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Abstract : We give a direct proof of a theorem o f  Macfas and Segovia ( [M-S] on 

the metrization (X, p) of quasi-metric sp aces (X, d) , without an explicit use of the 
uniform structure on X x X .  Then we show how our construction can be exten ded 
to some generaiized quasi-metrics . 

A distance or metric on a se t  X is a real non-negative, symmetric function va­
nishing on the diagonal  of X x X for which the triangle inequali ty 

( 1 ) p(x, z ) :'S p (x , y) + p(y , z ) 
holds true for every x ,  y and z in X and is fai thful 

(2) p(x ,  y ) = 0 implies x = y . 

When only ( 1 )  is satisfied usually p is called a pseudo-metric .  Sometimes the 
function p satisfies the stric tly stronger triangle inequality 

( La) . p (x , z ) :'S max{p (x , v ) , p (v , z ) } . 

In 1 9 70 ,  R. Coi fman and M. de Guzffian ( [CG] ) introduce the weaker notion of 
quasi-distance in an attempt to  include functions like d(x ,  y) = Ix - y ln on !R n  for 
which some central ques tions of harmonic analysis remain true (see also [eW] ) .  A 
quasi-dist.ance d on X sh are wi th a m (' t ri c all  it.s  propert ies except p erh aps the 
t riangle inequality which now c a n  take the weaker form 
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( 1 . b )  the?'e exists J{ � 1 such th a. t  

d (x , z ) :::; J< [d (x , y )  -+- d (y , z )] 
f01' every x , y and z in X .  
Let us observe that ( 1 .  b ) i s  now equivalent t o  the follow ing 

( 1 .  c) the1'e exists J( such tha t  

d (x , z } :::; J( max{d (x , V) , d (y , z)} , 
with an even tually different  constant J( .  
A set X with a quasi-dis tance d is  called a quasi-metric sp ace, The deepest result 
concerning a quasi-distance d on a set X was obtained by R. Madas and C .  Segovia 
WvlS] ) by realizing that d produces a uniform structure on X x X with a count able 

basis generat ing a metrizable topology on X. Prink's theorem on metrization of 
uni formities with countable basis (see [K] ) ,  provides also a quantit ative relat ion 

that allows to construct a metric p and a real number Cl: larger than one such 
that pO is equivalent to d ,  in the sense that pOt / d is b ounded above and below , 

In the terminology introduced by Madas and Segovia, every quasi. distance d is 

equivalent to a quasi-distance d' of order fJ: there is a constant C such that for 
every x ,  y and z satisfying d' (x , y) < r and d' (x , z ) < r we have 

The last inequality const itutes als o  the source of non-trivial Lipschitz functions 

on quasi-metric spaces, 

In this note we give a more explicit construction of the metric induced by a 
quasi-distance d ,  making use of the key point of Frink's argument but without the 
use of uniformi ties. Let us p oint out that the so defined metric p coincides with 
the given d when this is already a met ric . 
Theorem I: Le t X be a set  and le t d be a quasi-distance on X .  Then there exists 

o < fJ :::; 1, depending only on J( ,  such that  

p (x , V)  = inf { t d.B(X i , X i-I-d : X l  = 3: , X2 ,  " ' , Xn-I- l = Y E X , n E IN } 
1 = 1  

is a m e tTlc on X with pl/f3 equivalent to the given d 

The next lemma shows that the function p given in the statement of Theorem I is 
a pseudo-metric,  for every pos itive fJ.  

Lemma 1 :  Le t X be  a se t and  g : X x X ...... 1R; be a symm e tri c  fun c tion vanishing 
on th e diagonal. Then the functi on 

n 

p (x , y )  = inf  '2::g (:r i ,  x i-l-d 
-i=1 
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is a pseudo-me tdc boun"ded above by g (x ,  y) if the -infimum is taken o veT all fini te 

cha ins X l = X ,  ;l: 2 ,  • • • , ,l.·n +1  = Y in X joining X with y . 

