Revista de la 109
Unién Matem:tica Argentina
Yolumen 41, 2, 1998.

FREE MONADIC THREE-VALUED LUKASIEWICZ
ALGEBRAS
A lgnacio Viglizzo
INMABB-CONICIEET-UNS y Departamento de Matematica (UNS)

ABSTRACT

In this work the concept of free monadic extension of a three-valued Luka-
siewicz algebra is defined and used to obtain the free monadic three-valued
Lukasiewicz algebra with a finite set of free generators ¢¢ up from the free
three-valued Lukasiewicz algebra with the same sét of free generators, follow-
ing a method introduced by P. Tlalmos in [5]. This method also allows us to
know the coordinates of the generators on each axis. As particular cases, [ree
monadic booleam and three-valied Post algebras with a finite set of genera-
tors are determined, as well as the corresponding free monadic algebras over
a given finite posel.

P. Halmos’ technigne has bheen nsed by R Cignoli in the case of Q-distributive
lattices 2] and by A. Petrovich in the case of monadic De Morgan algebras
[15], of which the monadic three-valued Lukasiewicz algebras can be seen as
a particular case.

1 INTRODUCTION

‘Definition 1.1 A monadic three-valued Lukasicwicz algebra, [11] is an algebra
(AN, V,V,~, 3, 1) of type (2,2,1,1,1,0) such that (A, A, V,V,~, 1) is a three-
valued Fukasicwicz algebra, i.c. the following axioms are verified:

[.0) V1=l L) aA(eVy) =

L2) anA(yvz) (zAa)V(yAx) 13) ~~a o

14) ~(mAy) = ~aV e~y 1.5) ~azVvVa2 |

I.6) zA~z =~z AVz I.7) V(xAy)=VrAVy
and 3 is a unary operator on A, called ewvislentlicl quanlifier satislying:

Jp) F0=0 3y) a<3Jx

) F(aATy) =AWy 3,) V3Iz = IV

) ~V~dy =3~V e~

A derived operator A is defined-on A by A = ~ V ~ z, and we have the [ollowing
properties: (see [8],[11])

I.8) V(xVy =VaVvVy 19) A(xVy) - AxVAy

Jg) WHwevy) Teviy Ag) A~ de ~ A
Let T denote the three-valued faukasiewicz algebra: T = {0,¢,1} where 0 < ¢ <
IL~0 - 1,~e¢ e~ 0,vo 0, Ve VI 1. With B we will indicate the
subalgebra of T formed by 0 and 1.
Let B(A) denote the set of hoolean clements of a three-valued Lukasiewicz algebra
A. Tt is easy to prove, [6] that: B(A) = {v € A: Vo =z} = {z € A: Az = z}.
Let A(B) be the set of atoms of a non-trivial finite boolean algebra B.
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An element ¢ of a three-valued Lukasicwicz algebra A is an axis of A if Ae = 0 and
Vz < Az V Ve, forall z € A, [7|. We will call constants the elements of a monadic
three-valued Lukasiewicz algebra A such that 3z = . The set of all the constants
is a Lukasiewicz subalgebra of A and il A has an axis e, then 3e = ¢, [I1]. The
monadic subalgebra generated by a subset X of A, SM (X) is the intersection of all
the monadie subalgebras of A containing X .

Definition 1.2 A mapping h from a three-valued Lukasiewicz algebra A to a three-
valued Lukasiewicz algebra A’ is called an hemimorphism if for all p, ¢ € A:

) n(0) =0; H2) h(pVq)=hip)V h(g)
Hi) h(Vz) = Vh(z); H4) h(Az) = Ah(z).

If, furthermore

Hz) h(1) =1

is verified, then h is called an 1-hemimorphism.
Note that this definition is dillerent, from the one given by L. Monteiro in [10].
Lemma 1.1 Fuvery exislential quanlifier is a 1-hemimorphism.

