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RING OF DIFFERENTIAL OPERATORS AND A
RELATED COMPLETELY INTEGRABLE SYSTEM

Luis A. PiocvaN

ABSTRACT. We represent the afline ring of an elliptic curve as a ring of matrix
differential operators. As an application, we embed the phase variables of the rigid
body motion on SO(3) (Euler Top) into commuting differential operators with ma-
trix coefficients. Thus, showing that this algebraic completely intégrable system is
a piece of an infinite dimensional (four-component) KP hierarchy.

i. Introduction.

In the usual Geometric Realization of Conformal Field Theory on Riemann Sur-
faces [KN'TY], the basic *Krichever” data consist of quintuples ((C, («, 8)),p, L, z,
t), where (C,(«,)) is a Riemann surface together with a choice of a canonical
hornology basis, p € C a point at infinity, £ a line bundle on C, z a local param-
eter about p and t a trivialization of £ at p. To this data, one relates points in
the Universal Grassmann Manifold of Sato UGM by t(H®(C, L(*p))) € UGM
[Mul 2]. By dividing the projectivization of the quintuples above by the action
of Sp(2¢9,7Z) if g(C) > 1 ( the action of Sp(2¢,Z) x Aut(C) if g(C) < 1), we get
the so called moduli space of framed and gauged Riemann surfaces and an em-
bedding of this space into UGM. Morcover, the deformation of these data along
the Jacobian dircections is deterrnined by the action of the KP {lows on the points
t(H°(C, L(*p))) € UGM. Also, there is a bijection between the triples (C,p, L)
with certain conditions on £ and the affine rings O(C — p) [Mu 1].

Quite a similar data can be associated to smooth elliptic curves with a divisor
D instead of a point p at infinity. Consider for instance the data (E,D,F =
(17D — D), 2,t), where E is an elliptic curve, D = p; a divisor on E, F a
line bundle, z = {z} local equations about the points p; of D and t = {#;}
trivializations of F about the points of D. Then, one associates to it the point
1L;t;,(H°(E, F(¥D))) € UGM under suitable identifications. :

As generally believed [Sa] et al. integrable systems, finite aud infinite, can be
viewed as pieces of infinite dimensional dynamical systems like KP or multicom-
ponent KP hierarchies [Ad-BJ.

The main step is to define a map from the dynamical phase space of the inte-
grable system into an appropriate moduli space whose points are characterized by
some sort of Krichever data modulo relations like the gquintuples above. One can
bypass this by directly defining the map from the phase space into UGM with the
help of a basis for H(E, F(+D)) (the Bal:er-Akhiezer sections) , a representation
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“of the phase variables with some matrix differential operators and an identification
of a holomorphic flow on the elliptic curves with a multicomponent XP flow.

One of the results of this paper is that the data (C, D, £) with R%(L) = h'(£) = 0
and D a particularly chosen divisor, determines an embedding of the affine ring
O(C — D) into commutative ring of differential operators. This yields a general-
ization for elliptic curves of Krichever prescription for the dictionary (C,p, £) —
O(C —p) Mu 1].

We apply part of the above program to the rigid body motion on SO(3) (Euler
top). The Euler top is a system that describes the rigid body motion around
a fixed center of gravity. In the angular moment coordinates, it reduces to the
equations :

’lf] = ()\2 - )\3)’02?}3
(1) vy = (A3 = A1)vzvy
vg = (A — A2)v1v2

It has two independent integrals

Qi =} +vj + v}
(2) Q2 = M 4+ Mv3 + Agv?

which commute with respect to the Poisson bracket. @ being the trivial invariant
and (), the nontrivial Hamiltonian.

Although the real geometry of integrable systems is described, to some degree
by the Arnold-Liouville theorem [Ar], their complex geometry is morc subtle. The
nature of the solutions to integrable systems depends heavily on the complex ge-
ometry. If we require the solutions to be expressible in terms of theta functions
related to abelian varicties , then, we call such systems algebraic completely in-
tegrable (a.c.i.). Many of these systems were known classically in Mechanics and
studied in detail by several people. To mention a few, Adler.and Van Moerbeke
[A-VM 1,2], Dubrovin [Du], Moser [Mo], Mumford [Mu 1,3].

