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RING OF DIFFERENTIAL OPERATORS AND A 
RELATED COMPLETELY · INTEGRABLE SYSTEM 

LUIS A. PIOVAN 

ABSTRACT. We represent the affi ne ring of an ell i ptic curve as a ring of matrix 
difTerential operators. As an application, we embed the phase variables of the rigid 
body motion on SO(3) (Euler Top) into commuting d ifferential operators with ma

trix coefficients. Thus , showing that this algebraic completely integrable system is 

a piece of an infinite dimensional (four-component) KP hierarchy. 

1 .  Introduction. 
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In the usual Geometric Realization of Conformal Field Theory on Riemann Sur
faces [KNTY] , the basic " Krichever" data consist of quintuples ( (C ,  (a" B) ) , p, £, z ,  
f;) ,  where (C , (a, ,B) ) i s  a Ricmann surface together with It choice of  a canonical 
horllology basis , p E C a point at infinity, £ a line bundln OIl C,  z a local param
eter about p and t a trivialization of .c at p. To this data, one relates points in 
the Universal Grassmann Manifold of Sato UGM by t (H() (C , £(*p) ) )  E UGM 

[Mul 2] . By dividing the projcctivizatioD of the quintuples abovn by the action 

of 8p(2g, 7l) if g(C) > 1 ( the action of 8p(2g ,  7l) x Aut(C) if g(C) :S: 1 ) , we get 
the so ealled modul i space of framed and gauged Rieman n sllrfat:(�s and an em
bedding of this space i nto UGM. Moreover,  t lw dprorrnatioTl o r  Ll j(�se d ata. al()n l� 
the .J acobiall d irectiol ls is ddel'lII i rwd by tJ]() actioIJ of tJw KP flows O i l  the points 
i (H() (C , £(*p) ) )  E UGM. Also, there is a bijection between the triples (C , p, £) 
with certain conditions on L: and the affine rings O(C - p) [Mu 1] . 

Quite a similar data can be &<;sociated to smooth elliptic curves with a divisor 
D instead of a point p at infinity. Consider for instance the data {E, 1), :F = 
[r;- lV - DJ , z ,  t) , where E is an elliptic curve, 1) = 'BP'i a divisor on E, :F a 
line bundle,  z = {zd local equations ahout the points Pi of D and t = {td 
trivializations of :F about the points of D. Then, one associates to it the point 

JIJi (HO (E, :F(*D) ) )  E UGM under sui table identifications .  
As generally believed [Sa] e t  a1 . integrable syst.ems , flnite and infinite, can be  

viewed as pieces of  infinite dimensional dynamical systems like KP (}J; multicom
ponent. KP hierarchies [Ad-Bl .  

The main step is to define a map from the dynamical phase space of the inte
grable system into an appropriate moduli space whORe pointR are dlaraderized hy 
Home sort o f  Kridwvef data mod ll lo relatiolls l i ke tlle qu i ntuples above . One can 
bypass this by directly defining the map from the phase space into UGM with the 
help of a basis for HO (E, :F(*D) ) (the Bal:er-Akhiezer sections) , a representation 
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of the phase variables with some matrix differential operators and an identification -, 
of a holomorphic flow on the elliptic curves with a mUl ticomponent KP flow. 

One of the results of this paper is that the data (C , 1>, C) with hO{C) = hl (C) = 0 
and 1) a particularly chosen divisor, determines an embedding of the affine ring 
O(C - 1» into commutative ring of differential operators . This yields a general� 
ization for ellipt ic curves of Krichever prescription for the dictionary (C , p, C) --+ 
O(C - p) [Mu 1] . 

We apply part of the above program to the rigid body motion on 80 (3) (Euler 
top) . The Euler top is a system that describes the rigid· body motion around 
a fi xed cent er of gravity. In the angular moment coordinates , it reduces to the 
equat ions 

( 1 )  

I t  has two independent integrals 

(2) 

2 2 2 Ql = VI + '1.12 + '1.13 
Q2 = A l  v� + A2V� + A3'1)� 

which commute with respect to the Poisson brack(�t .  Q l  being the trivial invariant 
and Q2 the nontrivial Hamiltonian . 

Although the real geometry of integrable systems is described , to some degree , 
by the Arnold-Liouville theorem [Ar] , their complex geometry is more subtle.  The 
nat ure of the solutions to integrable systems depends heavily on the complex ge
ometry. If wc reqn ire the solutions to be expn�ssible in t.erms of theta functions 
related to abelian varieties , then, we call such systems algebraic completely in
tegrable (a .c . i . ) . Many of these systems wer� known classically in Mechanics and 
studied in detail by several people. To mention a few,  Adler and Van Moerbeke 
[A-VM 1 ,2] ,  Dubrovin [Du) , Moser [Mo] , MUJ.l1ford [Mu 1 , 3) .  

I n  the picture introduced by Adler and Van Moerbeke for (a.c . i )  systems, the 
real phase space R2n+k is complexified, and the integrals are polynomials . The 
complexified invariant manifolds Mc = {v = (VI , ' "  , V2n+k)  E C2n+k , Fi (V) = 
Ci , i = 1 ,  . . . , n + k} are affine varieties in c2n+k . They are affine pieces of 
abeliari varieties Ac in such a way that the coordinates Vi become non trivial abelian 
functions on Ac. Thus Vi E L(1)) = functions on Ac that blow up at a divisor 1> of 
Ac , and Mc = Ac \ { the reduced divisor 1>} .  Moreover, the nontrivial holomorphic 
vector fields XF1 , . . . , XF .. have a linear motion on Ac . 

For instance, in the Euler top case, one obtains (by setting Q 1  and Q2 to 
constants) the affine part of an elliptic curve- in 1I1>:l = Jll>(L (1)) ) with 1) = divisor 
ILt i l l fin ity = Lt points.  XQ2 yioldH l i n nar motioI \  on t]w aHino d l ip t.ic: eurvn E" = 
{v E c:3 , Ql (V) = CI , Q2 (V) = C2 } and XQ ! vanishes on Ec . 

The paper is organized as follows. In Beet-ion 2 we eonstruet a k ind of Baker
Akhiezer funct ions wh ieh are suitable " to represent , the Enler Top phase variables 
in terms of matrix differential operators . It is possible to identify the Hamiltonian 
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flow with a Multicomponent K P  flow under a suitable embedding. The Lemmas 
and Propositions in this section describe this identification. In sect ion 3 we give a 
construction of a commutative ring of differential operators associated to the data 
(E, 'D, F) ,  where E is an elliptic curve , 'D a divisor on E and F = [7; l V - D] a line 
bundle such that hO (F) = hJ (F) = O. We prove a theorem for the embedding of 
the affine ring of elliptic curves into a ring of differential operators . In particular, 
this will hold for elliptic curves in JP3 ; which are related to the Euler Top .  

There are two appendices : Appendix 1 dea.ls with some baBies about Multi
component KP hierarcy. In Appendix 2 we construct Weierstrass p-functions on 

an abelian variety A with the help of the defining eql \ations for a divisor 1) on 

A. The construction is quite simi lar to hyperelliptic p-functions [Mu 3] . These 
functions and their related meromorphic differentials of second kind are used to 
define Baker-Akhiezer functions.  It is hoped that some results obtained for the 
elliptic curves can be extended to abelian varieties . 

2. Baker functions defined on an elliptic curve. 
In this section we present several examples. There are d i fferent attempts to 

defining a Bai<er-Akhiezer function for the divisor 1) = PI + P2 + P3 + P4 = sum of 

points.  The relevant examples 6 . 1  and 6.6 allow us to identify the Euler Top flow 
with a Multieomponent KP fl ow. 

