ty.
Given the multi-index a = (ay, ..., o) € N§, with 2* we will denote the monomial:

s ]

x® =aft . ahn

&£y,

We have in A a bilinear form < , > defined on the generators by :

. lsia=p
P B
ST >-{Osi a#f

and extended by linearity.

Let S, be the symmetric group of Z, = {1, 2, .,n}. There is a natural action of
S, on A and this action preserves the bilinear form < , >.

For a set C, such that € € I, we denote by S(C) be the symmetric group of C .
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Putting C = {e1, ..,en} ;¢ <ca <+ <cp, we define:

De= Y sg(0)o, Me=ad -al ---al™' ec = Dc(Me)

¢h
0eS8(C)

where sg (o) is the sign of o.
For a multi-index a = (¢, ..., an) € Nij, with 2 we write:

M
ME

From these definitions and notations, the following proposition is clear:

Q x
M= 2% M® = afral2 o and MY =

Proposition 1.1: i) For each monomial M we have:
Dc (M)=0¢ ( ME) ME

gq) — et o -
i) If M =ag! - agh, then:

A (M) = det ([ ; ‘]K”<h>

Also, with the same notations from above, it is possible to-obtain the following
striking identity.

Lemma 1.2. Ifa = (o, ...,o) € N} and C = {1,2,-- -, h}, then:

det, ([ 3"]15.,:,1-9,) — dot ([m;—l]wh) P

where P is a symmetric polynomial for S(C).
Proof: Let ¢y, ..., ¢ be the symmetric elementary polynomials in xy, ..., 25, that

is:
’ ¢’i (',EI, -“13;h.) = Z ' Tgy * Thp -+ * T
k1<ka<o<k; :

Then, we have: '
N =2
rj = rafT o T £y

and from this identity it follows that for all yn € Ny there are symmetric polyno-
mials 1y, ..., %, such that:

h—1 h—2
T = iy ri + g L7 SRR U
and, therefore there are symmetric polynomials 4/;; such that:

['?w] = [‘/’LJ] [ ';'_]]

Now, if we compute determinants on both sides of this equality, we got the Iemnn
Of course P = det [1;]. M



41

Proposition 1.3: Let C C 7Z,, be any subset, then:
i) For 7 € §(C) we have: -

TAe =0T =39(1) Ac

i) If M = 2% then, Ac (M) = 0, if and only if, there are two elements i, j
in C such that i # j with o; = aj. [Futhermore, if dg (M(’) = dg(Mc) then
Ac (M) #0, if and only if, there is an element o€ S (C) such that M® = o M.
it) For each P in A, A¢(P) = ec P*where P* is a S(C)-symmetric polynomial .

Proof: i) For 7 € §(C), we have: .

T Y sg(o)o = X sg(o)ro=sg9(r) ¥ sg(ro) 70
geS(C) geS(C) geS(C)

=sg9(7) 32 sg(n) p
neS(C)

but 7 Ac = sg (1) Ac and A1 =89 (1) Ag.
i) If there are indexes i # j in C such that a; = a; , it is clear that A (M) =0.
Conversely, if the images oM of M under ¢ in §(C) are all different, then they
are lincarly independent, hence A¢ (M) = 0 says that there is an clement o in
S (C) such that oM = M, consequently, we obtain two clements 4, j in € such
that ¢ # j with o; = o;.
iii) Follows from lemma 1.2 and the linearity of Ac. B

Consider o in S, and O;,0,,..,0,, the orbits in Z,, of the cyclic group gencrated
by o . We define A, in End (A) and M,, ¢, in A by:

A-a: H AO‘ y Mo = H Mo, , e = H €o;

1<i<m - 1Li<m 1<i<m

Let C; be denote the group S (O)) x - - x §(0O,,) and if 7 is a conjugation class
of 8, we will denote YV, and W, the subspaces of A given by:

Vy=(Mg:o0€q) and W,=(e,:0€7)

If «; is the cardinality of O;, we have that the degree of M, is:
m .2
Vi 7
dg(Mo) =3 5
=1 =

and this value is the same for each element in the conjugation class of o.
If o belongs to the class of 7y, we define the degree of v as dg (v) = dg (M,).
From now on, we will use the preceding notations and conventions.

Proposition 1.4: i) For each class v, V., and W, are both invariant under S,
and Wy C V,. : :

i) Ify # 7, then V, NVy =0 = (V,, V) . In consequence the maps v — V., and
v — W, are one-to- one mappings.
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1) TNy = Do T =39(7) Ny VT €S, :
w) If P € A, then A, (P) = Qe,, where Q is a Sy-symmetric polynomial.
v) When v # v and dg (v') < dg (v) we have Ay (Vy) = 0.

vi) For P €V, and o € vy it is valid the identity A, (P) = (P, e4) €q.