In the picture introduced by Adler and Van Moerbeke for (a.c.i) systems, the
real phase space R?®** is complexified, and the integrals are polynomials. The
complexified invariant manifolds M, = {v = (v1, - ,v2n4x) € CF Fi(v) =
¢i, i =1,...,n+4 k} are affine varieties in C>"**. They arc affine pieces of
abelian varieties A, insuch a way that the coordinates v; become nontrivial abelian
functions on A.. Thus v; € L(D) = functions on A, that blow up at a divisor D of
A, and M, = A \{ the reduced divisor D}. Moreover, the nontrivial holomorphic
vector fields Xp,,..., XF, have a linear motion on A,. '

Tor instance, in the Euler top case, one obtains (by setting @; and Qo to
constants) the affine part of an elliptic curve-in P3 = P(L(D)) with D = divisor
at infinity = 4 points. X¢, yields lincar motion on the affine elliptic curve I5, =
{ve C3,Q1 (v) = e1,Q2(v) = ¢a} and X, vanishes on F,.

The paper is organized as {ollows. In scction 2 we construct a kind of Baker-
Akhiezer functions which are suitable to represent the Euler ‘Top phase variables
in terms of matrix differential operators. It is possible to identify the Hamiltonian
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flow with a Muiticomponent KP flow under a suitable embedding. The Lemmas
and Propositions in this section describe this identification. In section 3 we give a
construction of a commutative ring of diffcrential operators associated to the data
(E, D, F), where E is an elliptic curve, D a divisor on E and F = [r;'D—"D] a line
bundle such that h®(F) = h*(F) = 0. We prove a theorem for the embedding of
the affine ring of elliptic curves into a ring of differential operators. In particular,
this will hold for elliptic curves in P3; which are related to the Euler Top.

There are two appendices: Appendix 1 deals with some basics about Multi-
component KP hierarcy. In Appendix 2 we construct Weierstrass g-functions on
an abelian variety A with the help of the defining equations for a divisor D on
A. The construction is quite similar to hyperelliptic p-functions [Mu 3]. These
functions and their related meromorphic differentials of second kind are used to
define Baker-Akhiezer functions. It is hoped that some results obtained for the
elliptic curves can be extended to abelian varieties.

2. Baker functions defined on an elliptic curve.

In this section we present several examples. There are different attempts to
defining a Baker-Akhiezer function for the divisor D = py + pa + p3 + p4= sum of
points. The relevant examples 6.1 and 6.6 allow us to identify the Euler Top flow
with a Multicomponent KP flow.

Iirst, we consider the usual method for constructing Baker-Akhiezer functions.

Given the divisor £, one considers the 9¥-function © associated to it ([We], [Ig]),
i.e. © vanishes once on £ Let A, : A — HO(A,QY)*/H1(A,Z) be a set of
Albanese’s maps, A, (z) = ( f;r w), for some conveniently chosen x4 € A. Here,
the integrals are along a patfl v joining 4 and z. For elliptic curves these maps
are isomorphisms and any two of them differ by a translation on E.

There is a holomorphic differentials w, and basis of homology cycles {a, b}, such
that the peried matrix has the form ([, w, fyw) = (1,7). According to Igusa [Ig]
any 9-function © can be written as a linear combination of 1J-series of the form

(3) Om(r,2) = Z (*(é(p +m)r(p+m') + (p+m') (2 + m’))
PEZ

where m = (m'm”) and m/,m” in R and e(z) = exp(2miz). Such a 9-series
satisfies '

(4)  On(r,z+n'T+n") = Ou(r,2) e(=in'tn’ —n'2) e(m'n” —n'm")

kN

for any element n'T+n", (n’,n" € Z), belonging to the lattice of the elliptic curve.
Moreover, if 6 is the integer delining the polarization type of £, then there exist
real nunbers m/, ' € R such that,

(5) 0(z) = Z constant - O (pymss—1,m) (T, 2),

T mod Z

where r runs over a complete set of representatives of (%%) /Z.
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Following [Du], [Sh] and [Ma-Ka] we define the Baker-Akhiezer function asso-
ciated to the divisors D and £ as follows.