In what follows, A will he a non-trivial [inite three-valued Lukasiewicz algebra, [t
is well known and easy to check that 7(A), the set of join irreducible elements of A
has the following propertics: each p € n(A) is an atom of B(A) or p precedes one
and only one atom in B(A) aud conversely, every atom of B(A) is an atom of A
or is a join irreducible element of A preceded hy only one atom in A. Therelore,
7(A) = {ai}1<i<jir U {¢jri}1<i<k, where @; is an atom of B(A),1 < i < j +k, and
¢jqiis the atom of A preceding ajp; for 1 <@ < k. It is elear that « (B (A)) = B(A)N
1 (A) = {a;}r1<icjin and thal il p € w(A4), then Ap € 1 (A)U {0} and Vp € a(A).
Then A is isomorphic to (and will be identified with) BY x T*, with j, k € N U {0}
and not simnltancously zero, {11]. Notice thal the clement ¢ = (/) <jcjrp With
g 0if1<i<jande,  c¢ifj 1 1<E< g1 kis the axis of B x Tk,

Lemma 1.2 An hemimorphism h from A = BIxT* lo the three-valued Lukasiewicz
algebra T is uniquely delermined by the wvalues that h lakes on the j - k atoms
of B(A). This values must be in. B(T) = B and therefore, each application g :
A(B(A)) — {0,1} C T can be extended to a unique hemimorphism from A to T.

Proof: Let i be an hemimorphism. If « € A(B(A)) then Ah(a) = h(Aa) = h(a),
so h(a) € B(T) = B. It is easy to check that if b is an atom of A, then h(b) is
determined by L(a), being e the only atom in 3(A) that b precedes. Thus, h is fixed
for every element in n(A). As hemimorphisms preserve joins and every nonzero
clement. in A s join of the elements in 7 (A) preceding i, Iois uniquely delermined
for every element in A. ‘ a

Lemma 1.3 [Let h be an hemimorphism from A lo T; h is an homomorphism if
“and only if there is one and only one atomn a; € A(B(A)),1 < i < j+k such that
hia;) = 1.
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Proof: Let h be an homomorphism. Then, if h(a;) = 0 for every i,1 < i < j + k,
then h(1) = 0, a contradiction, so there is an index i such that h(a;) = 1. If f01
two dilferent elements a,a’ € A(B(A)), h(e) = h(a') = 1, then 1 = h(a) A h{d’
h(a A a’) = h(0) = 0, so there must be one and only one a; € A(B(A)) such thaf
h,(a.,v) =1

In the other hand, it is easy to check that an hemimorphism h such that h(a;) = 1
for just one a; € A(B(A)), (and therefore h(a;) = 0 for j # i) satisfies h(z A y) =
h(z) A h(y) for every z,y € A. Then, by Theorem 3 in [10], h is an homomorphism.
D .
By the characterizations of the Lemmas 1.2 and 1.3, the next two Lemmas follow
straightforwardly.

Lemma 1.4 If h is an I-hemimorphism from A lo T, then there is an homomor-
phism preceding it.”

Lemma 1.5 Ewvery I-hemimorphism from A to T is supremum of the homomor-
phisms preceding . '

Lemma 1.6 Let Y = Hom(A,T) be the set of all the homomorphisms from A to
T. A is isomorphic to Lhe lhree-valued Lukasiewicz algebra P = H y(A

weY

Proof: By Lemma 1.3, there is a bijection hetween the homomorphisms from
A to T and the elements in A(B(A)). It suflices then to observe that for each
a;, 1 < i < j, the image of A under the correspondinig homomorphism is B, and if
j+1<1i<j1k, the image is T. ]

According to the previous Lemma, we may indicale an element, in A by the value of
cach homomorphism in that element.

Let A and A’ be three-valued [ukasicwicz algebras, X = Ilom(A, T) and Y =
Hom(A',T). Given a function [ :Y — X such thal:

(*) f(YB) € XB,

where Xg = {z € X : x(A) = B} and Yg = {y € Y : y(A’) = B}, we can define an
homomorphism f*: A — A’ hy: lorall y € Y, p € A,

yf*p - ([y)p.

