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A B STRACT : The Farey-Brocot partition P of the unit segment I induces 

a probability measure f-t on a universal class of fractal sets n that occur 

in Physics and other d isciplines. Key properties of the Multifractal formal­

ism (Q ,  f( a))  -of (0,  fL') ca.n be derived frorn the �1ultiflactal formalisnl of 
(I, P) .  In this paper we study some properties of the latter .  We find a sig­

nificant discrepancy between the Theory of Mult.ifractal spectra (Cl' ,  f( 0') )  of 

general sets n and the spectrum of our concrete el<:ample (I,  P). The proofs 

in this paper include some interesting generalizations of dassical results in  
Number Theory. 

1 .  INTRODUCTION. 

1 . 1  THE PHYSICAL MOTIVATION FOn. STUDYING THE (\'-INDEX. 

In order to construct a Cantor set K ,  we depart from a unit segment [0 , 1 ] ' take 
away its central third, then take away the central thirds of the smaller segments 
remaining, . . .  and iterate this procedure ad infinitum. This is an example of what 
physicists call a "mathematical" fractal set . We have dimH(J() = log (2) j log (3) , 
a number strictly between 0 and 1 ,  where dimH(J() is the Hausdorff clim�nsion 
of the set J(. However , there are other types of fractal sets n arisi ng from the 
study of physical phenomena. Let us consider the forced pendulum, with iuternal 
frequency w .  When plotting the winding number TV as a function g of w ,  we 
have that ,  for a certain critical value of the parameters involved, HT = g(w) is a 
Cantor-like staircase. It means t.hat g(w) is constant in the so called interval s of 
resonance h (k  a. nablral n11lIll H'r ) of t, ll(; variahle w ,  each h prOd l l (·.i ng 11. st( �P of 
the st ci,irease. The cornpkmcn t {')f t.lw l l l l ioll of the i nterior of the ini.e[v<I.ls h is a. 
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Paseo Colon 850, 1063 Buenos Aires , Argentina. 
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fractal set st, and dimH(st) is again a number strictly between 0 and 1 [1 ] . This 

st,  given by a natural process or a physical phenomenon, is very different from J( .  
I t  does not have the regularity of self similarity shown in  the process of formation 

of 1(. 
Cvitanovic ,  Jensen, Kadanoff, and Procaccia [2] dicovered a property of  the stair­

case liV = g(w) :  Let G and � be the values of W for a pair of intervals of 
resonance I and J' , such that all intervals of resonance in the gap between I and 

J' 
are smaller in size than both I and J' . Then , there is an interval of resonance 

/'. in this gap such that the corresponding consr,ant value of W is � = �t�; . 
This interval /' is the widest of all intervals of resonance in the gap between I 

and J' . This is a purely empirical finding. 

Now, given two positive rationals G and �. we have that G < �t�; < �: . This , 
way of interpolating a rational number �t�1 strictly between .two others is known 

as the Farey-Brocot (F-B) interpolation . By (F-B) interpolating rational numbers 

between G = � and � = t we obtain finer and finer (F-B ) partitions of the unit 

segment [0 ,1 ] : 
o 1 0 0 + 1  1 

(F - B)o = { i ' i } ;  (F - B) l = { i ' 1 + 1 ' I } ;  
o 0 + 1 1 1 + 1  1 

(F - Bh = { i '  1 + 2 ' 2 '  2 + 1 ' I } , . . .  de 

Notice that (F - fl)" divides [ 0 , 1 ] into 2" segments . By assigning c(J l 1nl llH'llSnrC 
to each of these we induce a measnre P in [0 , 1 ]  called the (F- B )  meaS1lre. 
Now ,  let us go bade to our Cantor staircase liV = g(w) ,  W E [0, 1 ] .  The probability 
measure P in [0 , 1 ]  induces via liV = yew ) ,  another probability measure li on n.  
This f1 measure on the w axis i s  ealled the Farey tree partition of  n .  
Our " non-mathematical" fmctal set n is now a measure space (n ,  l.l ) .  