First , we consider the usu al method for constructing Baker-Akhiezer functions . 
Given the divisor E ,  one eonsiders the -l9-function 8 associated to it ( [We] , [Ig) ) , 

i .e .  e vanishes once on E .  Let Ax,-, : A -} HO (A , Ol ) * /Hl (A, Z) be a set of 

Albanese's maps , Ax" (x) = (J:', w) , for some conveniently chosen .T ", E A. Here , 
the integrals are along a path 'Y joining x", and x .  For elli ptic curves these maps 
am isomorphisms and any two or t.hem differ by a translation on B. 

There is a holomorphie differentia.ls w ,  and ba.sis of homology cycles {a, b} , such 

that the period matrix has the form (Jo, w, Ifj w) = ( 1 , 7) . According to Igusa [Ig] 
any -a-function 8 can be written as a l inear combination of 19-series of the form 

(3) 8m (7, Z) = L e( � (p + rn!)T(p + m') + (p + m') (z + ml/ ) ) 

where m 
satisfies 

l}EZ 

(m'm" ) and m' , m" in lR and e (x) exp (2 7fi:!:) . Such a -a-series 

for any element n' 7 + nil , (n' , nil E Z) , belonging t.o the lattice of the elliptic curve . 
Moreover, if 8 is the integ;er defining the pola.riza.tion type of E ,  then there exist 

n�1l1 m l m h (�rs rn' , mll E � s l I d l  t.h at 

(5 ) 8 (z) = L constant · 8 (r+mI6- 1,mll ) (7, z) , 
r mod Z 

where r runs over a complete set of representatives of ( t  Z) /Z. 
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Following [Du] , [Sh] and [Ma-Ka] we define the Baker-Akhiezer function asso� 
eiated to the divisors D and E as follows . . 

'l/J(u, ft, x"' , x) , u E C, 8 (u) =I- 0 ,  ft E CCXl , x E A - D = Un , 

(6) 

Z", a local parameter around ,r-", E D defined on the chart U'" 
such that the U", 's are disjoint .  

where w� 's are normalized 2nd kind differentials and ]B their matrix of b-period : 

]B = (fb w�) . The w� 's have local expansions around D n u", ! 
. . dz", . w� "" (- l ) 'Ci HI + O(z;:;' )  dz", .  z" 

As we increase w by the period n'T + n" we get the change 

r mod Z 

= [ L cr.8 (r+mIC-l,mll ) (T, W) e ( r + m'O- I )n") ] ' 
r mod Z 

. e( - �n'Tn' - n' (m" + n") - n'w) . 

, 8 (w + wo) . , 8 [n"] (w + wo) rhus t1 ( ) IS changed by e(-n wo) 
8 [ ] ( ) 

, where 8 [n"] (w) is a 
- '/1J ':' n" w 

thf�ta function vanishing on a divisor linearly equivalent to E .  Since we want the 
same B-function we have to ask feE) = 1 and therefore 15 = 1 .  . .  

Now, changing L t i  .r�j w� by the homology cycle n'b + n" a produces the extra 

factor e (Li tin' t (J� w� ) )  in '1/) , which cancels with the contribution of the term 

e (-n' (Li ti t (fb w�) ) )  = e( -n']Btft) due to the quotient of theta functions . 
This shows that the function (6) extends to a well defined meromorphic function 

tm the open set Uo that blows up once at E where E = {x E A : 8 (u - Ar", (x) )  
= O}  and h as  essential singularities at the points o f  D.  

Let t be  a uniformizing parameter and Zi = O(t) the local parameter at the 
piece Pi of the divisor D = PI + P2 + P3 + P4 . ni' the normalized differential of 2nd 
kind with a single pole of order 'TI. + 1 at Pi and holomorphic everywhere else . 

Consider the map cp : E � PicO (E) defined by cp(x) = [TxD - D] (the canonical 
map) . .  This has a finite kernel (the translation group H(D) ) .  Let E be a divisor in 
PicO (E) sHch that D = cp- lE .  Then 8(cp(p) ) is a theta funct ion for the divisor D .  

A Baker function can b e  obtained as 

(7) 
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where w is a nonzero holomorphic differential , and (}i theta functions a..'lsociated to 
translates of 'D. As we go around a b-cycle of E we pick a b-period of Of . So the 
exponential gets increased by the factor exp(tn J On , which will cancel out with 

factors of (}l and (}2 . 

bn 
'--v-"' 

Lemma 2.1 .  The expression (7) is a Baker function at Pi associated to the divisor 
1). It has the expansions 

(8) 
arollnd Pi 
around P.i ' j =I 't .  

Proof. Assume (}l , ' (h are () functions of  order v with characteristics [ � ] ,  i .e .  
satisfy a relation of the type 

Ov [ � ]  (z + 27riN + BM) = 

exp { -� (BM, M) - v(M, z) + 27ri( (ex ,  N) - ({3, M)) } Bv [ � ] (z) . 
If fh and B2 are of the same type and order then all the factors cancel except the 
factor exp {-v(M, tnUi) } = exp { -v tn J Mbi Or } . . . 
, So if we add the factor v in the exponential of the Baker function we obtain the 
desired cancelling, Le. (7) is a well defined meromorphie functioll outside T1i , with 
zeroe8 at (}l (Jp�l W + tn Ur + �) = 0 and poles at (}2 (J;:l w + �) = 0 

(9) 
so 

As candidates for (}l and (}2 one can pick the functions O [ (Ot+;}/v ] ( In l vB) . 
Around Pi we have 

(10) 
1x 1 

Or = �( 
) 

+ 0(1)  and 
Po Zl x 

One can pick as Zi the time 'parameter t of a holomorphie vector field in E. One 
also has the expressions (8) around Pi . 

' 

Let Tij be the translation that sends Pi -t Pj , Le . ,  addition by Pj - P'i , and let 
OJ = Ttj Oi be the pull back of Oi .  Then nj blows up at Pj . 

Now we have the formula fa OJ = Jri.i a Oi = .fa Oi (since a + T-ij is homologous 

to a) for a period a of o'i (Le. , the periods are the same) . (Notice that one can 
ehoose a so that all the translates Ti.iG. of a do not meet the poles of Oi or its 
translate OJ . )  
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I·f - JPO+Pi -rJ ' JX JX+Pi �-r:i - . we let CiJ' - nJ' then we have -Di - DJ' - -CiJ" In � . � � 
other words , one can interpret the cycle Cij as the difference between the infinite 
. 1 JX+Pi-PJ n J'x n 0 h mtegra s Po Hj - Po Hi as x -7 Pi . ne as Cij + Cjk = Cik ·  

The correlation function hi defined by d/ij = Di - Dj is defined on the universal 
cover of E. Up to a constant we can pick /ij = JX Di - JX Dj which is a function 
that blows up at Pi and Pj . 

Now, we can write r Di = r Dj + fij , and let Ctij = jPJ Di , i =I- j.  Thus , we 
have 

( 1 1 )  
1/Jr = ev t"O<;J ( l  + O(z.i ) )  

= 0(1 ) 0 
about Pi 

Lemma 2.2.  We have the estimates 

( 12) 

Pmof. 

if x is around Pi , 

jf x is around Pj , j =I- i .  

d�n (ev tn/zf (l + O(Zi ) ) ) = :r ev tn/zf ( 1 + 0(zi) ) + ev tn /zI' Ol (Zi )  

= (:r. + 02 (Zi ))  1/Jf,v ' 

Proposition 2 . 3 .  TlIore is ;l. I lI1iqlW fl l fldioll , /Jp to H lJ elomnlJ t; il J  II(Eo ) ,  luwing 
essnntial singularity at the point; P'; , zeroes at Eo and blowing up at Eoo . 
Proof. If '1/) and 1� are two Baker functions then '�/'l/J is meromorphic on the elliptic 
curve because the essential singularities cancel. The poles at foo also cancel. Thus , 
the divisor of ;j;N) comes from the zeroes of 1b and '1/.) , namely to and Eo . So, we 
have to linearly equivalent to Eo for all I tn l « 1 .  Since the group of divisors 
l inearly equivalent to Eo is finite (the translation group H(Eo ) )  we have that s11ch 
a Baker function is unique' up to' an elemf'nt in the Translation group of Eo . 0 
Note 2 . 4 .  It follows from Proposition 7.:3 the following lemma: 
Lemma 2 . 5 .  On an elliptic curve, a Baker function with expansion 'l/J = O(z)etdz 
and no other zero or pole has to be zero. 

