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ABSTRACT: The Farey-Brocot partition P of the unit segment I induces
a probability measure g on a universal class of fractal sets {2 that occur
in Physics and other disciplines. Key properties of the Multifractal formal-
ism (o, f(a)) of (, ) can be derived from the Multifractal formalism of
(I, P). In this paper we study some properties of the latter. We find a sig-
nificant discrepancy between the Theory of Multifractal spectra (a, f(a)) of
general sets {) and the spectrum of our concrete example (I, P). The proofs
in this paper include some interesting generalizations of classical results in
Number Theory.

1. INTRODUCTION.

1.1 THE PHYSICAL MOTIVATION FOR STUDYING THE «-INDEX.

In order to construct a Cantor set K, we depart from a unit segment [0,1], take
away its central third, then take away the central thirds of the smaller segments
remaining,... and iterate this procedure ad infinitum. This is an example of what
physicists call a "mathematical” fractal set. ‘We have dim(K) = log(2)/log(3),
a number strictly between 0 and 1, where dimy(I{) is the Hausdorff dimension
of the set K. However, there are other types of fractal sets Q arising from the
study of physical phenomena. Let us consider the forced pendulum, with internal
frequency w. When plotting the winding number W as a function ¢ of w, we
have that, for a certain critical value of the parameters involved, W = g(w) is a
Cantor-like staircase. It means that g(w) is constant in the so called intervals of
resonance It (k a natural number) of the variable w, each Ij, producing a step of

the staircase. The complement of the union of the mterior of the intervals Iy is a
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fractal set Q, and dimpg(Q) is again a number strictly between 0 and 1 [1]. This
Q, given by a natural process or a physical phenomenon, is very different from K.
It does not have the regularity of self similarity shown in the process of formation
of K. .

Cvitanovic, Jensen, Kadanoff, and Procaccia [2] dicovered a property of the stair-

case W = g(w): Let 5 and g—:— be the values of W for a pair of intervals of

resonance I and I', such that all intervals of resonance in the gap between I and
I' are smaller in size than both I and I'. Then, there is an interval of resonance
I" in this gap such that the corresponding constant value of W is %I;- = %E(‘;—’,-
This interval I" is the widest of all intervals of resonance in the gap between I
and I'. Thisis a purely empirical ﬁnding

Now, given two positive rationals £ o and £ ar we have that £ < 22%(7 < P . This

way of interpolating a rational number ——i—T strictly between.two others is known

as the Farey-Brocot (F-B) interpolation. By (F-B) interpolating rational numbers

between % = % and %r = % we obtain finer and finer (F-B) partitions of the unit

segment [0,1]:

01 0 041 1
B) = -B
(F=B) = { }(F = {1 51 },
0 0+1 1 141 1
F_B - ZY, e
( r={ oy 241 17 cte

Notice that (F' — B), divides [0,1] into 2" segments. By assigning equal measure
to each of these we induce a measure I in [0,1] called the (F-B) measure.

Now, let us go back to our Cantor staircase W = d(w), W € [0,1]. The probability
measure P in [0,1] induces via W = g(w), another probability measure p on Q.
This ¢ measure on the w axis is called the Farey tree partition of .

Our "non-mathematical” fractal set Q is now a measure space (£, p1).

Cvitanovic et al. [2] and Halsey et al. [3] have different examples of physical
phenomena exhibiting Cantor staircases with such (F-B) arrangements. Bruinsma
and Bak [4] studied the magnetic structure of ferromagnetic quasicrystals by plot-
ting the ratio of up spins against the strength of the magnetic field applied to
the quasicrystalline structure, when only 2 values of each spin are allowed, i.e.
+ and -, or up and down. Again the result is a Cantor staircase with the (F-B)
arrangement [5]. We can find this arrangement in some of the staircases shown in
[1] including the one associated with the chemical reaction of Belusov-Zabotinsky.
Procaccia, Jensen and others [3] devised a way of decomposing a "natural” —as
opposed to "mathematical” — fractal (2, ¢) into more self-similar subsets 0, C
Q, @ € [@min;¥maz], an interval on the real line. If we denote by f(a) the

dimp(Qq), then the curve (a, f(a)) is considered an important characteristic of
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the physical phenomenon yielding the fractal (2, ). Such a curve is called the
multifractal spectrum of (£2, p).

