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ON THE MACIAS-SEGOVIA
METRIZATION OF QUASI-METRIC SPACES

Hﬁgo Aimar, Bibiana laffei and Liliana Nitti

Abstract: We give a direct proof of a theorem of Macias and Segovia ([M-S] on
the metrization (X, p) of quasi-metric spaces (X, d), without an explicit use of the
uniform structure on X x X. Then we show how our construction can be extended
to some generalized quasi-metrics.

A distance or metric on a set X is a real non-negative, symmetric function va-
nishing on the diagonal of X x X for which the triangle inequality

n p(z,z) < p(z,y) + p(y, 2)
holds true for every z,y and z in X and is faithful

(2) p(z,y) =0 implies =z =y.

When only (1) is satisfied usually p is called a pseudo-metric. Sometimes the
function p satisfies the strictly stronger triangle inequality

(1.a) plz, 2) < méx{p(ag,y),p(y,z)}.

In 1970, R. Coifman and M. de Guzman ([CG]) introduce the weaker notion of
quasi—distance in an attempt to include functions like d(z,y) = |z —y|™ on IR™ for
which some central questions of harmonic analysis remain true (see also [CW]). A
quasi—distance d on X share with a metric all its properties except perhaps the
triangle inequality which now can take the weaker form '
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(1.b) there exists K > 1 such that
d(z,z) < Kld(z,y) +d(y, 2)]

Jor every z,y and z in X.
Let us observe that (1.b) is now equivalent to the following

(1.c) there exists I{ such that
d(z,2) < K max{d(z,y),d(v,2)},

with an eventually different constant K.

A set X with a quasi-distance d is called a quasi—-metric space. The deepest result -
concerning a quasi-distance d on a set X was obtained by R. Macias and C. Segovia
([MS]) by realizing that d produces a uniform structure on X x X with a countable
basis generating a metrizable topology on X. Frink’s theorem on metrization of
uniformities with countable basis (see [K|), provides also a quantitative relation
that allows to construct a metric p and a real number o larger than one such
that p® is equivalent to d, in the sense that p®/d is bounded above and below.
In the terminology introduced by Macias and Segovia, every quasi-distance d is
equivalent to a quasi-distance d’ of order 8: there is a constant C such that for
every z,y and z satisfying d'(z,y) < r and d’(z,2z) < r we have

|d'(2,9) = d'(z,2)| < Cr'Pd (y,2)".

The last inequality constitutes also the source of non-trivial Lipschitz functions
on quasi-metric spaces. ’

. In this note we give a more explicit construction of the metric induced by a
quasi—distance d, making use of the key point, of Frink’s argument but without the
use of uniformities. Let us point out that the so defined metric p coincides with

“the given d when this is already a metric.

Theorem I: Let X be a set and let d be a quasi-distance on X . Then there exists
0 < B <1, depending only on K, such that

R n

p(z,y) = inf {Zdﬁ-(mi,mf“) 1T = 8,282, Tpp1 =Y € X,n € W}
i=1

is a melric on X with pl/ﬂ equivalent to the given d

The next lemma shows that the function p given in the statement of Theorem I is

a pseudo—metric, for every positive 3.

Lemma 1: Let X beasetandg: X XX — Bj be a symmetric function vanishing
on the diagonal. Then the function

p(:z:, y) = infzg(a’ivmf-l'l)

i=1
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is a pseudo-metric bounded above by g(x,y) if the infimum is taken over all finite
chains 1 = z,29,...,¥ny1 =y tn X joining r with y.

Proof:

We only need to check the triangle inequality. Let z,y and z be three given points
in X and let € > 0. There exist two chains of points z = z;,z9,...,z, = y and
Y = Ty, Tntl, - Tm = 2z such that

n-—1 m-—1

> (@i zip1) < ple,y) + € and > a(i,zir) < p(v,2) + ¢,

i=1 i=n
adding the above inequalities we see that

-1

p(z,2) < 9(zs, 1) < p(z,y) + p(y,2) +2 €
. 7Y

3

i

I}

for every positive €. »

Proof of Theorem I:

Let us first observe that if d is a metric, by taking 8 = 1 and ¢ = d in Lemma
1, we have that p = d since the inequality d < p follows easily from the triangle
inequality for d. In the general case we start by applying Lemma 1 to the function
g(z,y) = dﬂ(m,y), with g < T@Z%R’f . So that

p(z,y) = inf Z xnxl-!-l

isa pseudo—inetric bounded by dP (z,y), where the infimum is taken over all finite
chains in X joining £ with y. Of course in order to complete the proof of the
theorem we only need to show that

(3) ‘ da? < 2p.