As seen in Lemma 1.6, it suflices to show for f*p the value of each homomorphism
of Y on that. point. To sce that [ is well defined, il is enough to show that for cach
y € YB,y/[*p assumes a value in B, Tudeed, il y € Yg, then by (%), f. € X and
“herdove (fy)p C (fy)(A) ™ B 1 is casy Lo check thal. £* is an homomorphisn and
that every homomorphism {rom A to A’ may be obtained in this way. I [ is injective,
then f* is an epimorphism, and if [ is surjective, f* is a monomorphism. These
results generalize the ones obtained by M. Abad y A. V. Figallo for epimorphims
belween three-valued Lukasiewicz algebras, [1], and may be compared to those of
R. Sikorski for boolean algebras, [16]. More information on this kind of dualities
may be found in [3].
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2 FREE MONADIC EXTENSIONS

A monadic three-valued lLukasiewicz algebra L is a free monadic extension of a
three-valued Lukasiewicz algebra A if:

(i) A is a subalgebra of L,
(ii) L is the monadic suBalgebra generatéd by A, ie. L =SM(A),

(iil) every homomorphism of three-valued Lukasiewicz algebras g from A to an ar-
bitrary monadic three-valued Lukasiewicz algebra C has a (necessarily unique)
extension to a monadic homomorphism [ from L to C.

We now give a construction of the free monadic extension {or the case in which the
algebra A is finite (A = BY x T*), following the method advanced by P. Halmos [5].
Let Y =Hom(A, T) the set of homomorphisms from A to T and V the set of the 1-
hemimorphisms from A to T. It is easy to see that ¥ has j - k elements and V has
27+k _ 1 elements. . ’

Let X = {(y,v) : y € Y,v € V,y < v}. From Lemmas 1.2, 1.3 and 1.4, it follows
that for each homomorphism in Y there are 2+*~1 1-hemimorphisms v € V such
that y < v. Therefore, X C Y x V has (j 4 k)(297%~1) elements.

Let L be the three-valued Lukasiewicz algebra:

L= ] v(A).

(m0)c X

el us now consider Xg == {(y,v) € X : v(A) ™~ B}. To calculate the cardinality of
A'B, note that there are j homomorphisms in Y such that their image is isomorphic
to B, and each of them is dominated by 29~! 1-hemimorphisms with image B.
Therefore, Xg has j - 2/ elements and L is isomorphic to

B" i % T(j_. kyodrk g
Define for all p € L,
Bp)(y,v) = \V{p(u,v) i uw € Y,u < v} ‘ (1)

It is easy to check thal 3 is an existential quanllﬁm over L, being the crucial step:
o) For all p,q € L, and eaceh (y,v) € X,

I(p A 3q)(y,v) = V (p A3q)(u,v) = \/ [p(u,v) A (3q)(u,v)] =

u<v u<v
[\/ plu,v)| A |\/ (Aq) (e, 0)| - (dp)(y,v) A \/ \/ q(w,v))| -
u<v u<v u<v wlv
= (3, v) AV q(w,v)) = 3Ep)(y,v) A (3)(y,v) = (3p A 3q)(y,v)

w<y
Therefore I(p A 3g9) = Ip A3q for all p,q € L.
- We will prove that the monadic three-valued Lukasiewicz algebra I is the fwe
monadic extension of a bubalg,dn a of L isomorphic to A.
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The elements of A(B(L)) are f,,, where

(i) = { o Sl Sk ) ) e x
Consider now the representation of L by homomorphisms from L to T. The elements
of H = Hom(L,T) are h,, where h,, is the homomorphism corresponding to the
atom fy, of B(L). It is clear that Hg = {h,, € H : v(A) ® B} and Hy = {hy, €
H :v(A) = T}. Let ¢ : H — Y the function defined by ¢(h,.) = y. So c is
surjective and ¢(Hg) C Y. Then, the homonmi‘])hism h=¢*: A — L is injective,
“and hyohp = (chyw)p = yp, i.c.:

(hp)(y,v) = y(p). (2)

h(A) is a subalgebra of L isomorphic to A, and it is in this sense that (i) is verified.
Our principal result can now be stated as follows.

Theorem 2.1 The monadic three-valued fukasiewicz algebra L with the quanlifier

3 defined in (1) is a free monadic extension of7is three-valued Lukasiewicz subalgebra
h(A).

From the definition of h and Lemma 1.5, we get:

(3hp)(y,v) = V (hp)(u,v) = \/ u(.p) = ¥(p). ' (3)

w<v w<y

Lol us now see that (i) SM(h(A)) = /1 By Lemma 0.3.10 in [11], p. ]6 it, suflices
to show that B(L) C SM (h(A)) and e € SM (h(A)), where ¢ is the axis of L.
Let e’ be the axis of A. Then for all (y,v) € X: '

’ 3 g r ‘ ~ T'
he! (y,v) - y(e') - { ;) ;j' 'ZE;I; ~ B.