Cvitanovic e t  a1 . [2] and Halsey et a1 . [3] have different examples o f  physical 

phenomena exhibiting Cantor staircases with sueh ( F - B )  arrangements .  Brllinsma 

and B ale [4] studied the magnetic structure of ferromagnetic quasicrystaJs by plot­
ting the ratio of up spins against the strength of the magnet ic field applied to 
the quasicrystalline structure, when only 2 values of each spin are allowed ,  i .e . 
+ and - ,  or up and down. Again the resl1lt is a Cantor staircase with the (F-B) 
a.rrangement [5] . We can find this  arrangement in some of the s taircases shown in 
[ 1 ]  induding the onc associated with the chemical reaction of B dusov- Zabotinsky. 

Procaccia, Jensen and others [3] devised a way of decomposing a " natural" -as 

opposed to " mathematical" - fmctal ( n ,  f1) into more self-similar subsets n", C 
st,  0' E [O'min, O'max ] ,  an interval on the real line. If we denote by f( 0' ) the 
dimH (sta ) ,  then the curve (0' ,  f(O'))  is considered an important characterist ic of 
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the physical phenomenon yielding the fractal (n , !l ) .  Such a curve is called the 
multifractal spectrum of (n, p) .  
Key properties of  multifractal spectra of such measure spaces (n,  Il ) are due to the 
Farey .tree partition p -a partition inherited from the (F -B ) probabil ity measure 
P of the unit segment . 'vVe found a significant discrepancy between the theory 

of Multifractal Spectra (a , ](a) )  and concrete exarnples : some statements of tb,e 
general theory are not true (see below) for the spectrum (a , ](a))  of the unit 
segment with the (F-B ) measure P. 
NOTE. Many ideas underlying t.his papet' COllW from previous IH1.pcn;:  we t d,\l(liecl 
geometricalproperties of the (F-B ) partition in [6] ; in [7] , [8] , and [9] we began to 
study the multifractal spectrum of the (F-B ) partition P, whereas in [ 1 0] , [4] , and 
[ 1 1 ]  we studied connections between the (cv , ](a)) spectrum of the (F-B)  measnre 
of [0 , 1 ]  and Number Theory. 

1 . 2 .  A NOTE FOR THOSE INTERESTED IN NUMBER THEORY. AN EX­

TENSION OF JARNIK CLASSES.  

The (F-B) partition is naturally associated with the decomposition of an irrational 
number � in continued fractions , e = [n l , nz , . . .  , n N ,  . . . ] ,  as will be detailed below. 
Jarnik is concerned with the set Em of irrational numbers � = [n l , nz . . .  n N  . . . ] 
such that nN � m 't/N.  He proves [ 1 2] that the dimJl (Em ) grows very much like 
1 - con.��ant .  Notice that Theorem 4 below is  an extension of this rcrmlt ( so far as 
we know, the first · one since 19'28) :  we ob tain an analogous result when the Jarnik . N ' 
condition " nN � m" is replaced by the more general one L.iJ) n i  � m 't/N. 
2. NOTATION. 
Any real number e E (0 , 1 )  can be expressed as a continued fraction : 

nl + ----:;1;--­
n2 + --­

n3 

The sequence is finite ifand only if e is rational. 
If e is irrational, and we consider the Nth rational approxima.nt to e 

1 
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then qN is  the so-called "cumul ant" , a polynomial in the variables n I , . . . , n N . 

Let n c 1R be a fractal set constructed in steps by an i terative process .  Let Ck� 
be the covering (by intervals h )  of n given by the canonical partition of n in the 
ktll step of its  construction -e.g.  the set of 2k intervals Ik of length 31k that cover 

the Cantor ternary in the kth  step of its construction. 