In fact, (3) proves the remainder inequality for the equivalence of d and pl/ B,
moreover if z and y are two points in X with p(z,y) = 0 we necessarily have
d(z,y) = 0 and = = y, so p becomes a distance. Let us prove (3) which actually
is the main point of the theorem. We have to prove that for any finite sequence
z1,...,Tn of points, or chain of length n, in X we have that

n-1

(4) 7 dﬂ(wh?n) <2 Z dP(zi, zi41).

i:l. :

Let us prove (4) by induction on the length n of the chain. For n = 2, (4) is
obvious. Assume (4) holds for every chain of length less than or equal to n, and
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take xy,z9,...,Tn,Znt1 a chain of length {n + 1) of points in X. Let 0 < 6§ =
n R . .
2oy @%(zi,2i41). Three cases are possible

(4) dP(xq, x9) > 6/2,
n—1 :

(ii) Zdﬂ(a:i,.’l','+1) S 5/2,
i=1

(#i7) there exists k = 1,2,...,n — 2 such that

k k41 .
> dP(zizi4n) < 6/2 and > dP (i, i01) > 6/2.
=1 1=1

(i) Since 6 = Y 7 and df(z1,z5) > 6/2 we have that Y5 < 6/2. T\Iow 9, ey Tl
has length n and we can apply (4) to obtain

P(e,on) <2 d (i, mir1) S 2.6/2=6
=2
and, since df(z1,z3) < 6, by the triangle inequality we have

d?(z1,2n11) < (K (d(z1,72) + d(22, 20 41)))”
(K (51/13 }51/ﬁ))

(2K)"s

(31

31c2)P6

IANINIA

Finally, the choice of 8 gives d?(zy, Tp41) < 26.
(¢4) The chain 3, ..., ¢, has length n so that from (4) d?(z,,z,) < 2.6/2 = 6, since
dP(zn, Tny1) < 6 the same kind of estimate in (i) gives us dP(z1, znq1) < 26.

(i19) Since Z;H‘l > 6/2 and Y7 =6, then 3¢, < 6/2 . Also Z’f < 6/2 and
dP(zkt1,Tre2) < 6 . By applying (4) to z1,...,Zx41 and t0 Trqg, ..., Tnyy We get

the three estimates 7
dP(z1, zri1))

<6
aP(zpp1,whp2) <6
and d (249, 2n41) < 6

Now, the triangle inequality gives

(d(z1,zx41) + d(@rt1, Tng1)))?
2(d(z1, 2xr1) + d(@pr1s Thoe) + d(@hr2,Tnt1)))?

dP(z1, zn41)) < (K
< (K
(3F 2)
26.

IAIA
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Let us now introduce a generalization of quasi-metric spaces. Il |z — y| is the
usual euclidean distance from z to y in IR"™, the function d(z,y) = |t — y|™ brings
a normalized structure for which the measure of the ball of radious r equals a
constant times r. But d is no longer a distance, nevertheless it is a quasi—distance

d(z,z) < 2" max{d(z,y),d(y,z)} < 2" (d(z,y) + d(y, z)).

If the nt® power of |z — y| is substituted by a function ¢ continuous and increasing
with ©(0) = 0 in order to produce d(z,y) = ¢(|r — y|), we are led to a d satisfying
a generalized triangle inequality of the type

d(z,z) < n(max{d(z,y),d(y,2)}),

for some increasing function 7(¢) > ¢. This remark suggests the next definition as
an extension of the notion of quasi-distance. Let 7 : JRZ' — ]Rj be a continuous,
increasing and convex function with 7(0) = 0. An n-metric on the set X is a
non-negative symmetric function d vanishing on the diagonal of X x X satisfying

(5) d(z,y) =0 implies =z =y,
(6) d(z,z) < n(max{d(z,y),d(y,2)}) for every z,y and z in X.

By taking y = 2z in (6) we see that n(t) > t. From now on, without loosing
generality, we shall assume that n(t) > 2¢ since (6) is obviously satisfied by 7 = 37.
Let us finally remark that quasi—distances are n—metrics with n(t) = Kt.

The metrization of p—metric spaces is given by the next theorem

Theorem II: Let X be a set and let d be an n-metric on X. Then

(II.1) there is an increasing, continuous and concave function 9 on IRTU{0} such
that '

n
p(z,v) = inf {ZTP(d(zi,zi-H)) 1T = 2,22, .,ZTpp1 =Y E€EX,n € W}
=1

is a metric on X with v~ (p(z,y)) equivalent to the given d in the following sense

v p) < d < 97H2p),
(11.2) the function d’' = v ~1(p) satisfies the following property of “order ¥”

€(0,2) = (2,0)] < 0 ) o),

where T is any positive number. larger than max{d'(z,z),d’'(z,y)} for which the
derivative -(;—1;1/)(1') exists.

The function ¢ is given in the next lemma
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Lemma 2: Let n be a continuous, non decreasing and convezx function defined on
R} satisfying n(t) > 2t for every positive t and n(0) = 0, then the inequality

ponon < 2P

has at least one solution ihcreasz'ng, continuous and concave with ¥(1) =1 and
¥ (0) = 0. ) '

The proof of Theorem 11 follows the same pattern of that of Theorem I, using
here the 9 provided by LLemma 2 instead of the power 8 used there.