Note 2 . 6 .  For elliptic curves it will be shown in Theorem 3 . 1  that there is an 
embedding R = reA - D, 0 A )  into a commutative ring of differential operators 
with matrix coefficients. 
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Example 2 .7. In order to i llustrate Note 2 . G  we draw Table I with the expansions 
of 'I/h ,  . . . , V)4 and DV)I , . . . , D1/J4 around the points PI , . . .  , P4 , where the Pi 'S are 

the points of the divisor of the Euler Top .  Let {V t , V2 , V3 }  be the generators of 

the affine ring associated to the Euler top system which satisfies equations (2) . 
The invariant manifolds of this system have divisor at infinity V = �;I)(8 1 ' /)2 ) = 
p(1 , 1 )  + p(l , - 1 )  + p( -1 , 1 )  + p( - 1 , - 1 )  = PI + P2 + P3 + 1)4 , and the expansion 
of the functions {VI , V2 , V3 } about D, in terms of the time evolution parameter t 
associated with the Euler top flow, are 

( la) 

Table I 

1/)1 

1/J2 

1i'3 

1/J4 

D1/JI 

D1/J2 

D1j'3 

D1!'4 

V1 1h 

VI = ..jafJ VI = 81 (� - (u + v) t + . . .  ) 82 - 82 - 1 t - 2 - , 

V2 = ..JiYY '02 = 82 (� + ut + . . .  ) 
v'3 = ..;;y(J '03 = 81 82 (� + vt + . . .  ) 

p( 1 , 1 ) 

evt t !Z l ( l  + O(Zl » 

evt 1 <>2 1  (1 + O(Zl » 

evt 1 <>3 1 ( 1 + O(zI l ) 

evt 1 <>4 1 (1 + O(Zl » 

(:, + O(Zl ») 11>1 
0(1) 

1 -1/)1 + . .  , 
t . 

p(l ,  - 1 )  

ev t 1 <> ' 2 ( 1 + 0(Z2 » 

e" t t ! Z2 (1 + 0(Z2 » 

evt ' <>32 ( I + 0(Z2 » . 
evt 1 <>42 ( 1 + 0(Z2 » 

0(1)  

(� + 0(Z2 ») 1/)2 

1 
- 'rh t 

a = Al  - A2 , f3 = A3 - AI , 

'Y = A2 - A3 . 

p(- I , I) p( -1,  - 1) 

e" t ' <> 1 3 ( 1 + O(Z;l » e'd l <> 14 ( 1 + O(Z4 » 

evt ' <>23 ( 1 + 0(Z3 »  evt ' <>24 ( 1 + 0(Z4 » 

e"t t / z3 ( I + 0(Z3 »  e"t l <>34 ( 1 + 0(Z4 » 

e"t l "'43 ( 1 + 0(Z3» evt J / Z4 ( 1 + 0(Z4 » 

0 ( 1 )  0 ( 1 )  

( !� + O(Z:I ») 'Ih z;J 

(� + 0(Z4 ») 1/)4 
1 1 - - 1/J1 - -1/Jl t t 

Notice that 'lj;j (x + Pi - Pj ) = .exp(lI tnci,i ) 1Pi (X) (with g: Oi = J:: o.i - Cij ) , 

onee one chooses convenient f) functions to construct t.he rel l laining Ba.ker functions 
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from a given one. This is because we have 

( 14) 

and 

lx lX+Pi -Pi 1X lX+Pi -Pj l
Pi 

( 15) W = W + W = W + W ,  
PO Po X+Pi -Pi Po 1'. 

since w are translation invariant I-forms on an elliptic: curve . 

Example 2 .8 .  Consider now a 2nd kind normal ized differential form n that blows 
up at the !-periods PI , P2 , P3 and P4 to order two, thus having local expansion 

- d�i , where Zi is the local parameter at the point Pi . Let T-ij be the translation zi 
by the vectors Pj - Pi . Assume that these translations are all �-periods . 

We assume that the differential n is invariant under the group of translations 

Tij (X) = x + Pj - Pi . This is a subgroup of the group of translations associated to 

the divisor 'D = PI + P2 + P3 + P4 . We have the following relation: 

where �t: j = Xi + P.i - Pi and Xi is close to Pi (and x,i is close to Pj ) .  

One can pick Po so that j,Xl n = _(1 
) 

+ O(Zl (Xl ) )  = _(1 )
- - t;j + O(Zj (Xj ) )  N � XI � � 

with Xj = Xl +Pj -PI and for certain coefficients <,1 satisfying the cocyc1e condition 

C,I + C' _ ..J  c' - d 'i,i Jjk - Cik ' ij - - 'ji '  

Now o n  the long range curve 'Yi we have 

1 n = l
x
i n + 1x 

n = 1 n + periods = l
Xj n + 1x n + periods of n. 

1'i (X) po 
X
i 1'j (X) po Xj . 

Namely 

(17) Cij = lX
j 
-,· lx

i n = 1'" n - lx n + periods of n 
po Po Xi X

j 
On the other hand, for a holomorphic normalized tmnslation invariant differ

ential W we have 

lXj 
l
xi+Pj -Pi lxi lxi+Pj -Pi lxi iPj 

(18) W = W = W + " ' W = W + w, 
Po Po Po X

i 
' Po Pi 
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where we assume J1'.; w is a -21 _period . Also, modulo a period p ,  

( 19) 1x 1x £pj w =  w + w.  
X i  X j  • P i  . 

Given the 19-functions 191 , 192 related to any of the points p/s ,  and of the same 
order, we define the following Baker functions 

(20) 

where the points Xi are in a chart Ui abol lt Pi . 
One can relate the behaviour of 'l/Ji as x approaches Pj . We have 

where r* represents tl"anslation by the �-period ��j W.  
Now, we would like to estimate the term within braces a s  x � Pi and t � O .  We 

tak� 191 = 1900 and 192 = 19l1 , the elliptic B-functions with �-integercharacteristics . 