Y(u, t,xe,z), wEC, O)#0, teC® z€A-D=U,
‘ : Za a local parameter around x, € D defined on the chart U, .
such that the U, ’s are disjoint.

o\ OBt tu— A, (T
©) w(u,ft,-’"m"’):e(zt"/ﬁ“> Shoa

where wf’s are normalized 2" kind differentials and B their matrix of b-period:
B = (f,w’). The w}’s have local expansions around D N Uy,
wy ~ (=1)'ei—35 + O(25%) dza-
2 :
As we increase w by the period n’'T + n” we get the change

O(w+n't+n") = Z crO(rpmrs—1mny (T, w + 0’1 +n')
r mod Z .

Il

Z c,.@(,._'_m,‘;_l,mu)('r, 'U)) e(('["i+ m,'5_1)'il")
r mod Z ’

-e(—gn'tn’ —n' (m" +n") —n'w).

O(w + wq) . On"(w + w
_(—(")WQ is changed by e(—n’wo)i@—[],r%ml)—o)
theta function vanishing on a divisor linearly equivalent to £. Since we want the
same 6-function we have to ask £(£) =1 and therefore § = 1.

Now, changing > ¢; ffﬁ w?, by the homology cycle n'b+n’"a produces the extra
factor e (Y°; tin’ *(f, w)) in v, which cancels with the contribution of the term
e(—n' (3t '(fywh))) = a(—n'Btt) due to the quotient of theta functions.

"This shows that the function (6) extends to a well defined meromorphic function
on the open set Uy that blows up once at £ where £ = {z € A: O (u — A, (z))
= 0} and has essential singularities at the points of D.

Let t be a uniformizing parameter and z; = O(t) the local parameter at the
piece p; of the divisor D = py + p2 + p3 + p4. Q' the normalized differential of 2"
kind with a single pole of order » + 1 at p; and holomorphic everywhere else. ,

Consider the map ¢ : E — Pic?(E) defined by ¢(z) = [r,D — D] (the canonical
map). This has a finite kernel (the translation group H(D)). Let £ be a divisor in
Pic®(E) such that D = ¢~ 1£. Then 6(¢(p)) is a theta function for the divisor D.

A Baker function can be obtained as :

Thus , where O[n"](w) is a

xQ?> o, (f:;w'*}-tnU?'i‘ﬁ)

(7) ¥iy(z) = exp (th / P ( % +§)
p 2\ Jp, ¥

o
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where w is a nonzero holomorphic differential, and ; theta functions associated to

translates of D. As we go around a b-cycle of E we pick a b-period of Q7. So the

exponential gets increased by the factor exp(t, [ Q}'), which will cancel out with
ur

factors of 8; and 6,.

Lemma 2.1. The expression (7) is a Baker function at p; associated to the divisor
D. It has the expansions

l eut"/z? - O(2;)) around p;
(®) o) = { (1+0(=4))  around p;

e¥'nii (14 0(z;)) around p;, j # .

- Proof. Assume 6,, 0, are 6 functions of order v with characteristics [g], i.e.'b
satisfy a relation of the type

0, [g] (z+2miN + BM) =
exp {-g(BM, M) = (M, 2) + 2mi((a, N) = (8, M)) } 6, [g] (2).

If ; and 6, are of the same type and order then all the factors cancel except the
factor exp {—v(M,t,U*)} = exp {—-l/ tn Sage, Q?} ’

- So if we add the factor v in the exponential of the Baker function we obtain the
desired cancelling, i.e. (7) is 2 well defined meromorphic function outside p;, with

zeroes at 6, (f( w+ty Un+\) =0 and poles at 65 (f")“w+£)

As candidates for 6; and 6, one can pick the functions ¢ [(“'Fg )y "] (vz|vB).
Around p; we have

_n. dz1

©) Cap =2 o),

i

$0

(10) / 9?=ﬁ+0(1) and et = /A (1 4 Oy, ).
Po i

One can pick as z; the time parameter ¢ of a holomorphic vector field in E. One
also has the expressions (8) around p;.

Let 'r,, be the translation that sends p; — pj, i.e., addition by p; — p;, and let
Q; = 7,82 be the pull back of €);. Then ; blows up at pj.