Proof of Theorem 1I1I:

We start by applying Lemma 1 to the function g(z,y) = ¥(d(z,y)) where ¢ is
given by -Lemma 2. So that :

p(z,y) = inf Z Y(d(zi, ziy1)),

is a pseudo-metric bounded by ¥ (d(z,y)), where the infimum is taken over all
finite chains in X joining & with 3. Since 9 is increasing we have that v ™! (p) < d.
Notice now that in order to finish the proof of (1I.1) we only need to show that

(7) o v(d) < 2p.

Let us prove (7). We have to prove that for any finite sequence z1, ..., T, of points, .
or chain of length n, in X we have that

n-—1

(8) P(d(z1,2n)) <2 Y (d(zi, zig1)).

i=1

As in the proof of Theorem I, let us prove (8) by induction on the length n of the
chain. Assume (8) holds and take z1,z2,...,Zn,Zn41 a chain of length (n + 1) of
points in X. Let 0 < § = > 7 | ¥(d(zi,zi}1)). Again, we only need to consider
the three following cases : : :

(’l) ’l,['(d(.’l)]_,l‘Q)) > 6/2,

' n—1

(i) > w(d(wizi)) < 8/2,
' =1

(ii1) there exists k = 1,2,...,n — 2 such that

k k41

Z 'l,!'(d(:’l:,',ﬂri.ﬂ)) <.6/2 and Z'd'(d(;ri,w,'.|_1)) > 6/2.
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For each case we argue as in the proof of Theorem I, so that we shall only write
the estimates for ¢(d(z1,%n41)) by app ying the triangle inequality (6) and the
definition of ¢ given by Lemma 2.

i)
| ¥(d(z1,2n41)) < ¥(n(max {d(z1,72),d(z2, Zn41)}))
‘ < ¥(n(»~19)))
< W((mon)(%™1(6)))
SupETHE) =26
(iid)

‘/’(d‘(xlrxn+l)) < p(n(max{d(zy,vx41), n(max{d(zrs1, Tht2), d(@hr2, Tns1) D))

< p(non(y™'(6))
<26.

Let us now prove (I.2).Since 4 is concave, 1! is a convex function, so that, for
any choice of 0 < t; < tg < t3 < t3+ h, we have that

P (ty) — w“(tl) P~ ta + h) — ¥ (t3)
to —t1 < h '

Take now t; = min{p(z; z), p(z, )}, to = max{p(z, z), p(z,y)} and t3 = ¥ (r) > t2
such that derivative of 1 at r exists. Let us now take h — 0. Then

[d'(a:.z) —dl(xry)! 1

Ip(e,2) = plaw)] = ()

Proof of Lemma 2:

Let us denote by 7j the composition no7n. We have to solve the inequality v (7(t)) <

24 (t) with (1) = 1. Since 7(t) > 4t we have that 7(®)(1) is an increasing scquence

for k € Z, with 7*) = fjofjo---07, k times, 7(~*) = 7(-1) ofil™Mo... 07~ and
79 the identity. Moreover '

lxm n(k)(l) 400 and lim 7% (1) =

k——o00
Define 9 on the sequence ﬁ(k)(l) by
vEM ) =25 ke z,
observe that 9(1) = 1. Of course, for t; = 7*)(1) we have equality:

»(@te) = pHEV)) = okH1

=270 (1)) = 29 (tx)-
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Let us show that ¥ defined on JR™ by piecewise linear interpolation of the points
(7% (1),2%); k. € 7, satisfies the required -properties. Of course 1 is increasing
since so is on ty. Let us call my the slope of the At% segment of the graph of . In
other words :
gkl _ gk 2k
TR - @) ) -7 )

The concavity of ¥ is equivalent to the inequality mg4; < mp and this, in turn,
follows from 7j(t) > 4t. In fact, mgy1 < my if and only if 2(7*+1(1) - 7*®) (1)) <
7*+2)(1) = 5:+1) (1) which is implied by 37*+1)(1) < 453*+D(1) < 7(H*+H(1)) =
7%+2)(1). It remains only to show that ¢ is a solution for the inequality (pom)(t) <
21 (t). For t = t; we have equality, we may then assume

i® (1) < t < 7 (1),
so that
ﬁ(kfrl)(l) < 7i(t) < ﬁ(k+2)(1).

The convexity of 77 implies the inequality

() —7*HD(1) _ [+ (1) — FE+ (1)

[©) =™ T AE(D) - F®()

From the definition of ¢» we have

P(t)—2%
o) —amm
and
B (1)) - 2+
o 50 - TR e

Using (11), (9) and finally (10) we get

~ o q(t) = 7+ (1) k41, ok+l
V@) = smmmy sy 2t 2

7%+ (1) — 7D (1) 244
72 (1) — 5®HD (1) G (1) — 503 (1)

< (t-#®(1)) + k1

=2(p(t) — 2%) 1- 28 = 29 (¢)m

-k -
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