If 19 represents the Riemann B-function a"lsociated to the elliptic curve of lattice 

Z{ 1, r} ,  then we have the usual relations: 

19oo (z, r) = 19(z ,  "")�' '!9Ol (Z ,  r) = 19(z + � , r) , 

'l? lO (Z ,  r) = exp{rrir/4 + rriz) 1? (Z + � r, r) , 

.19 1 1  (z , r) = exp(rrir/4 + rri(z + � ) )  '!9(z + � (l + r) , r) 

·t9 (z + ar + (3, r) = exp( -rria2r - 2rriaz) '!9(z, r ) . 

and the relations on page 19 [Mu 2] . 
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Now, let Pij = J�j w, so that PI2 = ! , PI3 = !T, PI4 = � ( 1  + T) , By our choice 
and use of tables we obtain 

1h2 = _ 1'J01 (U) , 19 u (V) 
= 

17 (U + � ) , 19 (V + � (1 + T» ) , exp(ni (V + � ) ) 
1'Joo (U) 1'J1O (V) 1'J (U) 1'J (V  + 1 + !T) exp(ni (V) ) ' 

'lj1] 3  = _i exp( -niT/4 - niU) , 19lO (U) , 19u (V) V = r w + I;, . exp( --niT/4 - n'W) '/'Joo (U) 1901 (V) , )3'i ' 

7P1 4 = i exp(-n�T�4 - niU) , 19 1 1 (U) , �l 1 (V) , U = r w + t r n + 1;, , . 
exp( -n 'lT/ 4 - niV) 19()o (U ) '19()o (V) )", )b 

One uses the period relations 

to find 

190 1 (Z + aT + f3) = exp( -nia - nia2T -.: 2niaz) 1901 (Z) , 

'/'JOO (z + aT + !3) = exp( ni!3 - nia2T -:- 2niaz) 1910 (z) , 
t911 (z + aT + (3) = exp( ni ((3 - a ) - nia2T - 2niaz) t9 1 1  (z) , _ 

'190 1 (U) (-H? l l (V) ) . 
'l/J21 = t900 (U) 

, {_ ( -19 10 (vj"IT = -'ljJl� = 'lj143 , 
_ , {-t9 1 1 (U) }  t9l 1 (V) 'l/J23 = z exp(-nz (U - V» 19oo (U) {19oo (V) } = -'ljlt4 , 

,I, ' '
U V 

{e
.
,xp(-niT + 2niU)t9IO (U) } 19 1 1 (V) 1/-'3 1  = - 2  exp( -1n ( - ) ) -=---"=:7--':---;-----'---'-'-':-: , {)()() (U) {exp( +ni - niT + 2n'N) 19()1 (V) } 

= - exp(2ni(U - V) )  1PI 3 , 
ni, ' ( ' (U V))  

{exp( n i  - niT + 2niU) 191 1  (U) } 19 1 1 (V) '1-'32 = z exp ,-nz - " .  T 19oo (U) {exp( -7r2T + 2nzV) 1900 (v ) } 

= - exp(2ni (U - V)) 'l/J14 , 
n' '

( 
' (U V) )  {exp( -niT + 2niU) 19 1 1  (U)} 19u (V) 

ljY41 = +z exp -n2 -
, _ ,  t9oo (U) {exp( -niT + 2niV) 19oo (U) }  

= cxp(2ni(U - V )  1/Jt,! , 
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Thus a suitable change of basis matrix (or of the coefficients ?Pij ) is 

1 7P12  '1/)13 7/J14 
-7/J12 1 -7/J14 7/Jl:3 

= ( _e2'i�-V)B 
M = 

-e27ri(U-V)7/J13 
_e27ri(U - V) 7/J14 1 '1/)12 

e27ri(U -V)'l/J14 _e27ri (U - V) 7/)1 3 -'VJ12 1 

We can obtain other expressions for 7/J12 , 7/J13 and 'ljJ I 4 :  

. 1. _ _  . � (U + 1) . � (V + � (l + r)) _ _ ( . 1. ) . .. . 
'f'12 - � 9 (U) ( 1 ) - exp 7r� 2 

? .� V + 2 r  

7/J13 = -i exp(-7ri(U - V) ) · 

: ) 

exp(7rir / 4 + 7riU) 79 (U + !r) exp ( 7rir/ 4 + 7ri(V + ! ) )  '19 (V + ! ( 1  + r) ) 
� (U) �(V + ! )  

-

?J(U + lr) �(V + 1 ( 1 + r) ) 
= - exp ( 7ri! (1 + r ) ) exp(27riV) . 2( ) 

( 
21 ) 

. � U ?9 V + 2 

lPI4 = i exp( -7ri(U - V) ) ·  

exp(7rir/4 + 7ri(U + � ) + 7rir/4 + 7ri ( V  + � ) )  
'O (U) 

�(U + ! ( 1  + r) ) v (V + ! ( 1 + r) )  
19(V) 

'17 (U + f ( l + r) ) 'I? (V - I - .l ( l -!- r) )  = - exp(7rir/2) exp(27r'iV ) · __ _  .2 . 19 (U) 17 (V)  2 

Lemma 2;9.  det M =I- O.  

In a similar fashion' as we did in  the previous example we can constru ct a table 

of the expansions for the functions Vii around the points Pi . 
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We have Wij (X) = aij (�) + O(Zj ) and the expansions in Table II: 

Table II 

1)( 1 , 1)  

p(l ,  - 1 )  
pC-l , l )  

p(- l , - l) 

oh. permutations 
et t /Zl  (1 + O(Z1 ) )  

et1 c!2 'I/J2 (X)(G12 + . . .  ) 
et 1 C! 3 '/)3 (X) (G13 + . . .  ) 
et l c14 '1/)1 (x) (a14 + . . .  ) 

D'h (* + O (zt )) '1/)1 
permutations V1 '1/)1 

t'P1 
t'h - *,,) 1 

- t'h 

With the expansions we have for D1Pl , DW2 , DW3 , DW4 in table II we get 

an expression V1 .Wi = 'EAi.jDWj + 0(1 ) , since the matrix (aij ) is nonsingular 

by the lemma. (In here we identify the time evolution parameter with the local 

parameters Zi about Pi and with the deformation parameter td .  
Therefore obtaining a matrix differential operator i n  M4 [[tt] ] [D] . Also , we obtain 

a commutative ring of differential operators in M4 [C[ [/tl l ] [D] , as follows from the 

representation to be obtained for the Vi 'S .  

We want to study in more detail the relations arisen from the action of the 
translation group G � Z/2 x Z/2 , whose elements we indicate by Tij = Pj - Pi . 
The action on funct ions is defined by Tijf (;¥;) = f (;!: + Ti.i ) and onc can show the 
formula 

(21) 

The above formula translatesjnto the multiplicative cocycle formula 

/, ( ) _ A. Tij (Pk ) ( ) ; , /. ( ) 1PTi.; (Pk ) Y - 'Pij Y lpPk Y . 

Indeed , ide;.-tifying the elements of G with the translation points {Pi } and with 

the translations Ti.i = Pj - Pi once an origin Po E {pd is chosen , we have the 

elements {1/Ja } ,  1Pa E r(E x Wl < d , F* (*V) ) = S" which is a ring that contains 
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( r (,,) , A S := r E, O(*'D) ) and c/Jij = T ' '1/-'" = 1 + O(it , z) which are also elements in S. 

Thus, equation (* ) is the co cycle relation T . 'Ij)" == 'Ij)ru /1P(1 ' 
Now, if we differentiate with respect to t we obtain 

(22) D'ljJri; (Pk ) (Y
) = {Dc/J;Y (Pk ) (y) + c/J;y (Pk ) (y) D log 'l/JPk (y) } 'Ij)Pk (y) . 

Let the cocycle relation (*) be written q>u,r = T ' -,p" = 1Pr,, /1/Ju . 
Now, one has the expansions around the points v E {Pi }  

1/J,, (about v) = et/Z (a",v (t) + !3",v (t)z + . . .  ) . 

One obviously has D1/J,, (about v) = D + 6(1)] 1/J,, (about v) (assuming a",v (O) f:; 
a 0) . Around the points v the expansions of the coordinate Vi (about v) = � + 

z 
0(1) = av -I- f3v -I- O(z) , where O:v is a constant . Thus 

z 

Vi (about v) . 'Ij)(7 (about v) = l:,A",pD1/Jp (about v) -I- O(l ) e f . 