Proof: 
vVe only need to check the triangle inequality. Let X , y and z be three given points 
in X and let E > O .  There exist two chains of p oints X = X l ,  X 2 , ' ' ' 1  xn = y and 
y = Xn l  Xn+l , . . .  , Xm = Z such that 

n-l m-I 
L 9 (X; ,  X i+d < p(x ,  y ) + E and L g (x; , xi+d < p(y, z ) + E ,  
i = 1  ;=n 

adding the above inequalities we see that 

m-l 
p (x , z ) :::; L 9 (Xi , Xi+d < p(x , y ) + p(y , z)  + 2 f 

i=1  

for every positive f . • 

Proof of Theorem I: 
Let us first observe that if d is a metric ,  by taking f3 = 1 and 9 = d in Lemma 
1 ,  we have that p = d since the inequality d :::; p follows easily from the tri angle 
inequality for d. In the general case we start by applying Lemma 1 to the function 
g (x I y) = dfJ (x , V ) ,  with f3 :::; log2�[(2 • So that 

n 
p(x ,  y) = inf L dfJ (X i l  Xi+l ) , 

i =l 

is a pseudo-metric bounded by dfJ (x ,  V) , where the infimum is t aken over all finite 
chains it). X j oining x with y. Of course in order to complete the proof of the 
theorem we only need to show that 

(3)  dfJ :::; 2p .  

In fact , (3)  proves the remainder inequality for t h e  equivalence of d and pl/fJ ,  
moreover if x and y are two points in X with p (x ,  y) = 0 w e  necessarily have 
d (x , y ) = 0 and x = y. so p becomes a dist ance. Let us prove (3) which actually 
is the m ain point of the t heorem. We have to prove that for any finite sequence 
X l , . . .  , Xn of points , or chain of length n, in X we have that 

(4) 
n - l  

c[f3(X l ,  xn ) :::; 2 L dP (Xi l  XiH) '  
i=1 " 

Let us prove (4) by induction on the length 11 of the ch ain. For 11. = 2 ,  (4) is  
ob\'ious. Assume (4) holds for every chain of length less than or equal to 11 , and 
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take X l ,  X 2 ,  . . .  , X n , J: ntl a chain of length (n -/- 1 )  of points i n  X .  Let 0 < 8 = 
2:7= 1  dfl (x ; , 1' 1+ 1 ) .  Three cases are po�sible 
( i )  

n-l  
( ii ) I: df3 (x i , x i+d � 8/2 ,  

; = 1  

(iii) there exists k = 1 , 2 , . . .  , n - 2 such that 

k k+1 
. I: df3 (Xi , XH1 )  � 8/2 and I: df3 (Xi , XH1 ) > 8/2 .  

i=l i=1 

(i ) Since 8 = 2:� and df3 (X l ,  X2 )  > 8/2  we have that 2:; :s 8/2 .  Now X2 ,  . . .  , XnH 
has length n and we can apply (4) to obt ain 

n 
df3 (X2 , Xn+l ) :s 2 I: df3 (Xi , XHt } :s 2 . 8/2  = 8 , 

i=2 

and , since df3 (X l ,  X2 )  � 8, by the triangle inequali ty we have 

df3 (X l , Xn-l-l ) :s (K (d (X l , X2 )  -/- d (x2 , xn-l-d ) )f3  

:s (K (81/t� + 81/13 ) ) 13  

:s (2K )f38 

S; ( 3K2 )fJ8. 
Finally, the choice of f3 gives dI3 (X l ,  xn+d :s 28.  

(i-i) The chain X l ,  . . .  , X n  has lengt h  n so that from (4) df3(X l ,  x�)  � 2 .8/2 = 8, since 
df3 (xn , xn-l-d � 8 the same kind of estimate in (i ) gives us df3 (X l ,  XnH) :s 28. 

(iii)  S ince 2:�H > 8/2 and 2:� = 8 ,  then 2:�-I-2 S; 8/2 . Also 2:� :s 8/2  and 
dfJ (Xk-l-l , Xk-l-2 ) � 8 .  By app lying (4) to X l ,  . . .  , Xk-l-l and to Xk-l-2 ' ' ' ' ' XnH we get 
the three estimates 

df3 (X l , Xk-l-d ) � 8 
df3 (x k-l-l , Xk-I-2) � {; 

and df3 (Xk-l-2 , Xn-l-l )  � 8. 

Now ,  the triangle inequality gives 

df3 (Xb Xn-l-d) � (K (d (X l , Xk-l-l ) + d (Xk-l-l , Xn+1 ) ) )f3 

:s (I( 2 (d (X I '  xk-l-d -/- d (XkH , Xk-l-2 ) -/- d (Xk-f-2 ,  xn-l-d ) ).B 
:s (3K 2 )f3  8 
:s 26 . •  
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L e t  u s  now introduce a generalization of quasi-metric spaces . I f  I ;r - y l  is  the 

usual eucli dean dis t ance from x to y in  lRn, the function d (x ,  y )  = I :r - v i "  brings 
a normal ized structure for which the measure of the ball of radious l' equals a 
constant t imes r .  B u t  d is no longer a d istance , nevertheless i t  is a quasi-distance 

d (x , z ) ::; 2n max {d
'(x ,  V ) .  d (V ,  z ) }  ::; 2n (d (x , V) + d (V , z ) ) . 