Proof: i) and i) follow readily from the constructions of V., and W,. Since cach
monotnial M can be written as:

M= MO MO

and the fact that A, is a linear operator, we obtain #i) and i) from the propo-
sition 1.3.

To see v) and vi) consider M = 2 , and if Ay, (M) # 0, then by ) we must
have:

dg (M) > dg (es) = dg (M,) = dg (v)
If dg (M) = dg (7), then putting M = M®" - .- MO we obtain:
Ny (M) = Do, (MO’) - DNo,, (Mom) £ 0

so that A, (MO‘) #0 Vi=1,2,..,m. From part i) of the Proposition 1.3 it
follows that: '

dg (M) > dg(Mo,) Vi=1,2,.,m
and therefore:

dg (M) =3 dg (MP) > 3 dg (Mo,) = dg (M) = dg (1)

3

that is, MY and My, have the same degree V i. Now, by applying part @) of
the Proposition 1.3, we infer that there exists 7; € (8O;) such that: ,

M = 1,(Mo,)
Hence, if 7 =[]; 7, then 7 € C, and:
M=71M,

In particular we see that M € V..
Starting from:

Dy (M) = Dot (Mg) =59(T) Do (Mg) = 59(T) €5
= (1t Mg, €5) €x = (M, €5) €5

we obtain:

D, (P) = (P,es) eVP €V,
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because A\, is a lincar operator. Besides, if 7 € 4/ and Ay (M;) # 0, then
M;: €V, NV, and this implies v/ = . B

Denoting by p, the representation of S, on W, we can establish the following
theorem:

Theorem 1.5: If char(K) =0 or char(K) > n, then:

i) py is irreducible for every class~y. :

i) py = py if, and only if Wy = W, if, and only if v = 1.

iii) The representations py are all the absolutely irreducible representations of S,
up to isomorphism.

Proof: 1) Let W, be an S,-invariant subspace . For the assumption on the charac-
teristic of K, W, is completely reducible, that is, there is an S,-invariant subspace
T of de W, , such that:

W, =8oT

For o € «y, we pick s and ¢ in § and T respectively verifying e, = s + £, and we
obtain:

ICol €0 = Dy (q) = Do (8) + Dy (B) = (€5, 8) €6+ (e5,1) €4

By the hypothesis |C,| # 0, and this implies that A, (s) or A (¢) can not be both
zero, that is to say (e,, s) or {e,,t) are nonzero, hence e, is in § UT, so that S =
Wyor T =W,..

ii) Let 6 : W, — W, be an S,-isomorphism. We can suppose dg (7) > dg (v/).
For o € 7, we have: : :

Ao () =00 (e0) = |So| 0(es) #0

but now, from v) of Proposition 1.3, it follows that v =~/
#i) In the hypothesis of the theorem, the number of non isomorphic irveducible
representations is equal to the number of conjugate classes of S,,. 8

In what follows, we will do a short analysis of the characters of S, assuming that
the field K has zero characteristic.
Let us consider the partitions vy, 7, ..., v of n ordered such that:

dg (%) < dg (Yir1)

and denote with V; and W; the subspaces V., and W,, respectively. Let ¢y, ..., 1,
and xi,...,xn» be the characters of S, over the spaces Vy, ..., V» and Wi, .., Wy
respectively. If £;; is the multiplicity of W; in V;, we have, from Proposition 1.4:

tii=1 and tlJZO if 7>j

Let T = [t;] , then T is a lower triangular matrix with 1 ’s in the principal
diagonal, and: '
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(2 : X1
w="Tyx where =1 : and y =1 :
i, Xn
Then we may establish:
Theorem 1.6: i)
(i) () e (i)

x; = det : : :
Vi1, 1) (thjor,tpa) -+ (i1, ¥5)
(4 Py o (7

" Here <, > stands for the scalar product for characters.
ii) The multiplicity of W; in V; is given by:
{1, 91) (Ui, he) -+ (th, ‘I/Jj)

< iy x5 >= det : : :
Vi, X; de (i1 n)  (@hjrytba) -+ (Wimn,5)
W) (o) o (s )

iii) dim (W;)= ({¥n, X;) -
Proof: i) The family of functions ¢y defined by:

(Y1, 1) (D1, h2) o0 ()
= det : E :
o [ (W1, 01)  (p—1,%2) -+ (Vr—1, Yr)

P P2 e Vi

is an orthonormal system, becanse:

(sﬂk,‘ﬁk) = (pr, PYx) = det (tﬂ 77c) =

where !T; is the transpose matrix of the 7, and T = [t:5], <ij<k In addition
¢ = Yy = x1 and ¢ belong to the subspace genelated by x1,..-, Xx- Then we
conclude that xx = ¢ for k=1, ..., A.