Key properties of multifractal spectra of such measure spaces (2, ;1) are due to the
Farey tree partition g —a partition inherited from the (F-B) probability measure
P of the unit segment. We found a significant discrepancy between the theory
of Multifractal Spectra («, f(a)) and concrete examples: some statements of the
general theory are not true (see below) for the spectrum («, f(«)) of the unit
segment with the (F-B) measure P.

NOTE. Many ideas underlying this paper come from previous papers: we studied
geometrical properties of the (F-B) partition in [6]; in [7], [8], and [9] we began to
study the multifractal spectrum of the (F-B) partition P, whereas in [10], [4], and
[11] we studied connections between the («, f(a)) spectrum of the (F-B) measure
of [0,1] and Number Theory. :

1.2. A NOTE FOR THOSE INTERESTED IN NUMBER THEORY. AN EX-
TENSION OF JARNIK CLASSES.

The (F-B) partition is naturally associated with the decomposition of an irrational
number £ in continued fractions, £ = [n1,n2,...,nN;...], as will be detailed below.
Jarnik is concerned with the set E,, of irrational numbers £ = [n,nq...nN...]
such that ny < m VN. He proves [12] that the dimg(E,,) grows very much like

1 __ constant

. Notice that Theorem 4 below is an extension of this result (so far as

we know, the first-one since 1928): we obtaln an analogous result when the Jarnik

N
condition "ny < m” is replaced by the more general one —Z—;—‘Tvl—— <mVN.

2. NOTATION.
Any real number £ € (0,1) can be expressed as a continued fraction:

: 1
o= 1 = [n1,n9,n3,...], withn; € IN.
ny +

nz +

ng

The sequence is finite if and only if £ is rational.
If ¢ is irrational, and we consider the N*'* rational approximant to £

P 1 :
q_N'= 1 =[nl,n2a"',nN]7
N n 4 —
! na+

S
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then ¢, is the so-called “cumulant”, a polynomial in the variables ni,...,n,.

Let  C IR be a fractal set constructed in steps by an iterative process. Let Cy
be the covering (by intervals I;;) of  given by the canonical partition of  in the
k™ step of its construction —e.g. the set of 2* intervals I of length 3% that cover
the Cantor ternary in the k** step of its construction.

We consider 2 endowed with a probability measure P.

Following Procaccia, Jensen and others [3], we recall that the a-index of Procaccia
relates lengths of intervals Iy in Cy to the corresponding probabilities (I, N )
thus:

P(I; N Q) = |I;|*Ux)
or

log(P(Ix N Q))
log(|1k])
where | | denotes the usual measure in the real line.
Now let Q be the unit segment and let P be its (F-B) partition. Let £ € (0,1).
Let k be a natural number. In the k** step of (F-B), there is a unique I} = Ij(¢)

to which £ belongs. The kt* approximation of the c-index of £ —abbreviated as
af(€)— is by definition,

a(ly) =

log(P(I(§) N Q) _ log(1/2%)

ke —
a* (&) = RGN 6]

and

a(®) = lim a*(©)

when this limit exists.

3. THE THEOREMS.

In the next sections we prove

Theorem 1. Let

‘f = 1 = [nlsn2an3---]a

each n; a natural number.



k
21 lnz

} i3
bounded. Moreover, if Ay = {€/ *(€) < M Yk}, M an arbitrarily large constant

We have: the sequence {a*(£)} is bounded if and only if the sequence {

k
then there ezists K = K (M) > 0 such that Z:—k—_ < K Vk, for any £ € Ay

Theorem 2.  The set of all £ such that the sequence {a*(£)} is bounded has
zero Lebesgue measure. -

Theorem 3. The set of all € such that the sequence {a*(£)} is bounded has
Hausdorff dimension unity.

~Theorem 4.  Let m > 1 be an arbitrarily large constant. Then
dimH({f = [nl,ni, Ny. W/ E’— <m VN }) < 1.
From Theorems 1 to 4 we can infer

Corollary. )
dimp({{/ ax(§) S MV Ek}) < L.

From this we can infer:-

4. CONCLUSION.

Multifractality theory states that the multifractal spectrum («, f(«)) of a fractal
2 reaches a maximum

‘max a€emin, ¥mas) fla) = dimg(Q).

Nevertheless, from our.corollary we infer that, for the («, f(a)) corresponding to
the Farey tree in the unit segment we have

MAX aefamin, ames] F(@) < 1= dimp([0,1)).