If the n t h  p ower of I x  - v i  i s  subs tituted by a function cp cont inuous and increas ing 
with cp (O)  = 0 in order to produce d (x , V ) = cp ( lx - v D ,  we are led to  a d sati sfying 
a generalized triangle inequality of the type 

d (x , z ) ::; � (max{d (x ) V ) d (y , z ) } ) , 

for some increasing funct ion rJ (t ) 2: t .  This remark suggests the next definition as 
an extension of the notion of quasi'---dist ance. Let � : lRt -> lRt b e  a continuous , 
increasing and convex function with � (O ) = O .  An �-metric on the set X is a 
non-negative symmetric function d vanishing on the diagonal of X x X satisfying 

(5) d (x , y) = 0 implies x = v ,  
( 6 )  d (x , z ) ::; TJ (max{ d (x , y ) , d(V , z ) } )  for every x , y and z i n  X .  
B y  taking V = z in ( 6 )  we see that � (t ) 2: t .  From now o n ,  without loosing 
generality, we shall assume that � (t )  > 2t s ince (6) is obviously satisfied by Tj = 3� .  
L e t  u s  finally remark that quasi-dist ances are �-metrics with � (t ) = }( t. 

The metrization of �-metric spaces is given by the next theorem 

Theorem II: Let X be a se t and let d be an � -metric on X .  Then 

(n. l) there is an increasing, continuous and concave function 1P on m+ u {O} such 
tha t

' 

p (x ,  V) = inf {t 1P (d (Xi ' X i+1 ) )  : X l  = X ,  X2 ,  . . . , Xn+1 = Y E X ,  n E IN} 
. = 1  

is a metric on X with 'IjJ-I (p (x ,  V) )  equivalent to the given d in the following sense 

(II. 2) the function d' = 'IjJ -l (p) satisfies the following property of "order 1/J "  

where r is any positive number larger than max{d' (x , z ) , d' (x , y ) } for which the 
derivat'ive fr'IjJ (r )  exists. 

The function '1/' is given in the nex t  lemm a 
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Lemma 2 :  Let  TJ be a cOll tinUO tLS, n o n  dec7"easlng and convex function defined on 
m;; sa t isfying TJ ( t )  > 2t f07" every posi tive t and TJ (O)  = 0 ,  then the inequal i ty 

has at  least  one solut ion 'IjJ increas'ing, con tinuous and concave with '1,1> ( 1 )  = 1 and 
1/1 (0 )  = O .  

The proof o f  Theorem I I  follows the same pat tern o f  that o f  Theorem I ,  using 
here the 1/J provided by Lemma 2 instead of the power (3 used there. 

Proof of Theorem II: 
We start by applying Lemma 1 to the funct ion g (x , y ) = 1jJ (d (x , y» where 1/J is 
given by Lemma 2 .  So that 

n 
p (x , y )  = inf I: 1/J (d (X i ,  XiH) ) , 

i= l 

is a pseudo-metric bounded by 1/J (d (x , y ) ) ,  where the infimum is  taken over all 
finite chains in X joi ning x with y. Since 1/J is increasing we have that 1/J -l (p) � d .  
Noti ce now that in order to finish the proof of (11. 1 )  we only need to show that 

(7) 1/J (d) � 2p .  

Let u s  prove (7) . We have to  prove that for any finite sequence X l , . . . , X n of points ,  _ 
or ch ain of length n ,  in X we have that 

n - l  
( 8 )  '1,b (d (X l '  x n ) )  � 2 I: 1/J (d ( X i , XiH) ) '  

i= l  

A s  in the proof of Theorem I ,  let  us prove ( 8) by induction on the length n of the 
chain. Assume (8) holds and take X I .  X 2 ,  . . .  , X n ,  X nH a chain of length (n + 1) of 
po�nts in X .  Let 0 < 8 = L�=l 1/J (d(X i , XiH ) ) '  Again , we only need to consider 
the three following cases 