) It is clear from 1)

iti) Since ¢y, (¢) = 0 when o # 1, and ), (1) = nl, for each index j we have
(m, ;) = 1; (1), and now, from 4) and i) follows that:

(¥n x5) = x3 (1) = dim (W;) ™

Remark: Part i), in Theorem 1.6, is a consequence from the general fact that
the multiplicity of a simple module in the left regular representation is precisely
this dimension. In our case, it is easy to sce that the representation ever Vp, is



cquivalent to the left regular representation.
Notice that 9; (¢) is the number of the monomials «® in V; which are fixed by o.
Moreover, S, acts naturally in the tensor product V; ® V; by:

o (PRQ=0(P)®0(Q)

Then, S, decomposes the canonical base of V; ® V; in a certain number of orbits,
and due the Burnside’s identity, we can infer that this number is:

(i, 1hy) = EIT PRACR (U—I)

2. MODULAR REPRESENTATIONS.

Now, let K be a field of characteristic p > 0. Let v be any conjugation class of
Sp. Given ¢ in'v, let ©0},0,,..,0;, be the orbits of the cyclic group generated hy
¢ in I,, enumerated such that |O;] > |©O;y4]|. Consider M = M, and C = C,
as before and denote by R = R, the isotropy group of M. Also, O, ..., O* will
denote the orbits of R in Z,, enumerated such that |Of] > |0,

Notice that RN C = {1} because |O; N 07| < 1.

Associated to v we have the numbers:

v =104 , ’Yizloil
g =H{h/=iti—-1} , 1<ij<m

It is clear that +;,7* and <;; depend only on 7, but not on the election of o in 7.
In particular, we have 47 = # {i : 4; > j} and, by the definition of M , ©; N O7
" is non empty if, and only if, v; > j. Therefore, O;N ©J is non empty if, and only
if1<i< 49 .

We can write:

R=8(0") x---x§(0")

Consider @} defined by: _

ol= U @noy

yr=d

‘The class v will be called p*-regular if v;; < p for all pairs 7,j. The class y will
be p-regular if p does not divide 4% fori =1, .., k.
It is known that the number of non isomorphic irreducible representations of S,
is the number of p-regular classes. It is possible to establish that the number of
p-regular classes and the number of p*-regular classes are the same.
Let NV be the group formed by the elements of C which exchange the R-orbits in
Z,.
For k € R we put:.
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CF=rCK™, kKiyj=|O;N0O,|

that is to say, x;; is the number of clements in O; which £ sends in O;.
With the preceding notations we have:

Lema 2.1: 4) N is the normalizer of R in C.
it) The N-orbits are the sets O} which are non empty and |N| =[] (1)
J

ii) For k € R. it holds that |C N C*| = [ (k).
i']

Proof: i) If n € N, then we write 7 OF = O"® and we have:
nRy~' = x;8 ((9”‘”) =R
On the other hand, if ;« normalizes R one has:

R=pRpu ' =x;8 (/l. (Qi)

so that p should exchange these R-orbits.
i) Given ©7 and O such that 47 = 4%, there exists a unique 7 € C verifying:

ﬂ@j::(’)k,’n'@k“——"cgj and ﬂOlZO[Vl#jvk

so that N operates as a symmetric group on those R- orbits of the same cardi-

nality. Thercfore:
V| = H (7).
J

iii) From the identities:

it follows that:
Xi’jS (h‘,(’)i an) g cncek

Conversely, for v € C N C* we have:
vy =r0; and vO;=0; Vi,j

then:
v (kO;NOy) =c0;N0O;

so that v € x;;S (k£ O; N O;). From this we infer that |C NC®| =[] (k;)!. W
Given 4, j , such that 1 < i, < m, consider O% defined by:

oi= | O

Yr=tti=1
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Therefore, the collection {Of N OY : O, N OY # (1} is the sct -of the N-orbits in
Z,.
Let 7 € R be the transformation that exchanges the A-orbits:

Oi n Oij and OJ‘ N Oij

Notice that 7 is well defined, because if I € ©O; N OF | then putting j =y —i+1,
we have that ©; NOF is non empty, hence 7 (1) is the unique element in O; N O,
In addition, we have 7;; = +y;;.With this notation we have:

Lema 2.2: i) Let 7 € S, be. If < eg,me, ># 0, then 7 € CRC.
i) < ey e, >€EZIN| Yp,ver.

i) If k € R verifies Kij = v;j Vi ] then Kk = 7.