Since the poles in z ha.ve to be peeled off, this leads to the equation 

(23) a" aa,v = L A(1,p ap,v (t) .  ' 
I' 

This means tha.t (Aap) (ap,v (t) ) = (aa,v (t) )  diag (av) ; namely 

Lemma 2 . 1 0 .  (A"p) is diagonalizable and nonsingular if det diag(av ) f:; O . 
In an analogous way yve obtain a relation for the coefficients Aup of the Oth order 

par t :  wo have the e<lllations 

p p 
Namely 

Let J.L = (J.Lo',p) ,  a = , (ap,v ) , '!3 '= (!3",v) ,  r = diag(av ) ,  s = diag(!3v ) ,  A = (A",p) ; 
then we can write the operator as follows : AD+J.L, but a-I (AD+J.L)a = a-I AaD-I
o:-- l Aa' + a-I ,La = r D -I- s -I- [a-- I,A ,  r] . Thus , hy an appropriate -mnjllp;at.ion the 
operator is almost with constant coefficients. 

Actu ally, by looking at the expansions of Vi we ' obtain .'< = 0 so that the repre
sentation of Vi as differential operator is riD -I- [a , -ri ] ,  a = a-I;3 . 
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Proposition 2 . 1 1 .  Tllere is a unique pseudodifferential operator Wi associated 

with JI])i = rJ) + [a , ri] , and a unique W = 1 + L::J Lia-i pseudodifferential 

operator sucb that JI])i = W-IWiW for any i. Any sllcb W differ by a diagonal 

matrix. 

If W i = ria + L:%:I a_A:a-A: , then the equality WJI])i = W i W yields the following 

oquations: 

[LI  + a, ri] = 0 

(25) [8":"2 , ri] = a_I + rJ-I - LI [a, ri] 

I �n�1 k (n - j - 1) . (k) [8_ (n+1) , ri] - a_n = ri8_n + � � (- 1) 
k 

a_ (n-k-j) S_j 
j= J A:=O 

-- I:(-l )k (n � 1) 8_(n_k) [a, ri] (k) , 
k=O 

One can choose 8-1 = -a, and the remaining 8
-

A: such that [8-k , ri] = 0 for 

any i = 1 ,  2 ,  3. Since rl = diag ( l ,  1 ,  - 1 ,  -1 ) ,  T2 = diag(l ,  - 1 , 1 ,  -1 ) ,  r3 = 

diag(l , - 1 ,  - 1 , 1 ) ,  being commutative wi th the group of matrices generated by 

(rI , r2) means that 8-k is diagonal , k > 1 .  Then, the values of the a_k are 

uniquely determined . If we perturbe the coefficients of W by diagonal matrices 

we obtain another solution to this representation. 

Proposition 2 . 1 2 .  Given UIC opcmto; d) + ra , r] , wiU, 7' r.onst;nn t; riingona.l mn.

trix, r2 = 1 ,  then, there exists a pseudo-differential operator K = 1 + 'Ew_ia-i 
such that ra + [a, r] = K(ra)K- l . Any such a solution K differs from a given one 

by a constant matrix pseudodifferential operator commuting with r . 

Proof. Let L( x) = [x , r] ; this i s  a linear derivation and satisfies r L( x) + L( x)r =: O. 

We want to find a solution K to ·the equation 

(26) 

This gives a system that implies the differential equations in W-i { L(a) = L(w-d . 
L(w_ (i+ l ) ) = 1'1V'-i + L(a)w_i = P(W-·i ) . 
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Notice that we have the following identitiefl : 

(27) LP(x) = PL(x) -'- 2rL(a) :c and P(rx) = rP(:1:) - 2rL(a):r: . 

Also 

(2�) £2 (:1:) = [L (x) , r·j = 2 (x - rxr) = -2'rL(x) = L(x) (2r) , 

Now any 4 x 4 matrix x can be written as :c = - �'/'L(:r;) + d, with L(d) = o.  
Ind eed , this follows from the above properties of the operator L. Let us decompose 

W-i = :  -!rL(w_i )  + d-i . On one hand we have
' 

Namely, 

(29) . 

Replacing, we obtain 

L(W-(i+l» )  = - �L(W�i) - � 'rL(a)L(w_i) - � L(a)rL (w_i )  + L(a)d_i 
= - �L(-W_i ) + L(a)d_i = £( - �'W�_.i + ad_i ) . 

This implies that 'W- (H l) = - !'W�i + ad-d- d_ (i+ l ) , whef(� d-(i+l) belongs to the 

kel'lld of L. 
In order to solve (**) , we will represent the solution 'W- (H l ) as the sum of a 

term in Image of L + a term in Ker L. Thus, we ean write the following recursion 

formula for W-i : 

(30) 

where the d_ i are to be determined so as to satisfy the system (**) sinee we have 

L('W-(i+l » ) = LOrL('W�i ) - �rL(a)d_i + d-- (i+ l ) ) = - � L('W-d + L(a)d_i 

= TW�i - 1'd�i + L(a) (l1'-i + � rL('W_i ) ) 

= P(7lLi ) - Td�i + 1L(aJrL('1ILi ) .  
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Assuming that L(111-.i) is known, it follows that d'-i = - !L (a)L(w_i) .  This 

element belongs to Ker L since L(L(x)L(y) ) = -2 (rL(:r) + L(x)r)L(y) = 0, and 

gives, up to a constant matrix commuting with r, the solution we want . O ·  

The first terms are 

W-:- l = - �TL (a) + d_1 where d_1 = - � J L(a)2 

W-2 = �rL(a)' - ! 'rL(a)d_ 1 + (L2 where d'-2 = - � L(a) ( �rL(a) '  - � 7'L (a) (Ll )  

We now determine the differenti al operator part o f  the pseudo-differential oper

ator K(r02)K-1 . If K = l + �w_io-i , K-1 = 1 - W_ I O- 1 + (W:.1 - W_2)a-2 + . . . . 

K (r02 )K- 1 = ( 1 + w_.10-1 + W_20-2 + . . .  ) 

(TIP - rw� d ) - 2TW'-1 + T(W�_ l - 'I1J.-2)  + . . . ) 

= r02 + L(W- l )O + L(W_2) - 2'T'W'- 1 + 1"W:' 1 - W_ l 'rW_t + . . .  

The independent term can be written as : 

no'-l + L(a)w_ l - 2r (- �rL(a)' - !L(a)2 )  + (7'W _ l - w-I 'r)w- l = 
== -rw'-l = !L (a)' + !rL(a)2 .  

Thus 

Example 2.13.  Assume now that the coordinates \t] ,  V2 , \.-':1 (having the expan

sions shown in Example 2 .7) satisfy the Euler top equations 

(31)  with relations 

Here Vl = 7- - Et (U + v)t + " ' , V2 = Et2 + E2ut + " ' , \.-':1 = '\E2 + EIE2vt, 

rr = E� = 1 , n = � ( (A3 - h)a3 + (h - Al )al ) ,  v = t ( (h - A2)lY.2 + (AI  - h)at } ,  

'w = -- en + v) = � ( (h - A3) + (A2 - h)a2) . 
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We have seen that the differential operator associated with Vi is Di = ri8 + 

]�'i (a) , L; (a) = [a , r,; ] ,  Thus, DJ = 82 + r;Li (a' ) + L.; (a)2 and DiDj = DjDi = 

'rk[P + Lk (a)8 + riL.i (a' ) + Li (a)Lj (a) (cycle i ......... j ......... k) . We wish to compare 
. . . dVk . 

the operator (*k )  wIth the operator assocIated to the funct.IOIl - - ,  l . e . , DiDj . dt 
Since the operators Di satisfy the equations 

(32) 
3 

I:: A;CtiDf = Ct]Ct2Ct3 h, 
;= 1 

we obtain the relation D; - D; = Ctk (h - Ak ) ,  i ......... j ......... k ......... i .  