Therefore he' = e and e € h(A) C SM (h(A)).
We shall prove now that

fuw = hay A ( /\ Jha.) A ( /\ ~ Jha.), (4)

vay:=l va;:-0

where @, is the only element, of «(A) such that y(ay) = 1. As hay, ha, € R(A) and
therefore ha,, 3ha,, ~ 3ha, € SM (h(A)), we will have that A(B(L)) € SM (h(A)).
As-an immediate consequence, B(L) € SM(h(A)).

Let

q(u,w) = [hay A( A\ Ehdz)/\( /\ ~ 3ha,)|(u, w)

vaz=1 - vaz=0
= uay, A ( /\ wa,) A /\ ~wa;) (by (2) and (3)).
va == ra;=:0

In particular, q(y, v) - ya, A ( /\ vag) A ( /\ ~ V.,

va;=1 vaz=
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If (w,w) # (y,v) then u # y or w # v. W u # y, then ua, = 0 and q(u, w) = 0.
If w # v, then by Lemma 1.2 there exists j such that wa; # va;. If va; = 0 then
wa; = 1 and ~ wa; = 0, therefore /\ ~ wa; = 0 and q(u, w) = 0.

va,=0
We have just proved that ¢ = f,,. Let now C be an arbitrary monadic three-valued
Lukasiewicz algebra, and g an homomorphism of Lukasiewicz algebras from h(A)
to C'. If we prove that a monadic homomorphism from L to C' extending g exists,
the demonstration of the fact that L is the free monadic extension of h(A) will be
complete. - : ‘
Let us consider the subalgebra S == SM (g(h(A))) of C. By Theorem 111.3.4 in
[11]), p.76, S is finite and therefore we can use its representation by the set of
homomorphisms Z = Hom(S,T), i.e., S [L,ez 2(S). .
Let a : Z — Y be defined by (az)p = zghp; and b : Z — V defined by (bz)p =
z3ghp (where the existential quantifier corresponds to the algebra C). az is an
homomorphism [rom A to T because it is a composition of homomorphisms. In a
similar way, bz is an hemimorphism from A to T. (Note that 3 is an hemimorphism
from C to C). Let 7(z) = h(aops). As for all p € A, ghp < 3ghp, and then zghp <
z3ghp, ie., (az)p < (bz)p, then (az,bz) € X. Sor is a map from Z to H. It is clear
that if z € Zg, (b2z)p = z3ghp € B, so we can say that f = r* is an homomorphism
from L to C. Furthermore, for all ¢ € L,z € Z, z(fq) = q(az, bz).
To show that (iii) is verified, it remains to prove that f reqtrlcted to h(A) is equal
to g, and f is a monadic homomorphism.
If g € h(A) then ¢ = I(p) lor some p € A and

—~

2)

zfq = q(az,bz) = h(p)(az,bz) = (az)(p) =4 2zghp = zgq, for all z € Z
» fa = 9q.
f is a monadic homomorphism, i.e. for all q € L z € Z,23fq = 2f3q.
If q == h(p) for some p € L then zf3q = zfThp = (hp)(az,bz) = (b2)p == 2Tghp =
:H_IILy; == zAfq. In particular, lln~, vields z [Fe = z3fe.
If ¢ € A(B(L)) then q = hay A ( /\ 3hay,)A( [\ ~ 3ha,) for some (y,v) € X.

. -vaw—l va,,=0
Then

2f3q = (39)(az,b2) =
= 3[ha, A /\ Bhaw /\ ~ Jhay)|(az,bz) =

Vay=1 VA=

= [BhayA( A Bhau) AN\ ~ Elhaw )(az,bz) =

Vg, | Ve ()

= (3hay)(az,bz) A[ A\ (Bhay)(az,b2)]A[ N\ ~ (3hay)(az,bz)] =

Wy 1 V(=0

= (bz)ay Al N\ B2)aw]A] N ~ (b2)ay] =

Vaw=X 20, =0

= waqh(l,‘l /\[ A aqh(lw /\[ A ~ ~thau,)] =

V=1 vay,=0

= 23fhay A( N\ 3ha) A N\~ 3Ifhay)] =

va,=1 V=0
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il

23[fhay A\ fIhaw) A( N ~féha,u)]:

