Revista de la Unión Matemática Argentina Volumen 41, 2, 1998.

Validity of the formula " $vp\frac{1}{x}\delta = -\frac{1}{2}\delta'$ " from the point of view of Non-Standard Analysis

S.Molina

Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Mar del Plata. Argentina.

Abstract

The objective of this work is to interpret the formula:

$$"vp\frac{1}{x}\delta = -\frac{1}{2}\delta'"$$

from the point of view of Nonstandard Analysis. The validity of this identity in the classic sense was established in [1]. For this purpose, we use Takeuchi's space G of nonstandard functions,([2]). This space is an algebra and it contains, in some sense, the classical distributions of Laurent Schwartz ([9]).

1 Preliminaries

We explain here the nonstandard basic concepts. According to Robinson's theory, the system of real numbers IR may be view as a subfield of a more ample field, totally ordered called the *hiperreal system numbers* IR^* .

In order to make this we have included the basic definitions and properties of the theory of filters.

1.1 Filters and Ultrafilters

Definition 1.1 : A non-empty set \mathcal{F} of subset of a non-empty set X is called a filter if it has the following properties:

(i) If $E \in \mathcal{F}$ and $E \subset F \Rightarrow F \in \mathcal{F}$.

- (ii) If $E, F \in \mathcal{F} \Rightarrow E \cap F \in \mathcal{F}$.
- (iii) $\emptyset \notin \mathcal{F}$.

Moreover, a filter \mathcal{F} is called ultrafilter iff

(iv) If $E \subset X$ then $E \in \mathcal{F}$ or $X - E \in \mathcal{F}$, (but not both, by (ii) and (iii).

Example 1.2 : If X is an infinite set, the set:

 $\mathcal{F} = \{A \subseteq X \setminus X - A \text{ is finite}\}$

is a filter called filter of Frèchet on X.

Definition 1.3 : A filter \mathcal{F} on X is called free if $\bigcap_{E \in \mathcal{F}} E = \emptyset$.

Remark 1.4 : If X is an infinite set, the Frèchet filter on X is free.

The following result shows the existence of free ultrafilter:

Theorem 1.5 : For every filter \mathcal{F} on X exists an ultrafilter \mathcal{U} on X which contains to \mathcal{F} .

Corollary 1.6 : If X is an infinite set then it exists a free ultrafilter on X.

1.2 The system of hiperreal numbers

Let IN be the set of positive integral numbers and let IR^N be the set of every sequences of real numbers. Let $\langle r_1, r_2, \ldots \rangle$ or simply $\langle r_i \rangle$ denote the elements of IR^N . We define in IR^N the operation of addition and multiplication in the following way:

If $r, s \in \mathbb{R}^N$ $r = \langle r_i \rangle$ $s = \langle s_i \rangle$, $r \oplus s = \langle r_i + s_i \rangle$; $r \odot s = \langle r_i . s_i \rangle$.

Thus, \mathbb{R}^N be a commutative ring with an identity $< 1, 1, \ldots >$ and a zero $< 0, 0, \ldots >$.

We introduce in \mathbb{R}^N a equivalence relation " ~ " which makes \mathbb{R}^N/\sim a linearly ordered field. In fact, let \mathcal{U} be a free ultrafilter on \mathbb{N} :

Definition 1.7 : If $r = \langle r_i \rangle$ and $s = \langle s_i \rangle$ are in \mathbb{R}^N , then $r \sim s$ iff $\{i \in \mathbb{N} : s_i = r_i\} \in \mathcal{U}$. We then say that $\langle r_i \rangle = \langle s_i \rangle$ almost everywhere (a.e).

Remark 1.8 : The relation \sim is an equivalence relation of \mathbb{R}^N .

Definition 1.9 : Let \mathbb{R}^* denote the set of all the equivalence classes of \mathbb{R}^N induced by "~ ". The equivalence class containing a particular sequence $s = \langle s_i \rangle$ is denoted by $\langle s \rangle$.

Elements of \mathbb{R}^* are called nonstandard or hyperreal numbers.

Definition 1.10 : Let $r, s \in \mathbb{R}^*$; $r = [\langle r_i \rangle]$; $s = [\langle s_i \rangle]$. Then:

(i)
$$r + s = [\langle r_i + s_i \rangle]$$

(ii) $r.s = [\langle r_i.s_i \rangle]$
(iii) $r < s$ iff $\{i \in IN : r_i < s_i\} \in \mathcal{U}$, and $r \leq s$ iff $r < s$ or $r = s$

Theorem 1.11 : \mathbb{R}^* with the operations defined in 1.10 is a linearly ordered field.