I f  Si = riL., (a' ) + L; (a) 2 ,  the� we can also write Si - Sj = Ctk (h - Ak ) '  Let 
T = r;Lj (a') + Li (a)L.i (a) = rjLi{a') + Lj (a)Li (o.) , then it follows 

(i ......... j ......... k ......... i) , 

Also 

which yields , using the relations 

(34) 

Let 11S eomput.e tho di ffereuees hetwoen the indepeudeut terms of tlw operators 

2rkS = rkT + rkT - Sk 

by (33' ) , ( )2 ( ) ' ) ( ' ) « ) = 8i - Li a + 1'"Lj a Li �a + rjLj a -I- rkLi a)Lj a - Sk 
by (33) 2 = Si - Sk - Li (a) -I- rkLj (a) Li (a)-I-

-I- rk (Lk (a)Li (a) - Li (a)Lk (a) )ri + r"Li (a)Lj (a) 

by (33" ) = Si - Sk - Lk (a)rjLi (a) -I- rkLk (a)Li (a)1"i + 1'kLi (a)rkLi (a) 

= Si .- Sk + 1'dLi (a)1"kLi (a) 'rk )rk 

= Si - Sk + 1",, (oi (h - A, )rk 
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Thus 

and we can write 

with rk82 - Ckrk = Gk (rk82)G"k l , Gk being a scalar differential operator and 

t.herefore commuting with rk . 

a. Ring of differential operators. 

We consider here the construction of a map (A, V, F) -+ R into a commutative 

ring of differential operators R for the data related to a smooth elliptic curve A, 

an ample divisor 1) on A, and a line bundle F on A such that hO (F) = hI (F) = O . 
The triple (A, V, F) will be called Krichever data as similar to the Krichever data 

in [Mu 1] . One can keep in mind the example of an elliptic curve in JlD3 with 1) 

the divisor cut out by an odd section (i .e .  four points at infinity which form a 

group of translates isomorphic to '1.,/2 x 'L/2 ) . The bundle F will be of the form 

F = [7;lV - V] for some x E A, i .e .  F E  Pic° (A) will be the image of a direction 

vector D E Lie(A) = C . 
We want to construct a line bundle F* on A x Coo ( Coo := � en ) in the 

following way. Take t.he covering formed by (U -- V) x Coo = Uo and neighboi·. 
hoods U a X Coo = Ua around the points {za } x Coo of 1) x Coo , and let F* be 
defined by F0 Ocoo on each of these open sets and given by the transition func-

tions gO"a (U, Xa , ft) = exp (I::iiPolar part (lU Oi) ) at the overlappings uanuo . 
i� l Xu 

Here ft = (tl , t2 , . . . , in , " ' )  E Coo and Oi are differential forms of 2nd kind on 

A whose expansions around pofnts of 1) is (_ l )i z�:l Ci (X) + O(z-(i- l) ) dz with 

:.c E 1). An arsenal of such forms is got ten by taking the differential of derivatives 

of log 19 (as will he shown in Appendix 2) , where '19 is the thp.ta funetion vanisl:ing 
on 1). Of course, one makes sure that the gO ,a (n, Xa , it) are compatible transition 

functions . For instance, this is done by requiring the existence of a covering of 1) 

by contractible charts (small disks) Ua around the points Xa of 1) . 
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For any line bundle Q on A ,  we can also define similarly the line bundle Q* on 

A x Coo . This bundle will have transition functions jj('/I" It) = 9o,,{3 (u)gO,'Y (u, It) 

where ga,{3 is a set of transition functions for Q . 
Notice that ( around D ) r 0 1 = a (xa ) + C(Xa ) + O(z) where z is the local Xn Z a 

parameter about Xa E D such that -;)' is a holomorphie vector field on A. We uz 
want to define a differential operator 'V : F* -+ F* (*D) such that 

for a section 8 of F* . 

'V(8) = a(x) 8 
+ section of :F* 

z ' 

Take 'V : =  ';:)0 = � , then 'Vga{3 = a(x) ga{3 + (c(x) + O(Z) )jja,B ' Now , for 
utI uZ Z 

a holomorphie section 8 of F* we have 'V(8) = 'Vsa = 'Vga{J8{J = a(x) 
Sa + Z 

tf! .-__ A ..... __ -., 
901.{3('V8{3 + C(X) + O(z)) on UOl./1 , since there are holomorphic funetions Sa such 

that Sa = gOl.{J8{J on Ua{3 . 

O U· h h l '  
a(x) - a (x) - Tl' -n a(3"( we ave t e re atlOn -- 8  + ga{3 t{J = --8 + ga'Yt"(' lUS , t(3 = g(3'Yt'Y Z z 

over UOI./1'Y ' i .e .  t is a section of F* . 
We consider the situation where A is an elliptk curve and D = sum of different 

points = 1::Pi . Let Uo = A - V be the affine piece and VD = UUl'i where VD is a 
disjoint union of small disks around the points Pi and also take 'V : =  ;:,0 . 

\.It I 
For any n we have the exact sequence over A X Coo 

(35) 0 ·,--+ F* (nD) � F* ( (n + l )V) - �  F* ((n + l)D)jF* (nD) -+ 0 

( F* (nV) = F* &; O(nD) ) .  

This induces the exact sequence of cohomology groups 

(3fi) 0 -+ r(F* (nV) ) -+ r(F* ( (n + l )V) ) -+ r(F* ( (n + l )V) /F* (nV))  -+ 0 

This follows b(�callse JIi (F* ) = 0 , i = 0 , 1  , and HI (:F* (nD) ) = 0 for any 
n :::: 1 .  

Indeed, the hypothesis Hi (F) = 0 , i = 0 , 1 , implies Hi (A x coo , F* )  

Hi (7r1 1 U, F* ) = 0 , i = D, l , where 11 is an affine cover of A for which F* is 
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isomorphic to :F ® Ocoo on any open of 7f[111 , and 7f1 : A x COO -t A is the 

projection. Now, the sheaf :F* ((n + l )D)/:F* (nD) is supported at D, x Coo , thus 

]f1 (:F* ( (n + 1 )D) /:F* (nD) ) = O. Then, by using indllction on the exact sequence 

(37) 
' "  --t H 1 (:F* (nD) ) -t HI (:F* ((n + l)D) ) -t HI (:F* ( (n + 1 )D) /:F* (nD) ) -t . ' ,' 

follows that 1-]1 (:F* (nD))  = 0 , all n .  

On the other hand, 

r(:F* ( (n + l )D) /:F* (nD)) � ffi" r(Upi x CC-<> , :F* ( (n + 1)D) /:F* (nD) )  � ffiiC [ [ttl l  
� C( [ttll deg V .  

Given the C( [ttl l- lincarly independent sections SI , . . . , S k  belonging t o  the space 

F'(F* (nD) ) \r(:F* ( (n - 1)D) )  , then, the sectionS vs1 , " " VSk are in r(:F* ( (n + 
l )D) ) \r(:F* (nD) )  and they are Q[l/;l l-linearly independent . 

Indeed, if L;i AiV.'Ii = 0 ( module r(:F* (nD) ) ) ,  then V (L;iAi.'li )  = L;i (VAi ) Si + 

)::" '-\iVS" = 0 ( module r(:F* (nD))  ) implies L;iAi S.j E r (:F* ( (n - 1)D) ) .  Namely, 

;Ci AiSi = 0 ( module r(:F* ((n -- 1)D) ) ) , and from this follows Ai = O .  
Now, since the rank o f  r(:F* (nD) )  i s  n.deg(D) , we have that if S I , • . • , Sk (k = 

deg D) is a C[[tt] ]-basis of r(:F* (D) ) ,  then {vr s I ,  . . . , \7r Sk i r = 0 , 1 , . . . , n} is a 

C[ [ltl l -basis of reA x Coo , F* ((n + 1 )D) . 