There is, then, a significant discrepancy between multifractal theory and this ex-
ample —the Farey partition. Since this example is, as noticed above, both common
and important in Physics and other disciplines, the physical interpretation of this
discrepancy should be explored.



It remains to prove Theorems 1 to 4 now.
5. PROOF OF THEOREM 1.
Following the definition of a*(¢), we have to estimate the length of I;(£).

Claim 1. Let € = [ny,..
N=N(k);0<h<n

o Niy...]. Let k € IN, and let us write k = Zi] n; + h;

Nt1 Then we have:

1

O = T oy

where ¢, is the cumulant of the N** step of the development of £ as a continued
fraction.

Proof of Claim 1.

1 1
£ e (0, —) since I >0,
1
_I...
n2 n3+
and therefore

1 1
= 1 < n— :

ny + 1 !

ng + —

Step1: <€ <3 €€ (0,1 = 5e) [ =1,

Step 2 0 <£< 1< 1i £e02]=R(E),IRE) = 3,

0 1 1 1 1
Stepmi: 7 << =<5 (€ [0, ;1-] = In, (§); In ()] = —
On the other hand, £ = —— 1 > 1111+1 (since n_ﬁ-l_: < 1), and therefore

2+———
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0 1 1 1 1 1
St .- ~ <z ——, | = In,41(8);
ep n1 +1 1<nl+1<£< <3 €€[n1+1,m} Iny41(8)
1
|I’"1+1(€)| - "1("1 + 1)’

Let us suppose that 2 < ny. Then, 5;?;_—1 = ——1_*_—%- <¢ and € € [Eﬁf’ %J

ny

Step ny + 2: 0< ! < 2 <£<1'§€ 2 ! =T, (&)
PmhTe g ny+1 " 2np+1 ny’ g+ 1y TS
1
[Tn,+2(6)] = e T
0 1 2 h 1 '
.Y £ —_ A =
Step.71n+h_ T < mtl S mrl S hmal &S oy HmnlO
nl(hn1+1);
ny . 1 ' 1

= Oo

Step ny + na: <€< ;1_; IIm+n:(5)| =

nony + 1 ni(non; +1)°

Now, let us recall that ¢qo = 1, ¢ = ny, and g = myns + 1, where q, is the 3"

cumulant polynomial, so |I,+1(£)| = m, and [In,4n,(¢)| = —L-. Tterating
this process a few more steps, and knowing that ¢, ., =ny, ¢y + qN_l, we have
IIH1+"2+h(€)l = —_—'1——-'—)
22(hgz2 + q1)
and ) )
|In1+nz+na(5)| = =

sz + @) @e’

and, in general, we obtain the result of Claim 1.

The proof of Theorem 1 is divided into two cases:
A) h=0, B)h#0, where h is as in Claim 1.

From Claim 1 we know that, with k = El’il ni+h,0< h<ng,,, wehave

In1/2* In2 (Zfil n; + h)
In|L(é)]  In{gy(hgy +ay.,)}

ot (€) =



.A) Let h = 0. In this case the corresponding formula for « is:

ak(N)(§) =aN(¢) = %ﬂl

In (‘IN QN-1)

)

and, since qlzq > qnGn_1 2 Qy, We obtain:

A N A N N
1n22i=1 ni < In2 Zi:l ni S ln22i=1 Ny
2Ingy T In(gygy_s) Ingy

so, for the purpose of studying the finiteness of a™(¢), we will deal with a™(¢) =
N

. ng
T for short.

We will find upper and lower estimates for g, :

Claim 2. Let £ = [n,ng,..n;...] as before, and let qy be its N** cumulant
polynomial.

Then c1¢N < qy < ¢ Hi]il'n,' ¢V, where ¢ = %@ and ¢; and co are absolute
constants. '

Proof of Claim 2. ¢, is a polynomial in the variables ny,n;...n;...n,, each
variable n; appears in each monomial with degree zero or unity, the coefficient of
each monomial is unity, and the monomial with the biggest degree is Hf;l n;.
Therefore, in order to estimate the minimal value 7, of gy, wehave to gi’ve to each
variable its minimal value n; = 1. Then, 7, is the total number of monomials in
In- ]

We want to calculate this number:

1
= = [1,1...1],
14 T N——

£

N times

-

from which g = F,,, the N** Fibonacci number. Fibonacci numbers follow the
rule Fy, = Fy_y + Fr_3, k € IN, Fy =1, F} = 1; and they are well approximated
below and above by ¢;¢* and e2¢* respectively for high values of &, where ¢ =
Ltg@ and ¢; and ¢y are absolute constants,

This finishes the first inequality of Claim 1.