We consider n endowed with a probability measure P. 
Following Procaccia , Jensen and others [3] , we recall that the a-index of Procaccia 
relates lengths of int.ervals h ill Ck t,o the COlT(�sp(m<li J lg  prolm,h i l i ties P(h n n) 
thus : 

or 

a(h )  = log (P(h n n))  

. log ( l h l )  
where I I denotes the usual measure in the real line . 

Now let n be the unit segment and let P be its (F- B )  partition. Let � E (0 , 1 ) .  
Let k be a natural number. In the k t ll  step of ( F  -B ) ,  there i s  a unique I k = I k ( 0  
t o  which � belongs. The k tll approximation of the a-index of � �abbreviated as 
ak (�)_ is by definition, 

and 

when this limit exists. 

3 . THE THEOREMS.  

In  the next sections we prove 

Theorem 1 .  Let 

1 � = ----7"1-- = [nI , n2 , n3 . . . ] ,  
n I + 1 n2 + -"3-+-.-" 

each n i  a natural number. � 
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I:k n ' 
We have: the s equence { ak(�)}  is bounded if and only if the sequence { i,/ ' } is 

bounded. Moreover, if AM = {U ak (e) :::; M Vk } , M an arbitrarily large constant, 
then there exists K = K(M) > 0 such that 2::"A/ ni :::; K Vk , for any � E AM . 

Theorem 2 .  The se t  of a l l  � such that the s eq1tenCe {ak (�)}  zs bottnded has 

zero Lebesgue meaS1tre . 

Theorem 3 .  The se t  of all � such that the s equence {ak (e) } is  bottnded has 

Hausdorff dimension unity. 

Theorem 4. Let m > 1 be an arbitrarily large constant. Then 

From Theorems 1 to 4 we can infer 

Corollary. 

From this we can infer : ·  

4 .  CONCLUSION. 

Multifractality theory states that the multifractal spectrum (a , J(a)) of a fractal 
n reaches a maximum 

Nevertheless, from our . corollary we infer that , for the (a , J(a))  corresponding to 

the Farey tree in the unit segment we have 

There is ,  then, a significant discrepancy between multifractal theory and this ex­

ample -the Farey partition. Since this example is, as noticed above, both common 

and important in Physics and other disciplines , the physical interpretation of this 

discrepancy should be explored. 
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It remains to prove Theorems 1 to 4 now. 

5. PROOF OF THEOREM 1 .  

Following the definition of ak (O ,  we have t o  estimate the length of h(e) .  

Claim 1 .  Let e = [n I ,  . . .  , ni ,  . . . ] . Let k E IN, and let  1ts write k = I:f:l nj + hj 
N = N(k)j 0 :;; h < n N + , . Then we have: 

where qN is the cumulant of the Nth step of the development of e as a contin1ted 

fraction. 

Proof of Claim 1 .  

and therefore 

Step 1 :  

sInce 
1 ----,1:-- > 0 ,  

71.2 + ---71.3 + 

1 1 
e = ------,;--- < - : 1 71. 1  71.1 + ---=1-

71.2 + -

o 1 1 1 1 
Step 2 :  i < e < 2 < i ;  e E [0 , 2] = Iz (O,  112 (0 1 = 2 ' 

On the other hand, e = + 1 , > n '�l (since n 2/-L. < 1) , and therefore n l n 2 + -1-
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Let us suppose that 2 < n2 ,  Thrm, 2 . 2+1 = ::-+r+ < � , and � E n 'l  n l '2 

Step nl + 2:  

Step. nl + h:  
0 1 2 h - < < < < t < 
1 nl + 1 2nl + 1 hnl  + 1 '> 

1 
nl ( lml + 1 ) ' 

[ 2 1 ] ., 
2 71. 1 + 1 ' ;-;  , 

1 - ;  II"I+h (O I  nl 

S O n2
· 1 1 ( ) 1 1 

tep nl + n2 : 1 < n2nl + 1 < e 
< nl ; 1" 1+"2 e = 

nl(n2n l  + 1 ) ' 