Now we have the formula [ Q; = [ - Q =.[. Q; (since a + 7;; is homologous

to a) for a period a of ; (i.e., the perlods are the same). (Notice that one can
choose a so that all the hdnﬂates Tija of a do not meet the poles of ; or its
translate ;.)
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If we let ¢;; = f;:’wi_m Q; then we have f:o —0; — f'{?‘mf'p"' Q = —¢;;. In
other words, one can interpret the cycle c;; as the difference between the infinite
integrals f::rpi_pj Q; — j;) Q; as £ — p;. One has ¢;; + cjr = cik.

The correlation function f;; defined by df;; = Q; —Q; is defined on the universal
cover of E. Up to a constant we can pick f;; = [*Q; — [ Q; which is a function
that blows up at p; and p;.

Now, we can write [*Q; = [* Qj + fij, and let oz = [P/ Q;, i # j. Thus, we
have

1/)? =éeY tnoij (1 + O(Z,)) about p;
(11) _ =0(1) O

Lemma 2.2. We have the estimates

14
d ——— + O(z; > Y (z) Iifz is around p;,
(12) () = (w (z) (=) ) ¥l (o) ‘
o 0(1) if z is around pj, j # i.

Proof.

d n n n
o (eut,,/z‘- (1 + O(z,-))) — i%evtn/z,- (1+ O(ZZ'.)) fi—e"t"/Zi Ol(zi)

(2

- Th
2;

= (i + Oz(zi)> Py,

d
Ere”’“’“‘(l + O(z5)) = €™ (vaij + O1(25)) .. O
n

Proposition 2.3. There is a unique function, up to an element in II(&y), having
essential singularity at the point p;, zeroes-at £ and blowing up at Es.

Proof. If 1) and 1/; are two Baker functions then (,71 /4 is meromorphic on the elliptic

curve because the essential singularities cancel. The poles at £ also cancel. Thus,

the divisor of 1/3/1/) comes from the zeroes of 3 and 1, namely & and &. So, we

have & linearly equivalent to & for all |t,| < 1. Since the group of divisors
linearly equivalent to & is finite (the translation group H(&p)) we have that such.
a Baker function is unique' up to an element in the Translation group of &. O

Note 2.4. It follows from Proposition 7.3 the following lemma:

Lemma 2.5. On an elliptic curve, a Baker function with expansion 1) =0(z)e"/*
and no other zero or pole has to be zero.

Note 2.6. For elliptic curves it will be shown in Theorem 3.1 that there is an
~embedding R = I'(A — D, O4) into a commutative ring of differential operators
with matrix coefficients.
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Example 2.7. In order to illustrate Note 2.6 we draw Table I with the expansions
of ¥1,...,1%4 and Di)y,..., Dy around the points pq,...,ps, where the p;’s are
the points of the divisor of the Euler Top. Let {v;,v2,v3} be the generators of
the afline ring associated to the Euler top system which satisfies equations (2).
The invariant manifolds of this system have divisor at infinity D = Zp(6y,82) =
p(1,1) +p(1,-1) + p(—1,1) + p(=1,—1) = p; + pa + p3 + p4, and the expansion
of the functions {vy,vs,v3} about D, in terms of the time evolution parameter ¢
associated with the Euler top flow, are

4
m:mvl:&(}—(uw)wm) 62 =83 =1,

(13) 1/2¥\/5'7v2=62<%+1tt+---> a =M — A2, ﬁ¥A3—A1,
\%z\/fy_ﬁv3=5162<%+vt+---> v =X — As.
Table I
n(1,1) p(1,-1) )p(—l, 1) p(-1,-1)
P err/m(1 40(,»?1)) et1™12(1 + O(z2))  €/1%13(1+0(23)) €’ *14(1 4 O(z))
Yo NS (140(n)) /21 +0(z)) €131 40(zs) €192 (1+ O(24))
By MO (140(z)) N1+ 0(z))  e/=(1 +0(za)j #1103 (1 1 O(24))
P4 e’t1%41(1 4 O(z1)) evtieaz(1 4 Oézz)) e’t1%43 (1 + O(z3)) evti/za 1+ O(z4))\
b (L+06)n o) o) o)
Db o(1) (52 + O(ze)) vn
Dijy ( 2 + O(z:;)) b
Difs (:: + O(m) W
Vitht St i 2 —