Va,=1 ) va,=0
= 23f[hay A( N\ Fhaw) A( \ ~ Thaw)] = 23fq.
vayuy=1 Q=0

As L is finite, B (L) is finite, so every element different from 0 in B(L) is supremum
of elements in A(B(L)): Since 3 is an hemimorphism, we can conclude that for all
p € B(L),f3p=3fp. :

Let now p be an arbitrary element in L. As e is the-axis of L, p = (ApVe) A Vp.
Since we also have Je = e and fe is the axis of C,

f3p = fA(ApV (VpAe)) 2 1EApVI(Vp Ae)) = f3APV f(3Vp A Te).

Since Ap, Vp € B(L), this is equal to: )

3fApV (fAVpA f3e) = A ApV (3fVp A 3fe) = I Ap v I(fVp A 3fe) _
=3(fApV (fVpAfe))=3f(ApV (VpAe)) =3fp,

which concludes the proof of Theorem 2.1.

If f:Y xV =T is such that f(y,v) = f(y,v), for every y,v,v’, then we say that
. the function [ is independent from V. In a similar way, il f(y,v) = f(y',v) for all
v, 9, v, f 1s independent from Y.

Looking at (2), it is clear that the functions in h(A) are independent from V. Fur-
thermore, h(A) consists exactly of those functions in L that are independent from
V. The constants in L are independent, from Y. Indeed, by (1),

Ip(y,v) = V p(w,0) = Ip(y',v).
u<lv i
As a particular case we may obtain the free monadic extension of the boolean algebra
BY, which is B/ ™" just as indicated in [5](see also [17]). In a similar way, the free
monadic extension of the three-valued Post algebra T* is T+ (sce [12]).

3 THE FREE MONADIC THREE-VALUED LUKASIEWICZ
ALGEBRA WITH n FREE GENERATORS

The preceding results can be applied to the free three-valued Lukasiewicz algebra
generated by an arbitrary finite set G. Any map from G to a monadic three-valued
Lukasiewicz algebra C' has a (necessarily unique) exiension to an homomorphism
of three-valued Lukasiewicz algebras g that maps A to C. The homomorphism of
three-valued Lukasiewicz algebras g has a (necessarily unique) monadic extension
f that maps L to C. We conclude from this that the free monadic exteusion of
a {ree three-valued fLukasiewicz algebra is a [ree monadic three-valued Lukasiewicz
algebra. )

It is well known that the free three valued Lukasiewicz algebra with n free generators
is B¥" x T*"~2" | Then, according to the results in §2, the free monadic three-valued
FLukasiewicz algebra with n gencrators is isomorphic Lo: '

2(2"4-11—1)] % T[371.2(3"’-—1) M2(2“+n—1)]

B!
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This result was obtained by L. Monteiro in [11], using a different method.

As an example, when n = 1 and G = {g}, the free three-valued Lukasiewicz algebra
generated by G, L(1), is B2 x T, with ¢ = (0,1,¢), [14]. The corresponding free
monadic extension is B*xT®, If we denote with y; the homomorphism from .L (1)
to T such that y;(a;) = 1,7 = 1,2,3, then the 1-hemimorphisms from L(1) to T are
Y1, Y2, Y3, V1 = 1 VY2, v2 =y Vs, v3 = Yo Vs, vg = Y1 VyaVys. The elements of X
as well as the value that h(g) takes in those elements, are indicated in the following
table:

T | (uy) (o) (y2,92) (y2,v1) (y1,v2) (v, v4)
h(g)(z) 0 0 1 "1 0 0

T (y2,v3) (y2,va) (y3,y3) (ya,v2) (ys,v3) (ya, v4)
h(g)(z) 1 i c c c c

Starting with the free boolean algéhra with n generators and following the ‘same
procedure, we get, the free monadic boolean algebra with n generators ([5], [17],[13]
and the bibliography indicated there) and in a similar way, from the free three-
valued Post algebra we get the free monadic three-valued Post algebra, T:’m:’f"_1
just as it is indicated in [12]. Applying this method to the free boolean, three-valued
Laukasiewicz or Post algebras over a linite ordered set (]9], [4]), the v('m"r(:spomling;

9
[ree monadic algebras over those ordered sets arc obtained.
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