We define now a mapping $* : \mathbb{R} \to \mathbb{R}^*$ as follows:

Definition 1.12 : If $r \in \mathbb{R}$, we define *(r) = *r where $*r = [\langle r, r, \ldots \rangle]$

Thus, \mathbb{R}^* contains a isomorphic copy to \mathbb{R} because $* : \mathbb{R} \to \mathbb{R}^*$ is an orderpreserving isomorphism. If $(\mathbb{R})_* = \{*r : r \in \mathbb{R}\}$ then $(\mathbb{R})_*$ is the set of standard numbers of \mathbb{R}^* and we will identify with \mathbb{R} . \mathbb{R}^* contains numbers other than standard numbers, for example w = [< 1, 2, 3, ... >] and $\frac{1}{w}$.

Definition 1.13 : If $s \in \mathbb{R}^*$, we define the absolute value of s as follows:

$$|s| = \begin{cases} s & if s \ge 0, \\ -s & if s < 0. \end{cases}$$

Definition 1.14 :

(i) A number $s \in \mathbb{R}^*$ will be called infinite number if |s| > n for all $n \in \mathbb{N}$.

(ii) A number $s \in \mathbb{R}^*$ will be called finite number if |s| < n for any $n \in \mathbb{N}$.

(iii) A number $s \in \mathbb{R}^*$ will be called infinitesimal number if $|s| < \frac{1}{n}$ for all $n \in \mathbb{N}$.

Definition 1.15: Let $x, y \in \mathbb{R}^*$, we say that x and y are infinitely close and we denote $x \approx y$ if x - y is an infinitesimal number.

Remark 1.16 : By definition 1.15 we conclude that if $s \in \mathbb{R}^*$ is infinitesimal then $s \approx 0$.

Theorem 1.17 : If $x \in \mathbb{R}^*$ is finite, there is a unique standard number $r \in \mathbb{R}$ with the property $x \approx r$.

Definition 1.18 : If $x \in \mathbb{R}^*$ is finite, the unique standard number $r \in \mathbb{R}$ with $x \approx r$ we call standard part of x and we denote st(x) = r.

Definition 1.19 :

(i) We call G(0) the subset of \mathbb{R}^* of all finite numbers.

(ii) We call standard part map, the map:

$$\begin{array}{rccc} st:G(0) & \to & I\!R \\ r & \to & st(r) \end{array}$$

Theorem 1.20 : The map st is an order-preserving homomorphism of G(0) onto IR, *i.e.*

(i)
$$st(x \pm y) = st(x) \pm st(y)$$
,
(ii) $st(x.y) = st(x).st(y)$,
(iii) $st(\frac{x}{y}) = \frac{st(x)}{st(y)}$, if $st(y) \neq 0$,
(iv) $st(x) < st(y)$ if $x < y$.

The following lemma shows that there is a reasonable relationship between the asymptotic behavior of $\{a_n\}$ and the value of $a = [\langle a_n \rangle]$, $a \in \mathbb{R}^*$.

Lemma 1.21 : If a sequence of real numbers $\{s_n\}$ has limit L then $L \approx s = [\langle s_n \rangle].$

1.3 The algebra G of Generalized Functions

Definition 1.22 :

(i) A sequence $\{A_n\}$ of subsets of \mathbb{R} defines a subset (A_n) of \mathbb{R}^* by:

 $[\langle x_n \rangle] \in (A_n)$ iff $\{n : x_n \in A_n\} \in \mathcal{U}.$

The subset of \mathbb{R}^* which can be obtained in this way is called internal.

(ii) A sequence of functions $\{f_n\}$, $f_n : \mathbb{R} \to \mathbb{R}$, defines a function $(f_n) : \mathbb{R}^* \to \mathbb{R}^*$ in the following way:

$$(f_n)([< x_n >]) = [< f_n(x_n) >],$$

and any function on \mathbb{R}^* which can be obtained in this way is called internal.

A function $f : \mathbb{R}^* \to \mathbb{R}^*$ is called *nonstandard function*.

Our interest will be to study the nonstandard functions obtained from a sequence $\{f_n\}$ of real functions, i.e., the nonstandard internal functions defined in 1.22.