W) < ey, Tey >= H (95)!-

Proof: i) The monomials that appear in e, are in fact g M with u € C, where
M = M,, which implies that the monomials in 7 ¢, are 1ru M. If< e, me, >#0,

T3

then there are p1 and v in C such that 7y M = v M,i.e. v™'rp € R and thercfore
we have T € CRC.

i) If o = epe™! = A7, then e, = €¢, = Ae,, and hence:
< ey e, >=<esme, > with 7= ex!

If < e5,me, >#£ 0, then by i) we must have 7 € CRC and, writing = = anf with
a,f € C and ) € R, we have:

<epe, >=< e, anfe;, >=sg(af) < esne, >
Because N is the normalizer of R in C, for £ in_./\/ and 9 in R it holds that:
DE M = £(£719€) M=EM

Let us write

Dy=) sg(&)¢

EeN
hence:

VAN (M) = Ay (M) VI ER

If ¢y, ..., ¢s are the representatives of the right cosets of A in C, one has:
ea =359 (6:) ¢ Bx (M) and meo =39 (8) () Dy (M)
i i

hence:
< eg,Mes >=Y 89 (¢itps) (hi Dar (M), mh; Ay (M))
i,J

If (¢ Apr (M), wp; Dpr (M)) # 0, then there exists € and § € M and ¢ € R such
that:
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pie = m;b¢p

and from this follows that:
59(8) 4 Do (M) = dhe g (M) = ey Ay (M) = 89 (5) e Ay (M)
and then: | |
(61 ore (M) 75 o (M)) = % (B (M), e (M) = £ W]

that is, < e,, e, >€ Z|N| Y, v € 7.
ii1) Let us suppose that k € R verifies:

K/'ij = Tij Vl,J

Let O be an M-orbit such that RO = O, U--- U O~* |, lot 4, j be indexes with
i<j,i+j=v%+1and write

O0;=RONO; , Oj=RON O;
I £ (O;) # Oy, then let us consider the pair 4, § such that, j — 4 s maximum with

this condition. Because ryj = 7y == |O}, there is h € O;-- O such that s (h) € O;.
Let O be the N-orbit of A, hence:

RO =0U---UO0,,
with n (0)) N O; # 0. |
O0;=RO'NO; , O;=RO'NO;
Let s=~"—i+1,if 4" >_"yk, then :
§—i=2—"—-1>2—4F-1=j—i
and {rom this we infer that:
k(0) =0,

but, this contradicts x« (0}) NO; # @ because j # s.
If 77 < 4%, then let t =~" — j + 1, hence:

Jot=2—-4"=1>2 -4 —1=j—i

so that x (0]) = O} , but again, this contradicts & (h) € O}. We conclude that
K=T. . : :

w) From 4i) it follows that C7CNR = {7}. Indeed, let n € R, v, ;1 € C be
such that 7 = v7p, then we have:
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n; =nO;iNO;| = lvrpO;NO;| = |lvr O;NO;|
= I’TO,' M V—‘]Ojl = |7' Oz ﬂ@jl = T
Let U = CN C7, since:
Ap(Tes) =<Tegz 5 > €5

we infer that:

<Tesner > =< A, (Tes), Mo >=< Ay 7A; My, M, >
=Y ec 89 (vp) < v Mg, Mg >

but < vTp My, M, ># 0 if, and only if v7p € R, that is to say vTp = 7, and
this means that v and p are both in U and p = v 1 | Tt follow that:

< TEgy€y >= IUI = HTij! = H’)/,J' |
2 i,

If v is any conjugation class of S,, and o € v, we define the lincar map:

fo i Wy =K by fo(z) = (eq,2)
Let ‘

Wy={(fo:0€7)
be the subspace of the dual space W) generated by the maps f,. Let p, denote
the natural representation of S, on W,. With this notations we have:

Theorem 2.3: i) 17\77 96 0 if, and only if, v is p*-regular.

#) If v is p*-regular then p., is irreducible.

i) If v and ' are p*-regular, v # ', then p, % py.

w) Bvery trreducible representation of S, is equivalent to p., for same p*-regular
class v. s -

Proof. i) is a consequence of lemma 2, ).
i) Let S C W,, be an S,-invariant subspace. We have:

W, cse

where 7° denotes the annihilator space of 7. If S # ﬂ’;, there are x € S° and
o € 4 such that:

 fo (@) = eay ) £0
Since 8° is S,-invariant, we have:

Ay (@) = (eg,2) € € 8°

then e, € 8°. It follows that $° = W,, and so, S =0.
ii1) Given o, T € y we have: :



(Do fr) (er) = (er, Dg (&1)) = (€0, 67')2 = fo (e‘r)2

then A, (VT’;) = 0 if, and only if, f, = 0. The proof of i) is now similar to the
proof of theorem 1.5, 4i).

iv) Because the number of p-regular classes and the number of p*-regular classes
are the same, iv) follows, B"
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