In order to tackle the second inequality we need to observe that the largest mono-

mial in ¢, is H1N=1 n;, and we have F,, monomials altogether; therefore,

N N
In SFN Hni Sc2¢NHni)
1=1 =1
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which finishes the proof of Claim 2.

Let us continue with the proof of Theorem 1.

X
Let us recall that o™V (¢) = ﬂiql—'
N

Using Claim 2 we have

iy <aM() < ity ni

In (02¢>N Hilil ni) IngNey ”
from which we obtain: _
N N
) N Eln; 2:1 n;
<aM(¢) £ — =< < O, (1
ilnn.- N(ln¢+!_ﬁl) N

]\Llnqb + .'=;J + 1;’102
Z n; E n; Z n;
i=1 i=1

i=1

wherlg C is an absolute constant. From here we obtain that the boundedness of
n;

L= : is a sufficient condition for {a™(£)} Nemw to be bounded. It re-
mains to shg\frnz’hat it is also a necessary one.
We need
N .
Claim 3.  Let {n;}, p be a sequence with n; € IN. If Z——'ﬁ‘l N % then
EN= In n; — 0 ’
Z.‘=1 i N—oo

Proof of Claim 8. For each N € IN, we will group n;, 1 <7 < N, into two
. N .

sets:  those which do not exceed the average —'Iivlﬂ = Py, and those which do.

We write
Z:’\.’—_l Inn; _ .ZﬂiSPN Inn; + Zn.‘>PN Inn;
N - N N
s M D=1 T 2 i=1 M

and we will prove that A(N) and B(N) tend to zero when N — co.
Let us deal first with

= A(N) + B(N),

Zn;SPN Inn; < In Py En;EPN 1 < InPy-N _ In Py
ziN=1 n; - Ef\il ng - Efi! n; PN N—oo

because Py — oo with N.

Next,

A(N) =

N Inn;
. —_—t .
Zn;)PN In ni _ En.‘>PN n; 1

N = N
iz M Doimy M

B(N) _
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Let us estimate the numerator. Let us consider {I“T"'- There are values

! }n.'>PN
ni and n7in {n;}a;>py, such that

Inn; Inn < Inn;

< <
R2% n; n;

Therefore,

Inn; Inn; Inn--

—= ni < E —n; < —* E n;

n; n; nsr

L ni>Pn n>Py ? n;>Pn

and

lnni < En.’>PN Inn; < Inn-'.-..

ng Dnispy T

Now, I“Tz is monotonically decreasing in z € [e,00). In our case z > Py which

tends to oo with N, so we do work in [e,00). -
Then, there exists A, such that

In Ay — Zn'.'>PN Inn;
/\N Zn,'>PN ni

s PN<”3‘_S)\A}S”,’-

Since Py — oo with N, so does A, ; therefore,

Eﬂi>PN Inn; < Z"x’>PN Inn; _ 1“’\N

"B(N) = <
( ) zf\;l n; ZH;>PN g AN

—+0 as N — 0.

N o :
Let us finish the proof of case A). We want to show that {Lﬁ-‘l} bounded
NelN

implies {aV(£)} nemn bounded. ‘
N R . i :

Let us suppose that —'ﬁ,—ll} is not bounded. Then there exists a subse-

. NeIN

quence {N;} C IN such that -

N

= 1 .

PNJ.=—'—N1‘——+00 as j — oo.
i

Then Claim 3 can be adapted so as to imply that

For these values N; the first inequality of Eq.(1) is

1

< aMi(g)
N =
1;% + Z.‘:}J\}.ln ni + h;’f:z ;
Z-‘=J1 K Ei=ll» R
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which implies ¢Vi() — oo, which in turn implies that {a™(¢)}Nem is un-
j—oo
bounded.

Case B) h # 0. Let us recall that, with k = Eil ni+h,1<h<n we had

N+19

Zz]'\;l ni+h

oh(6) = Ingy (hgy +ay_,)’

forgetting about In2

n;

N N
Let us suppose {Zﬁ’——} bounded, _Z_.ﬁd‘_‘_ <C,VN e IN. We want to
NeIN

€
show that {a*(¢)}rem is bounded.
We know that g, _, + hq, 2 q,; therefore
Oy (Qyy +hay) 2 6 > F2 > cp?.
Therefore,
ok (€) = Signith S
Ingy(hqy +qy_,) ~ Inc+2N1n¢

_Tidni _ N+1 _C
" N+1 Inc+2NIn¢ ~ In¢g

Vke N
This proves that {—Z—:—'—K—,‘—n—'} bounded is sufficient for {a¥(€)}rem bounded.
NeIN

The necessity is proven in case A) q.e.d.