According to Yu Takeuchi in [2], we define:

Definition 1.23 : We called G the set of all nonstandard internal functions.

Thus, if $g \in G$ then there exists a sequence $\{g_n\}$ of real functions, $g_n : \mathbb{R} \to \mathbb{R}$, so that $g = (g_n)$.

Theorem 1.24 : Let $f, g \in G$, $f = (f_n)$ and $g = (g_n)$. Then, the following statements are equivalent:

- (i) f = g,
- (ii) $\{n: f_n = g_n\} \in \mathcal{U},$

(iii) There are sequences of real functions $\{\hat{f}_n\}$ and $\{\hat{g}_n\}$ so that $f = (\hat{f}_n)$ and $g = (\hat{g}_n)$ and $\hat{f}_n = \hat{g}_n$ for all $n \in \mathbb{N}$.

We define addition, product and product by a number in \mathbb{R}^* in G, in the following way:

Let $f = (f_n)$, $g = (g_n)$, $\gamma \in \mathbb{R}^*$, then:

•
$$f + g = (f_n + g_n),$$

- $f.g = (f_n.g_n),$
- $\gamma f = (c_n f_n)$ if $\gamma = [\langle c_n \rangle].$

Moreover, if we consider a sequence of functions $\{f_n\}$ where for each n, $f_n(x) = 1$ for all $x \in IR$, then $I = (f_n)$ is the unit in G. The function $0 \in G$ generated by the sequence of null functions is the neutral element of the addition. In this way G is a commutative algebra with a unit and zero.

Example 1.25 : Let $f : IR \to IR$. The map $f^* \in G$ generated by the sequence (f_1, f_2, \ldots) will be called "canonical extention of f".

Example 1.26 : The functions $g : \mathbb{R}^* \to \mathbb{R}^*$ defined by $g(x) = \gamma, \gamma \in \mathbb{R}^*$, where γ is fixed, belong to G. In fact if $\gamma = [\langle c_n \rangle]$ then $g = (g_n)$ with $g_n = c_n \forall n \in \mathbb{N}, \forall x \in \mathbb{R}$.

Example 1.27 : Let $\delta : \mathbb{R}^* \to \mathbb{R}^*$ defined by:

$$\delta(\tau) = \begin{cases} \frac{1}{2\varepsilon} & if - \varepsilon < \tau < \varepsilon; \\ 0 & if \mid \tau \mid \ge \varepsilon, \end{cases}$$

where $\varepsilon = [\langle e_n \rangle]$ is a positive infinitesimal number (≥ 0 in \mathbb{R}^*). Then $\delta = (\delta_n)$ where $\delta_n : \mathbb{R} \to \mathbb{R}$ are defined by:

$$\delta_n(x) = \begin{cases} \frac{1}{2e_n} & \text{if } -e_n < x < e_n; \\ 0 & \text{if } |x| \ge e_n. \end{cases}$$

The function thus defined is by no means the canonical extention for some real function.

Theorem 1.29 : Let $f \in G$, $f = (f_n)$. If f_n converges to f_0 uniformly in [a, b] then $f(\tau) \approx f_0(\tau)$ for any $\tau \in \mathbb{R}^*$, $a \leq \tau \leq b$, (a and b are not necessarily finite).

1.4 Continuity of functions in G

Let $f : \mathbb{R} \to \mathbb{R}$ be a real function. In Nonstandard Analysis the continuity of a real function is equivalent to the following fact:

$$f^*(a + \varepsilon) = f^*(a) \qquad \forall \varepsilon \approx 0$$

where f^* is the canonical extension of the real function f.

Definition 1.30 : Let $f : \mathbb{R}^* \to \mathbb{R}^*$ a function in G. Then f is continuous in $\alpha \in \mathbb{R}^*$ if:

$$f(\alpha + \epsilon) \approx f(\alpha) \qquad \forall \epsilon \approx 0.$$

Remark 1.31 :

- The canonical extension of a continuous real function is continuous.
- The nonstandard function generated by a sequence of equicontinuous real functions, is continuous.

1.5 Differentiation of functions in G

Definition 1.32 : Let $f = (f_n)$, then f is differentiable if

 $\{n: f_n \text{ is piecewise smooth}\} \in \mathcal{U}.$

We assume that a function g is piecewice smooth if it is continuous and differentiable with continuous differential except for a finite number of point, in which we consider $g'(c) = \lim_{x\to 0^+} g'(x)$.