( i) 

n - l  
(ii) '2:: 1/J (d (X i , X i+1 ) )  � 8/2 , 

i=l 

( i i i )  there exis ts k = 1 , 2 ,  . . . , n - 2 such that 

k � l  
I: 'rI' (d (:'I: ; , xi+d )  � 8/2 and I: 'l!' (d (X i '  X i -I- d )  > 6/2 . 
-; = 1  -i= 1  
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For each case we argue as in the proof of Theorem I ,  so that  we shall only write 

t he e s t i mates for V, ( d (X 1 ,  xn-l- d )  by applying the trian gle inequality (6) and the 
definit i on of 1/) given by Lemma 2. 
( i )  

( iii) 

1,& (d (X l ,  xn+t } )  � 1/) (7] (max {d (X 1 ,  X 2 ) , d (X2 , xn-l-d } ) )  
� 1/) (7] (V) - 1 (8) ) ) 
� "p ( (7] 0 7J ) ( 1/' - 1  ( 8 )  ) ) 
� 21/' .(1,& -1 (8 ) )  = 2 8. 

1,& (d (X 1 , xn+! ) )  � 1,b (7](max{d (x I ' xk-l-d , 7] (max{d (xk-l-l , Xk+2 ) , d (Xk+2 , xn+! ) } ) } ) )  
S 1,& (7] 0 7] (1,& - 1 (8) ) )  

S 2 8. 
Let us now prove (II .2) . S ince 1/.1 is  concave , 1,& -1 is a convex function, so th at , for 
any cho ice of 0 < t 1  < t2 < t3 < t3 + h ,  we have that 

Take now t 1 = min{p (x ; z ) , p (x , y) } ,  t2 = max{p {x , z ) , p (x , y ) }  and t3 = 1,& {1' ) > t 2 
such that derivat ive of 1,& at l' exist s .  Let us now take h � O. Then 

Proof of Lemma 2: 

I d' {x , z } - d' (x , y) 1 1 "'::--:-':--7--"""":-"':-=:-':-'- < d •• 
I p(x , z} - p (x , y ) 1 - dr 1,& (r}  

Let us denote by ij t h e  compos it ion 7] 0 7] . We have to solve t h e  inequal ity VJ (r, (t ) )  S 
2·t/J (t) with 1,& ( 1 )  = 1 .  Since ij ( t )  > 4t we have that ij(k) ( 1 )  is an increas ing sequence 
for k E ;Z ,  with ij(k) = ij 0 ij 0 . . .  0 ij, k t imes , ij ( -k) = ij( -1) 0 'ry ( -1) o . . . 0 ij ( - 1) and 

ij (O} the identity. Moreover 

!im ij(k) ( l )  = +00 and lim ij(k) ( l ) = O .  
k-too k-t-oo 

Define 1,& on the sequence ij(k) ( 1 )  by 

observe that 1,& (1 )  = 1 .  Of course, for tk = i7(k) (l )  w e  have equali ty: 
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Let us show that 1/.' defined on 1R +  by piecewise l in ear interpolation of the points 

(ij (k) ( 1 ) , 2k ) ; k  E fi': ,  satis fies the required - prop erties.  Of COUfl'e 'Ij' is increasing 
since so is  on t k . Let us call m k  the slope of the kth segmen t of t he graph of '1jJ. In 
other words 

210+1  _ 210 210 

mk = ijk+1 ( 1 ) _ ijk (l )  = ijk+1 ( 1 )  _ ijk ( l ) ' 
The concavity of 'I/J is equivalent to the inequality mk+1 � 111 10 and this , in turn, 
follows from ij (t) � 4t. In fact ,  mk+1 � m k if and only if 2 (ij (k+1) ( 1 )  - ij(k) ( l ) )  � 
1; (H2) (1 )  _ ij(k-l-l) ( l ) which is i mplied by 3ij(k-H) ( 1 )  < 4ij(k+1) ( 1 )  � ij (ij(k+ l} ( I ) ) = 
ij(H2) (1 ) .  It remains only to show that 'I/J is a solution for the inequality (1/I oij) (t) � 
21/1 (t ) . For t = tk we have equality, we may then assume 

so that 
ij(k+1) ( l ) < ij (t) < ij(k+2) (I ) . 

The convexity of ij implies the inequali ty 

(9) ij (t) - ij (Hl) ( I ) ij (k+2) (I ) _ ij(k+1) ( 1 )  
. t - ij (k) (1 ) � 

ij (k+1) ( I ) - ij(k) (1 )  • 
From the definition of 1/1 we have 

( 10)  

and 

( 1 1 )  t/I (ij (t) )  - 210+ 1 

ij ( t) _ ij (H1) ( I ) 
= mk+1 ' 

Using ( 1 1 ) ,  (9) and finally ( 10) we get 
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