In Theorem 1, we left rational numbers out. The sequence [ny, ...n;...] associated
with ¢ is an infinite one:

Proposition.  Let £ = [ny,...,n] be a rational number. Then o) = oco.

We leave the proof as an exercise.
6. PROOF OF THEOREM 2.

It is a consequence of Theorem 1 and a classical theorem by Borel and Bernstein
(13, p.167): “If ¢(1) is any increasing function of ¢ for which 3, 1/¢(4) is divergent,
then the'set of ¢ for which n; < ¢(i) for all sufficiently large ¢, is null”.

. N .
Let F'= {€ = [n1,naymion] / 3 ¢ = c€) with 2= < ¢(¢) V N € IV},

N . .
Let F,, denote {£ = [nq1,...n...] / —Z—ﬁlj—' <mVNelN}
Clearly F' = e v Fm. We will show that |F,| =0V m € IN.
Let £ € Fy,. Then we have:
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1) it <m, thenn; <m=1m-1)+1
2) 1%’—Zﬁm,thennzg%n—nl§2m—1:2(m—1)+1.

N) Ei’”_‘*ﬁ_il‘_x. <m,thenny <mN—-ny—ny—...—n,_, <mN—-(N-1)=
N(m —1) +1.

Let us write ¢, () = i(m—1)+1. ¢ (7) is increasing, and ) ; 1/dm(7) is divergent.
Since n; < ¢m(i) Vi € IN we have |F;,| = 0 by the Borel-Bernstein theorem.

7. PROOF OF THEOREM 3.

We will use a classical theorem of Jarnik [12]:
“Let Em = {€ =[n1,...,n4,...] /[ ni <mVieIN}.
For m > 8, we have
1 1

<dimpgEn <1 - ——".
mlog2 — i - 8mlogm

Let F' and F,, be as in Section 6. Obviously E,, C F, and F,, C FVm € IN.

Therefore )

mlog2’

dimg(F) > dimp(Fr) > dimpg(En) > 1 -
by Jarnik’s theorem. Letting m — oo finishes the proof.

8. A SKETCH OF THE PROOF OF THEOREM 4.

From Good [14] we can deduce: Let o € (0,1). If there exist constants C' = C(o)
and ng € IN such that

> - <C YN2ng @)

gn(ny, ...,y )%

Then we have dimy(Fy,) < o, where F, is as in the proof of Theorem 2.

OBSERVATION. Let us consider (Eoo - UkeIN Ek) N F,, = A Fach element
[P1...ny...] € A has a subsequence n;; — oo. For clarity, let us consider that the
condition Py < mVN is achieved by compensating each n;; going to infinity with a
string of “1’s”. As n;; — oo so does the length of such string, contributing nothing
to the dimension of A. A moment of reflection shows that the n; responsible for
dimy A are those bounded (by some constant), which suggests that, in order to

study dimpy I, it is enough to consider dim ([, N Ey) V & € IN. Norcover, the



63

elements in A have cumulants gy far larger than those in F', N E}, being thus
associated with much smaller intervals in the canonical coverings of [0, 1].

We leave out the details of the rigorous proof of this observation, for, on the one
hand, they involve long and tedious combinatorial algebra... on the other hand,
the underlying idea is simple.

We have to prove that-dimg(Fy, N Ex) is bounded away from 1.

Let kbeasin Fy, and N beasin [n;...n,...]. Let us fix both of them, gn(n1,...,ny)
the cumulant associated to [ny,...,ny]. Let [F, N E]y = Cn be the set of
[n1..ny] such that [n1,..ny,ny,,...] € Fn N Ep.

Let us partition Cp in disjoint classes C’f;}"'fk: Let 4.8, be in IN, 0 < ¢; <N,
21+ ...+ €, = N. We will say that [n;..n,] € C’f;}‘”e" if £; elements n; are equal
to 1, ¢; elements n; are equal to 2,... etc. ‘

The condition Py < m implies w—fﬂ—'}\}—-ﬂ& < m. Now, eq. (2) reads

: 1
eg;tk [nl...n,\,EIG:C;,‘.‘_,,= an(n1..ny)?? =¢ ®)
Next, we need two Claims.
Claim 1. qN(nlb...nN) > [-} (\/;—15:——4+/.L>]N,Vy. =R kR = 22 Lk for
any [ny,...,ny] € C’,{}"'l"
Claim 2.