Definition 1.33 : If $f = (f_n)$ is differentiable, the function $f' \in G$ defined by:

 $f' = (f'_n)$

is called the differential of f.

Example 1.34 : Let:

$$II_n(x) = \begin{cases} 1 & if & \frac{1}{n} \le x, \\ nx & if & 0 \le x < \frac{1}{n}, \\ 0 & if & x < 0. \end{cases}$$

Then $H = (H_n) \in G$ is given by:

$$H(\tau) = \begin{cases} 1 & if \quad \frac{1}{\lambda} \leq \tau, \\ \lambda \tau & if \quad 0 \leq \tau < \frac{1}{\lambda}, \\ 0 & if \quad \tau < 0, \end{cases}$$

where $\lambda = [\langle n \rangle]$. Then, it is valid:

$$H'(\tau) = \begin{cases} \lambda & if \quad 0 \le \tau < \frac{1}{\lambda}, \\ 0 & if \quad \tau < 0 \text{ and } \tau \ge \frac{1}{\lambda} \end{cases}$$

We observe that H' is not a continuous function because $H'(0) = \lambda$ and $H'(-\frac{1}{\lambda}) = 0$ and $-\frac{1}{\lambda} \approx 0$.

1.6 Integration of functions in G

Definition 1.35 : Let $f \in G, f = (f_n)$. If

 $\{n: f_n \text{ is integrable in any interval}\} \in \mathcal{U},\$

we shall say that the nonstandard function f is integrable.

Definition 1.36 : Let $f = (f_n) \in G$ be an integrable function. For $\alpha = [\langle \alpha_n \rangle]$ and $\beta = [\langle \beta_n \rangle]$ with $\alpha < \beta$, we define the definite integral of f in the following way:

$$\int_{\alpha}^{\beta} f(\tau) d\tau = [\langle \int_{\alpha_n}^{\beta_n} f_n(x) dx \rangle].$$

Example 1.37 : Let

$$\delta(\tau) = \begin{cases} \lambda & if \quad 0 < \tau < \lambda, \\ 0 & in any other case, \end{cases}$$

where λ is an infinite positive number. Then:

$$\int_{\alpha}^{\beta} \delta(\tau) d\tau = 1$$
 and $\int_{\alpha}^{\beta} \delta^{2}(\tau) d\tau = \lambda$,

for any $\alpha < 0, \beta > 0$ non infinitesimals.

1.7 Primitive of a function in G

Definition 1.38 :

• A differentiable function $F \in G$ is a primitive of the function $f \in G$ if:

$$F'=f,$$

• A function F is called primitive of order k, $k \ge 0$, of the function f if:

$$F^{(k)} = f.$$

1.8 NonStandard Model of the Dirac's delta function

Definition 1.39 : A function $\delta \in G$ is a NonStandard Model of the Dirac's delta function if it has the following properties:

(i) $\delta(\tau) \geq 0$, $\forall \tau \in \mathbb{R}^*$ and $\delta(\tau) \approx 0 \quad \forall \tau \text{ non infinitesimal.}$

(ii) $\int_{\alpha}^{\beta} \delta(\tau) d\tau \approx 1$ for $\alpha, \beta \in \mathbb{R}^*, \alpha < 0$ and $\beta > 0$ non infinitesimals.

Theorem 1.40 : If $f \in G$ is of finite value (i.e $f(x) \in G(0), \forall x \in \mathbb{R}^*$) and continuous in 0 then:

$$\int_c^d f(\tau)\delta(\tau)d\tau \approx f(0)$$

where st(c) < 0, st(d) > 0.

1.9 NonStandard representation of Distributions

The following theorem deals with the sufficient conditions which must be performed by a nonstandard function in G in order to determine a distribution:

Theorem 1.41 : (Takeuchi, [2], Teor.9, pg.144) Let $h \in G$ be a nonstandard function so that given a finite interval exists some primitive bounded in it (of order $k, k \geq 0$). Then the function h determine a distribution by:

$$\langle h, f \rangle = st \int_{-\infty}^{\infty} h(\tau) \phi^*(\tau) d\tau$$
 (1)

where ϕ^* is the canonical extension of $\phi \in \mathcal{D}$.