= 

Now, let us recall that qo = 1 ,  ql = n} , and q2 = nl n2 + 1 ,  where qi is the i t" 
cumulant polynomial ,  so 1 1" 1+h (0 1  = ( 1  1 -l ) ' and 1 171. 1+n2 (0 1 = _1_ ,  Iterating '1 1  If/ I  - '10 '/ 1 '1 2 
this process a few more steps,  and knowing that qN +l = nN + 1 qN + qN - l '  we have 

and 
1 1 

11"I +n 2+71. 3 (0 1 = ( + )  = , . . , 
q2 n3 Qz Ql Q2 Q3 

and, in general , we obtain the result of Claim 1 .  

The proof of Theorem 1 i s  divided into two cases : 

A)  h = 0 ,  B )  h =I 0 , where h is as in Claim 1 .  

From Claim 1 we know that , with k = t!1 rli + h ,  0 S h < n N +l t  we have 
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A) Let h = O. Ip. this case the corresponding formula for a is :  

"
In 2 

2:[:1 ni  < ln 2 2:[:1 nj < In 2 2:[:1 nj 

2 ln qN - In(qN qN_ l )  - ln qN 
' 

so, for the purpose of studying the finiteness of aN (e) , we will deal with aN (e) = ""N 
L.Ji 1 n i  

for short . In qN 

We will find upper and lower estimates for qN : 

Claim 2 .  Let e = [ni , n2 , . . .  ni  . . .  ] a s  before, and let qN b e  its Nth  c'U.mulant 

polynomial. 

Then C1 rPN ::; qN ::; C2 n[:l "n ; rPN , where rP = 1 +2V§ and Cl and C2 are absolute 

constants. 

Proof of Claim 2 .  qN is a polynomial in the variables ni , n2 . . .  n i  . . .  nN ' each 

variable ni appears in each monomial with degree zero or unity, the coefficient of 

each monomial is unity, and the monomial with the biggest degree is n[:l n i .  

Therefore, in  order to  estimate the minimal value 7iN of  qN ' we have to  give to  each 

variable its minimal value ni = 1 . Tlwll, 7iN is the t.otal number of monomials in 

qN ' 
We want to calculate this number: 

P_N_ = ___ 1-:-� [ 1 1 1 ] 1 = , . . . , qN 1 + -1 -" � 
' }  

from which qN = FN , the Nth Fibonacci number. Fibonacci
' 
numbers follow the 

rule Fk = Fk-1  + Fk-2 , k E IN, Po = 1 , FI = 1 ; and they are well approximated 

below and above by Cl rPk and c� rPk respectively for high vn.ll1cs of  A: , where </> = 

¥ and Cl and C2 are absolute constants. 

This finishes the first inequality of Claim 1 .  

Iu order t o  ta.ckle thc second jwxl'ml i ty we IH'cd t o  ohscrve t.b at the la.rges t. mOllO­
miaI in qN is n;:l n i ,  and we have FN monomials altogether; therefore, 

N N 
qN :::; FN IT ni :::; C2 rPN IT ni , 

i= l  ;=1  
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which finishes the proof of Claim 2.  

Let l.lS continue with the proof of Theorem 1 .  
Let us recall that erN(C

'
) = L::1 nj ." Jn qN 

Using Claim 2 we have 

from which we obtain: 

N 
L: ni 

___ -::--1 ____ < N(C) < .  i=l N - er ." - N (In qS + JnNcI ) L: Jn nj 
N ln q,  + � + l!!..£L N N N L: nj L: nj L: n j 
i = l  . = 1  

( 1 )  

where C i s  an absolute constant . From here we obtain that the boundedness of { L:;1 nj } 
is a sufficient condition for {erN (O} N e IN to be bounded. It re­

NEIN 
mains .to show that it is also a necessary one. 