Now, we wish to show the represent ability of thn affine ring R = 1'( A - D,  0 A)  
as 11 ring o f  differential operators . Let D = L;Pi , there i s  an embedding R = 

reA - D, OA) '-t E'0nr(A, O(D)0n ) = homogeneolls coordinate ring . 

Also, we have an induced mapping 

(38) reA, O(Dt)  ® reA x coo , :F* (kD) )  -t reA x Coo , :F* ( (n + k)7J) ) , 
and, if a E R, Q; = I: '( (Y

n (t1\
) 

+ lower terms '= reA, O(D)n ) . 
z - Z :1: 1 n 

Thus 

(39) 

i .n .  

(40) 
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We define an immersion ring map g:. : R '---7 Mk (lC [ [ft] ] ) [V] by 

n 
�l> (Q) = 2::: (a{r (tt)) Vr . 

r=O 

Let F be associated to c. For art elliptic curve and a divisor c on it, hO (c) = 

h1 (c) = 0 if deg c = O .  Conversely, if f: E .Tacobian of A = {c, deg c = O} , then 

c "'t P - Po and therefore hO (c) = h1 (c) = 0 unless c "'e 0 (e.g. Prop. 4 . 1 .2 , [Ha] ) .  

Thus , the above proves the 

Theorem 3 . 1 .  Let D = l";Pi he a divisor oI,l an elliptic curve A with A - D  affine 

and F a line bundle on A sl1ch that hO (F) = h l (F) = O. Suppose D gives rise 

/;0 a set of compa.tihle transition functions for the bundle F* . Then, IJJCre is an 

injection of the affine ring R = reA - V, 0 A )  into the ring Mk (lC[ [ft] ] )  [V] , and the 

space r(:F* (D)/ F* ) has a finite IC[(ft] ] -basis of I.: elements, (k = degD) . 

Example 3.2 .  If A is an elliptic curve in J!l'3 and D = 'Lt=l Pi (typically 

the section cut out by an odd theta function) . Then r(F* ( (n + 1 )'0)) has gen

erators {8 1 , 82 , 83 , 84 , . . . , vn S 1 ,  vn S2 , V'n S3 , V'n S4 } , where {Si } is a C[[ft] ]-basis of 

r(F* (TJ) ) .  

Thus , there i s  an embedding of  R = reA - TJ, 0 A) into M4(IC [ [ft] ] ) [V] . 

Appendix 1 .  Multicompor.ent KP hierarchy. 

Let us introduce some notation to consider the multicomponent KP equations . 

See [Ad-B] . We will consider wave functions of the form 

'
. 
w(ft) =:= (1 + 2:  wii) <p(ft) 

i> O  

where Wi are k x k matrices depending or. ft and <p(ft) is  the exponential diagonal 

matrix 

<p(ft) =, exp 

(2::: ( tf 
i>O 

t� 



1 40 

and it = (t l , ti , . . .  , f;i ,  _ . .  ) is the vector of time variables t:{ . .  
We have 

o 

1 4; (It) , 
o 

and if a = 2::�=1 0t-1 ' a4;(ft) = �4;(tt) .  
Given the matrix pscndocii frcrential operator vV = .l + 2:::1 'I/}'iiJ-i wc have 

W4;(It) = (.l + L Wizi) 4;(tt) = w(It) . 
�>O  

The multicomponent KP equations can be written as the set of Lax equations 

(41) 

where Q = T-V- 1 (AD) W, A = constant diagonal matrix with nonzero entries and 
. 1 . j 

RJ = W- Ejja'W, Ejj = diag(O , . . .  , 0 , 1 , 0 , . . . , 0) ,  and [ 1+ indicates the differ-

fmtial operator pa.rt of RJ . 

The set of equations (41 ) is also equivalent to the equations in the wave operator 

w 

(42) 

where [ J- is the formal pseudodifferential op�rator part . 

Proposition A . 1 . t .  GiveIl tlle wave fllnction w* (it) = W-l 4;(tt) , tlwre is a ma

trix difl'cnmtial operator pi , slIch that 

Proof: 

a 
* ( ) _ pj * (  ) -. W fJ; - i W tt . 

ati 

iJ�J w *  (It) = o (z) (p(ft) + (I + 2:: .;>0 wi z i )Ejjz--i �!{It) .  On the other hand ai,w* (it) 

O(z)4;(IJ;) + (I + 2:: >O Wizi ) �4;(ft) . Therefore � - aiEjj is a differential ' 2:' ae . . . , 
,operator that acting on w* (tt) has order OC'�- l ) and we continue by induction. 



. Then we can write 

with 

(43) 

1 4 1  

fJW-1  - 1  ( !Cli ) j .  - 1  -,-.- + W EjjU = Pi W 
of; 

Using the relation W-10tt W + RJ = [RJl+ from (42) we find in particular 

pi = [W-l (Ejjoi )Wl+ = [RJ1+ ·  
Now, i f  Q = W-l  AoW, we have 

oCJ. = OW�l W.Q _ Q fJW�l W = (pi ._ R i )Q _ Q(pi _ R i
) ot?, !Cle De ' J ., J I Ut·, 

= [Q, [RJ1 - l = - [Q ,  [RJ1 +l . 

Proposition A . 1 . 2 .  The operator Q satisfies the multicomponenl; K.P. hierarchy. 

Returning to the Euler Top cas(), wc have seen that starting with a given set 
hbo' }  of Baker functions, we have the representation V; 1Pu = Jllii'I/Ju .  Here, the 1!Ju 'S 

c:orresponci to a certain element W in the Lie group G=I + Q_ where Q_ is the 

space of matrix pseudodiffel'ential operators 2::!o WiO-i . 
By Proposi tion 2 . 1 2  Jllii = K(riDJ(i , so for some mnj llgation of the opera

tors nDi by elements Si of G ,  we get 8.;�' ! JlliiSi = W- J TiDW. Therefore, i f  Ti = 

diag(Ail , Ai2 , A'i3 , Ai4 ) ,  then the differential operators [S;l Jlli.;Sil+ = [W-1TiOW]+ 
4 . . 4 equal 2:1 AijPl and this corresponds to the multicomponent KP flow 2:1 AijOti . 1 

Appendix 2 .  Weierstrass p-funct.ions on abelian varieties. 

We consider a generalization of Weierstrass p-functions to the case of an am

!:,le divisor 'D on an abelian variety A. We assume the divisor 1) = "E'Dc< ('Dc< 
irreducible) has a symmetry group G of a certain order. This group is usually 

given by trapslations Tx such that T.;J 'D  = 'D and (- 1 )  involution /, 1.'D = 'D 
and so they belong to the finite translation group associated to the divisor 'D, 
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H ( [D] ) = {x E A :  To-: ID  is l inearly equivalent to D}, unless the variety A has 

nontrivial automorphisms (which is not a generic case) . If 19 is the theta-function 

describing the zero locus D = {19 = O} then 19 changes whith G by automorphy 

factors , and so the differentials of 2nd kind d( a�i log 17 ) ,  i = 1 ,  . . .  -' g, which have a 

pole of order two at D, are invariant . These differentials and the higher order ones 

d( 8[' log 19) can be used to get a definition of Baker-Akhiezer functions for abelian 

varieties similar to that of Manin-Kapranov [Ma-Ka) and Nakayashiki [Na 1) .  

Let { (Ua , la ) }  b e  a local data for the divisor D on the abelian variety A, and 

{)i = .. )0 . : 0 A � 0 A the usual derivations with respeet to the complex coorclinates ( Z1. 
Zi of C9 = universal covering of A. The line bundle [Dj is given by transition 

functions ga(J = ff(3 E 0:4 . Now {)i log ga(J = °fd!, - a'f· f!.!. is a 1 cochain in  0 A wich o (:J • no 
defines an element [8i log ga(J) E HI (A, 0 1\ ) � H�,l CA) . 