Theorem 1.42: Let $h \in G$ be a C^{∞} nonstandard function which satisfies the conditions of Theorem 1.41, thus h determines a distribution by formula (1). Then the differential of order i of the distribution h, $h^{(i)} \in \mathcal{D}'$ is equal to the distribution determined by the nonstandard function $\mathcal{D}^i h \in G$, that is:

$$\langle h^{(i)}, f \rangle = st \int_{-\infty}^{\infty} D^i h(\tau) f^*(\tau) d\tau,$$

where f^* is the canonical extension of f in \mathcal{D} .

Remark 1.43 : There exist nonstandard functions $h \in G$ which are not distributions. For example, if $\delta \in G$ is a nonstandard model of the Dirac's delta, then $\delta^2, \delta^3, \dots$ are functions in G which are not distributions.

The following theorem asserts that all classic distributions can be represented by a function in G.

Theorem 1.44 : Let $T \in \mathcal{D}'$, then it exists a nonstandard function $h \in G$ such that:

$$\langle T, f \rangle = st \int_{-\infty}^{\infty} h(\tau) f^{*}(\tau) d\tau$$

for all $f \in \mathcal{D}$, where f^* is the canonical extension of f.

2 Validity of the formula " $vp\frac{1}{x}\delta = -\frac{1}{2}\delta'$ " in the nonstandard space G

The classic formula is due to A. González Domínguez and R. Scarffiello [1]. They have considered singular kernels $\{g_n\}$ which satisfy:

- (i) $\lim_{n\to\infty} \int_{-\infty}^{\infty} g_n(x) dx = 1$,
- (ii) $\int_{-\infty}^{\infty} |g_n(x)| dx < M$,
- (iii) $\lim_{n\to\infty} \int_I |g_n(x)| dx = 0$ for all interval I so that $0 \notin I$.

Moreover if

(iv)
$$h_n = g_n(x) * vp \frac{1}{x} = \int_{-\infty}^{\infty} \frac{g_n(y)}{x-y} dy$$
,

we order that $|xh_n(x)| < M$ and that g_n has a bounded derivative for every n.

To turn the formula " $vp\frac{1}{x}\delta = -\frac{1}{2}\delta''$ " into nonstandard language we have to see under what conditions a sequence that verifies the conditions (i), (ii) and (iii), generates a nonstandard model for Dirac's delta, according with the model proposed by Yu Takeuchi ([2], §6, pg. 139).

Proposition 2.1 : The conditions (i) and (iii) involves that $\int_{\alpha}^{\beta} \delta(\tau) \approx 1$ where $\delta \in G, \delta = (g_n), \alpha < 0$ non infinitesimal and $\beta > 0$ non infinitesimal.

Proof. Let $\alpha, \beta \in \mathbb{R}^*$ of the form $\alpha = [-n], \beta = [n]$ where $n \in \mathbb{N}$. We shall show that:

$$st \int_{\alpha}^{\beta} \delta(\tau) d\tau = 1.$$
 (2)

By definition:

$$\int_{\alpha}^{\beta} \delta(\tau) d\tau = \left[\langle \int_{-n}^{n} g_{n}(\tau) d\tau \rangle \right].$$
(3)

For each n, we have

$$\int_{-n}^{n} g_n(x) dx = \int_{-\infty}^{\infty} g_n(x) dx - \int_{|x| > n} g_n(x) dx,$$
(4)

then

$$\int_{|x|>n} g_n(x) dx \leq \int_{|x|>n} |g_n(x)| dx = \int_{-\infty}^{-n} |g_n(x)| dx + \int_{n}^{\infty} |g_n(x)| dx.$$
(5)

We choose $a \in \mathbb{R}, 0 < a < 1$, then $a < n, \forall n \in \mathbb{N}$. Taking into account $(-\infty, -n) \subset (-\infty, -a)$ and $(n, \infty) \subset (a, \infty)$, then:

$$\int_{-\infty}^{-n} |g_n(x)| \, dx + \int_n^{\infty} |g_n(x)| \, dx \le \int_{-\infty}^{-a} |g_n(x)| \, dx + \int_a^{\infty} |g_n(x)| \, dx. \tag{6}$$

The inequality (6) holds for every $n \in \mathbb{N}$ so, that passing to the limits in both sides, we obtain that the left hand side tends to zero (from (iii)), and we deduce that

$$\lim_{n \to \infty} \int_{|x| > n} g_n(x) dx = 0 \tag{7}$$

Thèn, we obtain from (4) and (i):

$$\lim_{n \to \infty} \int_{-n}^{n} g_n(x) dx = 1$$
(8)

and so (2) holds.[†]

We shall prove now the other condition required in order to the nonstandard function $\delta = (g_n)$ be a nonstandard model of Dirac's delta, i.e.

$$\delta(\tau) \approx 0, \,\forall \tau, \,\tau \not\approx 0, \, \tau \in \mathbb{R}^*. \tag{9}$$

For it, the sequence $\{g_n\}_{n \in \mathbb{N}}$ must converges uniformly to the null function on each interval I that $0 \notin I$. This last fact involves the validity of condition (iii), i.e.