We need 

Claim 3 .  Let {ni l ieIN be a s equence 11Jith nj E IN. If L:;1 nj ___ 00, then N-+oo 
Proof of Claim 3. For each N E IN, we will group ni ,  1 � i � N, into two 

sets: those which do not exceed the average L:;I ni = PN , and those which do. 

We write 

and we will prove that A(N) and B(N) tend to zero when N --t 00 .  

Let us  deal first wi  th 

A(N) __ L:nj <NPN ln ni In PN L:njEPN 1 In PN '  N In PN -:':':":�'--- :::; N � N = -. - --- 0 
L:i=l ni L:i=l nj L:i=l nj PN N-+oo 

because PN .,-+ 00 with N. 
Next , 

'" In n - ",N In nj . n -
B(N) = 

L.J n i >:;N I = L.J n i > Pr;. ni I 

L:i=l n j  L:i=l ni 
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Let us estimate the numerator. Let us consider {. lnn�·i } , There are values I ni > PN 
ni and ni in {ndni >PN ' such that 

In ni In ni In n.,. --- < -- < --' .  
Hi - ?1j - ni 

Therefore, 

and 

No�, Inxx is mono tonically decreasing in x E re , 00) . In our case x > PN which 

tends to 00 with N,  so we do work in [e , oo) .  
Then, there exists >. N such that 

In >'N _ L:ni >PN In n i 

� - L:ni>PN ni ' 

Since PN --+ 00 with N,  so does >. N' ;  therefore, 

Let us finish the proof of case A) .  We want to show that { L:�) ni } bounded 
NEIN 

implies {Q!N (�) } NElN bounded. 

Let us suppose that L.JiN1 ni � is not bounded. Then there exists a sub se· 
{ �N '\ 

J N ElN 
quence {Nj }  C IN 'such that 

, � N'  
P L.Ji":l nj N· = --+ 00 1 Nj 

as j --+ 00 .  

Then Claim 3 can be adapted so  as to imply that 

For these values Nj the first inequality of Eq. ( l )  is 
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which implies ctNj (0 
bounded. 

--+ 00 ,  which in turn implies that {aN (O} NElN IS un­
i-co 

Case B )  h f= o .  Let us recall that , with k = 2:�1 ni + h ,  1 � h < nN+p we had 

forgetting about In 2 .  

Let us  suppose { 2:�, n. } bounded , � C,  V N E IN .  We want to 
NElN 

show that {ak (C)}  kElN is bounded. 

We know that qN- 1  + hqN � qN ;  therefore 

Therefore, 

"N I ,\,N+l 
ak (0 = 

L..t i= 1 ni + 1 < L..ti= 1 ni 
In qN (hqN + qN- J - ln c + 2N ln if>  
,\,N+l 

= 
L..t j= 1 ni .  N + 1 < ..2...-

N + 1 In c + 2N In if> - In if> 
V k E IN 

This proves that { 2:;1 n. } bounded is sufficient for {O'k (0 hElN bounded. 
NElN 

The necessity is proven in case A) q.e.d . 

In Theorem 1 ,  we left rational numbers out . The sequence [n1, . . .  nj . . . ] associated 

with e is an infinite one: 

Proposition. Let e = [nI , . . . , nk] be a rational number. Then 0'(0 = 00 . 

We leave the proof as an exercise. 

6 . PROOF OF THEOREM 2. 

I 
It is a consequence of Theorem 1 and a class ical theorem by Borel and Bernstein 

[ 13 ,  p . 167] :  "If if> ( i) is  any increasing function: of i for which 2: i 1/1>(  i) is divergent , 

then the · set ore for which ni � ifJ( i )  for all suffieient.ly large i ,  is null" . 

Let F = {e  = [n l , n2 ,  . . .  nj . • .  ] 1 3  c = c(O with 2:;, n . � c(O V N E  IN} .  
2:N 

n · . 
Let Fm denote {e  = [nI ,  . . .  n i . . . ] 1  '"pi I � m V N E  IN}.  
Clearly F = UmElN Fm . We will show that !Fm I = 0 V m. E IN .  
Let e E Fm . Then we have: 
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1 )  T ::;: m,  then nl ::;: m = l (m - 1 )  + 1 
2) n1tn2 ::;: m ,  then n2 ::;: 2m - nl ::;: 2m - 1 = 2(m - 1 )  + 1 .  