N
1 .
Cardinal (C’f;}“‘ek) = <—————-———> .
AP LA

With Claims 1 and 2, the left hand side of (3) can be hounded by

N
1
<,\f1,\;2...xf_k) B [ A A1,y Ak) ]N

& {[% (mw)yv}m UZ F(h sy AP

for short. The last expression will be bounded uniformly in the variable N when
the expressions between | ] are smaller than unity. The smallest o verifying this
condition is the maximum of the function ap(\,..., A\x) = 2—111‘5%7()\1 ...AL), with the
conditions A\; + ... + .’\k =1land A\ + 22 + ... + kX < m.

An adaptation of the Lagrange method yields a system of equations which can be
reduced, after tedious algebra, to a single trascendental one. Numerical methods

yield values of o bounded away from unity as k& — oo.
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It remains to sketch the proofs of Claims 1 and 2.
Sketch of the Proof of Claim 1.  Let us consider
[ay...ay] =[1,2,3,1,2,3,...1,2,3]; [b1,...by] =[1,1,2,2,8,83,...1,1,2,2,3,3]

and
[e1,...ex] =1(1,1,1,2,2,2,8,3,3,...1,1,1,2,2,2,3,3,3] .

In all three cases we have \{ = Xy = A3 = %, A= oV i > 4, We have
gn(ai,...ay) < qn(bi,...by) < gn(e1,...cy); [@1...an] being the most equidistrib-
uted arrangement for these values of {\;}1<i<k. The fact is quite general: the
smallest gy, for a certain set of values of \;, corresponds to the most equidistrib-
uted possible arrangement. The proof of this fact involves elementary but rather
long calculations, and we leave it as an exercise to the reader. From now on,
A1...Ax are fixed, and we work with equidistributed arrangements.

Next, we can write qn as

(”1---"~){1 + Z(nmm)_] + (nnmx+1ni2m2+1)_l +...

i1+1<14s

-1
-+ Z (ni1n51+1...n,’rn,‘r+1) + } y

ip+1<ipgy
1<p<r

and let us consider the r*" term involved:

ny...n

—— (4)
ip+1<ipyy Ny Nig+1Miy - -

1<psr

N-—7r

7") (see [14]). Because of the equidistribution

The number of terms in (4) is (
noted above, we have that the proportion of “ones”, “twos”, “threes”... etc. in
each monomial in (4) is, precisely, A;...A\x —this fact is guaranteed only when the
length of such monomials is large, i.e. N — 2r has to be large. '_l‘hen (4) is well

approximated by

(Nr— T) 1,\\(N—2r)2A2(N—21‘)mkz\k(N—‘2r) , (5)

and a sufficiently accurate expression of ¢y is given by the maximum (with r as a
variable) of expression (5).
By using Stirling’s formula, (5) becomes well approximated by

AN =1
(N=r)""" na(v=2) JAR(N=2r)
(N — 2 )N=2r " J




65

and by replacing the discrete variable r by a continuous one z = § we have the

e N
. . o
maximum value of the last expression to be [ - : +”] , where p1 = 2*23%3 kA,

Sketch of the Proof of Claim 2.  First let us observe that, if [ny...n,] has

4;...L; as before, M’—j——tﬁ’—cﬂ < m, then some cyclic permutation —or rotation—
of the n; is in C',{,l"‘z“.
Given N and #4,..., ¢}, there are

N\ /N -0\ (N -0 -0, Cr

& 1) ly T\l
N-strings [n1...n,] with such ¢;, whether they belong to C%*** or not. Since
there are N of such cyclic permutations, we have

1 /N (@k ob fk (N Bk)
7\/'—(.81)"' \f!:> Card( ’.

and from this inequality and Stirling’s formula we obtain

N
1
.. 8k ~
Card (CN ) = <———/\1\1...)\2k> .

NOTE.

We want to stress that the lower bound obtained for ¢) in Claim 1 is representa-
tive of C'f\}“'ek, for Card (C]{}"'e") is the Cardinal of the equidistributed N-strings

[n1...n,4] (we will not sketch the proof of this fact in this paper).
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