 $\lim_{n\to\infty}\int_{I} |g_{n}(x)| dx = 0, \text{ for all interval I so that } 0 \notin I.$

So, we assume the uniform convergence of the sequence $\{g_n\}$ for all interval I so that $0 \notin I$. Let be $\tau \in IR^*, \tau \not\approx 0$. Then $|\tau| > c, c \in IR^+$. Given the uniform convergence of $\{g_n\}$ in $[c, \infty)$, by theorem 1.29 we obtain:

$$\delta(\tau) \approx 0, \, \forall \tau \in I\!\!R^*, \, \tau \geq c.$$

The same happens if $\tau < -c$. So, (9) is valid. Moreover, if the singular kernel $\{g_n\}$ satisfies the condition $g_n(x) \ge 0$, $\forall x \in \mathbb{R}$ then $\delta(\tau) \ge 0$, $\forall \tau \in \mathbb{R}^*$.

To conclude, if the singular kernel $\{g_n\}$ satisfies the additional conditions:

- $g_n(x) \geq 0, \forall x \in \mathbb{R}$
- $g_n \xrightarrow{\cdot} 0, \forall I \text{ so that } 0 \notin I$

the function $\delta \in G$, $\delta = (g_n)$ is a nonstandard model of Dirac's delta, according to the definition (1.39). We consider now the sequence $\{h_n\}$ (iv) which converges weakly to $vp\frac{1}{r}$, i.e:

$$\lim_{n\to\infty}\int_{-a}^{a}h_n(x)\phi(x)dx=(vp\frac{1}{x},\phi);\ supp\phi\subset(-a,a).$$

$$st \int_{-\infty}^{\infty} V p(\tau) \phi^*(\tau) d\tau = (v p \frac{1}{x}, \phi)$$

where ϕ^* is the canonical extension of $\phi \in \mathcal{D}$. According to the definition of product in G, we obtain:

$$\delta V p = (g_n)(h_n) = (g_n h_n),$$

the sequence $k_n = g_n h_n$ converges weakly to $-\frac{1}{2}\delta'$, (cf.,[1]). Then the nonstandard function $K \in G, K = (k_n)$ is a nonstandard model of the distribution $-\frac{1}{2}\delta'$, and is valid:

$$\delta V p = K$$

References

- [1] A. González Domínguez y Roque Scarfiello: Nota sobre la fórmula " $vp\frac{1}{x}\delta = -\frac{1}{2}\delta'$ ". Revista de la Unión Matemática Argentina. Vol. 17, pg. 53-66, 1955.
- [2] Yu Takeuchi: Funciones No-Estándar y Teoría de Distribuciones. Revista Colombiana de Matemáticas. Vol. XVII, pg. 117-151, 1983.
- [3] A. Robinson: Nonstandard Analysis. North-Holland Publ., Amsterdam, 1966.
- [4] José I. Téllez: Un modelo No-Estándar de Funciones Generalizadas. Thesis work to the Magister Scientiae in the Facultad de Ciencias, Departamento de Matemáticas y Estadística, Universidad Nacional de Colombia, directed by Yu Takeuchi, Bogotá, 1982.
- [5] Gaisi Takeuti: Dirac Space. Proc. Japan Acad.38, pg. 414-418, 1962.
- [6] A.E.Hurd; P.A.Loeb: An Introduction to Non-Standard Real Analysis. Academic Press, 1985.
- [7] W.A.J.Luxemburg: Non-Standard Analysis. Mathematics Department. California Institute of Technology. Pasadena, California, 1973.
- [8] S. Albeverio; R. Hoegh-Krohn; Jens Erik Fenstad; Tom Lindstrom: Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, 1986.
- [9] Laurent Schwartz: Théorie des Distributions. Ed. Hermann, Paris, 1966

Recibido en diciembre de 1997