N) nl +n 2+  . . .  +nN < tl < N " <" " N (N "I ) N - m, len nN _ m - nl - n2 - . . . - nN _ 1  � m " - - = 
N(m - 1 ) + 1 . 

Let us write cPm( i )  = i (m - 1 ) + 1 .  cPm (i ) is increasing, and L:i l/cPm(i )  is divergent . 
S ince nj  ::;: cPm(i )  V i E IN we have IFm l = 0 by the Borel-Bernstein theorem. 

7. PROOF OF THEOREM 3. 
We will use a classical theorem of Jarnik [12] : 

"Let Em = {e  = [n l ,  . . . , nj , . . . ] / ni ::;:  m V i E IN} .  
For m > S ,  we have 

1 - / 2 ::;:  dimH Em ::;: 1 -
1
1 

" . 
m og Sm og m 

Let F and Fm be as in Section 6 .  Obviously Em C Fm and Fm C F V m E IN. 
Therefore 

by Jarnik's theorem. Letting m � 00 finishes the proof. 

S. A S KETCH OF THE PRO O F OF THEO REM 4. 

From Good [ 14] we can deduce: Let  a E (0 , 1 ) .  If there exist constants C = C(a) 
and no E IN such that 

[n l ·  . .  • .. N ) L:r " .  i - I  • < m 'ti ,. < N  r - -

1 
::;: C VN 2:: no 

Then we have dimH (Fm )  ::;: a ,  where Fm is as in the proof of Theorem 2. 

(2) 

O B S ERVATION .  Let us consi der (Eoo - UkElN Ek ) n Fm = A. Each element 
[nl . . . nN • . .  ] E A has a subsequence n jj � 00. For clarity, let us consider that the 

condition PN ::;: mV N is achieved by compensating each nij going to infinit.y with a 
string of " 1  ' s " . As nij � 00 so does the length of such string, contributing nothing 

to the dimension of A. A moment of reflection shows t.hat the n j  responsible for 
dimll A are t.hose bounded (by some const.ant ) ,  which suggest s .  that , in order to 
study dimlI Fm ,  i t  i s  enough to consi der di1l11/ ( Fm  n Ek ) V !.: E IN. Moreover,  the 
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elements in A have cumulants qN far larger than those in Fm n Ek , being thus 

associated with much smaller intervals in the canonical coverings of [0 , 1 ] . 

We leave out the details of the rigorous proof of this observation, for,  on the one 

hand, they involve long and tedious combinatorial algebra. . .  on the other hand, 

the underlying idea is simple . 

We have to prove that dimH (Fm n Ek ) is bounded away from 1 .  

Let k b e  as i n  Ek , and N b e  as i n  [nl . . .  nN . . . ] .  Let us fix both of them , qN(nl , . . .  , nN ) 
the cumulant associated to [n I , . . .  , nN ] '  Let [Fm n EklN = CN be the set of 

[n l . . .  nN ] such that [n l , . . .  nN , nN +1 . . .  1 E Fm n Ek . 
Let us partition CN in disjoint ::lasses Cj"," £k : Let Rl . . .  Rk be in IN, 0 :::; Ri :::; N,  
R I  + . . .  + R k  = N. We will say that [nl . . .  nN ] E C�" '£k i f  R I  elements H i  are equal 

to 1 ,  R2 elements ni are equal to 2, . . . etc. 

The condition PN :::; m implies ll +2f2t . .  ·+ klk :::; m. Now, eq. (2) reads 

Next , we need two Claims . 

Claim 1 .  

Claim 2 .  