Lemma A.2 .1 .  The derivations O�i induce the zero map in Hl (A, OA ) .  

Pr·oof. Let {Tap }  E Hl (A ,  0 A ) .  Then, by Dolbeault isomorphism there is a form
· 

Lv' E Ii�,l (A) such that 8* (w') = {Tn(J } through the sequence 

where 0 � 0 A -t AO ! z�,l -7 0 is the sheaf exact sequence in which AO are 

Coo functions and Z�, l the (0 , 1 )  D-closecl forms. Let w denote the (0 ,  I )-form 

�;uch that 8* (w) = {#Z-;Tap } ,  w = Dna , na = COO functions such that 8{na }  = 
- homologous {) . _ .  { } 

. 
np - Oa I"V oz., Ta(J . Thus, there are holomorphlc functIOns J.La such that 

O(J - J.L(J = a�i Ta(J + (na - J.La) .  Analogously there are functions O� and J.L� 
8uch that ao� �:;�, and O� - J.L� _= Ta(J + CO� - J.L� ) . We get the Coo function 

=0 
,----''----, 

. a . . . - a =- 8 , '  I = n - J.L - - (0' - J.L' ) such that 81 = w - --w' - 8(JI' - - J.L ) . However a a {JZi a a aZi . .  a 8zi a 
, 

Lv' ean be chosen to be harmonic . Indeed, it follows from the Hodge decomposition 
(sce [C-H] ) , that w' = H(w') -1 -7)(11.) , where Hew' ) if;  the harmonic pi ece and 1 1  a. Coo 
function on A. But on an abelian variety a harmonic form has constant coefficients. 

Thus aD HCw' ) = -aD .  " aiazi = 0 and we obtain w = aCI + a{J (u) ) ,  which proves z� , z.,. L Zt 
the lemma. 0 
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Now we get that
. 
a�j ( a�i log ga/3) = 8 {!.La } 

(:) A (Ua ) ,  thus obtaining the function 

f..La - f..L/3 for functions f..La E 

(44) 
{)2 {)2 

Pij = � log fa - f..La = -,)-,. - log f/3 - f..L{1 ,  u�u� u� ij� 

which is a holomorphic function blowing up twice at v. Namely, P'ij E f(A , 0(21))) 

= L(21)) . By taking further derivatives we get 

{)n-2 
{) a {) a Pij E reA, O(nD) ) = L(nD) .  Zl l . • •  Zg 9 

These are the so called generalized Weierstrass functions . 
As {J a }  represents V, then {T; fa } represents 7,; IV = 1). ' Now, for such :v E � A 

(A the principally polarized lattice) then r;fa = eLo. (z)  la , where La (z) is linear. 

Sec for instanee the proof of Weil in [We] . Thus, it follows that rl f:�i log I a is 

invariant under such a Ta: . If A E A then T�la = cLA (z) fO! , and , at;i 10g T� 10! = 

a�i log f O! + a�i L). (z) ==> d a�i log T� f O! = d ai�; log la , which means that d a�i log la 

is really a form on A, invariant under the action of C = {a; : T; l1) = V} . 

As for the Weierstrass functions: 

Lemma A.2.2.  Tiw Weierstrass functions (44) arc invariant under C. 

Proof. This follows because , as above, the functions az�;zj log f O! are invariant 

d C· I a2 
I * f - a2 

I . f I . '  I h 1 un er Tx E , name y, azi azj Og Tx O! - aZiaZj og .  a . n pal tlcu ar, t e cocyc.e 

/)'u - / 1'1) is invari ant hy ll.I IY T,,; E n ,  1 . i l t ls  T:</I." ._ .. 1 1." ":: <p,,; 1 ms 1.0 h( �  i t. fl l l lcl.ioi l  0 1.1 

A without poles , so £Px E C. Moreover, £P : C -4 (C , +) is a homomorphism of a 

finite group into the additive complex numbers . So £P(a:) = £Px = 0 "ITx E C, and 

this implies Pij is invariant under C. 0 

Also, the higher order Weierstrass functions are invariant . 
In this way we have an arsenal of differential forms and functions that blow UP . 

at 1) with a certain order and are invariant by C. 
In the case A i s  an elliptic curve W(l can choose a local parameter z around a 

point of 1) (e .g. , the time evolution parameter) so that the local expansion of the 

function P around this point has the form p = .� + 0(1 ) . Arollnd smooth points 
of the divisor 'D on an abelian variety A!. we c an pick coordinates (x, z) so that 
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or, = ( :rl '  . . .  , Xg- I ) are coordinates bf 1), and Z = 0 defines the reduced divisor 'D 

locally. In a neighborhood of those points we can write Pij = "i;�a;) + 0 (1 ) .  

Let us consider now a (holomorphic) derivation D o n  A. We can think o f  such 

an object as an element in Cg = Lie(A) . One has the isogeny (whose kernel is the 

translation group R (1)) ) 

7r :  A ----+ PicO (A) 
cl: I--t {7;; 11) - 'D} 

As we ean think of x = 7x = exp(D) for some derivation D,  we get the appli

eation 

Lie(A) 
D 

expon�,l map A 

I--t X 
PicO (A) 

{7;; 11) - 'D} 
Now, by the exponential sheaf sequenee 0 � Z � 0 A � 0* � 0 the co cycle 

[D log ga.Bl E RI (A, OA) goes into the element of PicO (A) given by the cocycle 

{exp(D log ga(:J ) } . 

Since R I (A , 0 A ) = Lie(PicO (A) ) ,  we have the commutative diagTam 

cg = Lie(A) cbr RI (A, OA) = Lie (PicO (A) ) ------4 

(45) exp 1 lexp 
A 1r Pic° (A) ------4 

and one can see that the cocycle {exp(D log 9a(:J) } corresponds precisely (up to 

col )ol l nda.ry) to the c :oeyde { 1-';!!«I' } .  . . !Ju tj 

Lemma A.2.3 .  d7r(D) = [D log g'l<.Bl and ft r;g"ri } = {exp (D log ga(:J ) } .  . 9ct./3 

Proof. If 7r (x) = g"f3 (�t) on Ua.B ' we can determine the directional derivative of 
, g"fi Y 

7r in the direction D.  One has 

d 
(D) 

- 1 · 7r(exp(tD) )  -, 1 _ 1· ' ga.B (exp(tD) + y) - ga(3 (Y) ,7r - lm - lm '--'�---'--�---;---:'----'--'-"-t-,-'O , t  hO tga(3 (y) 
. " 1 ogo:(3 

( ) = hm L -- � Di + 0 1  = D log go:(3 . t-.o ga(3 UZi 

(Here D = 2.:.:: Di chi" and Zi are coordin�tes in A. )  Thus the conclusion follows 

from the commutativity of (45) . 0 



1 45 

This lemma shows that the cycle [D log ga,B] E HI (A,  0 A)  inducing the line 
T O g  bundle o f  c o  cycle '" 0;,(3 rv exp( D log ga,B ) , can be thought of as a derivation D g(� fJ 

via the map d7r, which by exponentiating corresponds to the line hundle L :::::; 

[r;;-l1) - Pl o In other words , a direction in the abelian variety A maps to the point 

L = [r;;-1V - V] in PicO (A) . 

Note A.2.4. Let now 80 , S I , . . . , 811. be linearly independent sections of r(V) . 
The zero divisor (Si )O = 1)i has to be linearly equivalent to V = (so ) o .  If D is 

a chosen holomorphic derivation (Le.  a linear combination of ��i with constant 

coefficients) then we can define, as we did , the associated Weierstra.ss function 

This function blows up at 21Ji , which is linearly equivalent to 21J. 
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