. ( d1 . . . lk ) rv ( 1 ) 
N 

Cardmal eN = '\ ' '\ 2  '\ k  A l  A2 . . .  Ak 
With Claims 1 and 2, the left hand side of (3) can be bounded by 

(3) 

for short . The last expression will be bounded uniformly in the variable N when 

the expressions between [ ] are smaller than unity. The smallest (jk verifying this 

condition is the maximum of the function ITk ( /\ l , . . . , Ak ) = 21�,� .. ( A J  " . '\ k ) ,  wit,h the 

conditions Al + . . .  + Ak = 1 and Al + 2A2 + . . . + kAk :::; m . 
An adaptation of the Lagrange method yields a system of equations which can be 

reduced, after tedious algebra, to a single trascendental one. Numerical methods 

yield values of (jk bounded away from unity as k -; 00 . 
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It remains to sketch the proofs of Claims 1 and 2 . 

Sketch of the Proof of Claim 1 .  Let us consider 

[a l  . . .  aN l = [ 1 , 2 , 3 , 1 , 2 , 3 , . . .  1 , 2 , 3) ;  [b1 , . . . bN ) = [ 1 , 1 , 2 , 2 , 3 , 3 ,  . . .  1 , 1 , 2 , 2 , 3 , 3) 

and 
[Cl , " ' CN )  = [ 1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , . . .  1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3) . 

In all three cases we have A l = A2 = A3 = t ,  Ai = 0 V i ;::: 4. We have 
qN (al , . . .  aN )  < qN (b1 , . . . bN ) < qN(Cl , . . .  CN ) ;  [,al . . .  an ) being the most equidistrib­
uted arrangement for these values of {>.i h::; i9'  The fact is quite general : ' the 
smallest qN , for a certain set of values of A i ,  corresponds to the most equidistrib­
uted possible arrangement . The proof cif this fact involves elementary but rather 
long calculations , and we leave it as an exercise to the reader . From now on, 
/\ I . . . A"  are fixed, and we work with equidist.ributed arrangements . 
Next , we can write qN as 

(n, . . .  n. ) { 1 + � (nini+ ' ) -' + i , E" (ni ,  n i ,H ni, ni"' ) - ' + . . . 

+ 2:= (ni l ni 1 +l . .  ·nir  ni r+ l ) -1  + . . . } , 
ip + l < ip+ 1  

l � p $ r  

and let us consider the rth terni involved:  

(4) 

The number of terms in (4) is (N;r) (see [ 14] ) .  Because of the equidistribution 
noted a.bove , we have that the proportion of "ones" , "twos" , "t,hrees" . . .  etc . in 
each monomial in (4) is ,  precisely, Al . . .  Ak  -this fact is guaranteed only when the 
length of such monomials is large, i .e. N - 27' has to be large. �lien (4) is well 
approximated by 

(5) 

and a sufficiently accurate expression of (jN is given by the maximum (with 7' as a. 
variable) of expression (5) .  
By using Stirling's  formula, (5) becomes well approximated by 
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and by replacing the discrete variable r by a continuous one x = N we have the 

maximum value of the last expression to be [ J2f+ll ] N ,  where /-l = 2A 2 3 A3 . . .  e ' k . 

Sketch of the Proof of Claim 2. First let us observe that , if [n j . . . nN ] has 

£1 . . . £k as before, it  +2l2t· . .  + klk s rn , then some cyclic permutation -or rotation-
f th . , e1t . . . 1k o e n j  IS m N . 

Given N and £1 , . . .  , £k , there are 

N-strings [n l . . .  nN ] with such ej , whether they belong to et . .  ·fk or not . Since 
there are N of such cyclic permutations , we have 

and from this inequality and Stirling's formula we obtain 

NOTE. 

vVe want to stress that the lower bound obtained for qN in Claim 1 is  representa­
tive of et . . . ik , for Card ( et . . .  fk ) is the Cardinal of the equiclistributed N-strings 

[n l . . .  nN ] (we will not sketch the proof of this fact in t.his paper) . 
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