Notice that ;(z + p; — pj) = .exp(vtncij) 1i(z) (with fp’:f 0 = f:’o Q; — cij),

once one chooses convenient 8 functions to construct the remaining Baker functions
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from a given one. This is because we have

T T+pi—p;
(14) / Qi = / Qj - Cij
o Po )

ancl
. T z+pi—pP; T T+pi —p; Pj
(15) /w:/ w-l—/ w=/ w+/ w,
Po Jpo T+p; —p; Po Pi

since w are translation invariant 1-forms on an elliptic curve.

Example 2.8. Consider now a 2"! kind normalized diflerential form €2 that blows
up at the %-periods p1, P2, p3 and py to order two, thus having local expansion
_gz{;, where 2; is the local parametér at the point p;. Let 7;; be the translation
by *:he vectors p; — p;. Assume that these translations are all -—-perlods

We assume that the differential € is invariant under the group of translations
7ij(x) =  + p; — p;. This is a subgroup of the group of translations associated to

the divisor D = p; + p2 + p3 + p4. We have the following relation:

Ty T; Ti+pi—pi T 5 Po+p;i—pi T
(16) / Q:/ 0= n:/ Q—/ n:/ Q—cy,
o Po Po+P; —Di Jpo Po Po

where 2; = x; + p; — p; and x; is cloqe to p; (and x; is close to p;).
1
(’I' ) +O(Z](T1)) j(wj)_m(';j+0(zj(mj))

with ; = z; +p;—p1 and for certain coefficients c}; satisfying the cocycle condition

One can pick py so that fT‘ 0=

J Y R Y
Cij t € = Cigy G = —Cj4

Now on the long range curve y; we have

/ Q= IQ+/ Q=/ Q+periods=/ Q+/ Q + periods of €.
¥i () Po T; v () PO T .

Naely
Tj T T z
(A7) e =/ ——./ Q= / Q —/ Q + periods of §2 (z; close to p;).
Po Po T xrj

On the other hand, for a holomorphic normalized translation invariant differ-

ential w we have

Tj . Ti+pj—Pi T; 1{-;4-?;‘ —Pi Tq Pj
’ Po Po Po X5 - Jpo "
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)4 . . .
where we assume f;’ wisa %-perlod. Also, modulo a period
T

) x T Dj
(19) / w E/ w+ / w.
i ::j . i

Given the Y-functions ,, 95 related to any of the points p;’s, and of the same

order, we define the following Baker functions

@ sl [0) "G

where the points x; are in a chart U; abonut p;.

One can relate the behaviour of v; as x approaches p;. We have

e \O([Zw+ [Dwrtf,0+E)
"t/m Q) 9 (J2 w+ [ w+¢)
91(..) Da(..))

92(..) 01(...)

| O ([rw+t[,Q+E) D2 ([ w+E
= oxp (o) ¥5() { 9, (Sz, w+tf,Q+ f)) ' r*ﬁz((j;"j w+ 2) }
=exp (vici;) Pi(z) ¥ij(x)

Pi(z) = exp (v ic;;) exp (

J

where 7* represents translation by the 1-period J; Zj w.

Now, we would like to estimate the term within bracesasz — p; andt — 0. We
take 91 = Yoo and Yo = Jq;, the elliptic f-functions with %—integer characteristics.
If 9 represents the Riemann #-function associated to the elliptic curve of lattice

Z{1, 7}, then we have the usual relations:

Yoo(2,7) =9(2,7); Jo1(z,7) =I9(z + %,T),
V10(2, 7) = exp(mit/4 + miz) I(z + 37,7),
D1 (z,7) = exp(mit/4 + mi(z + NIz+ 50 +7),7)

I(z + at + B, 7) = exp(—wia’T — 2miaz) ¥(z, 7).

and the relations on page 19 [Mu 2].
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Now, let p;; = f;j w, so that p12 = %, p13 = 37, p1a = 5(1+ 7). By our choice

and use of tables we obtain

1901(U) 911 (V) _ YU + %) IV +5(1+71)) cxp(m'(_V + 1))
Doo(U) ~ 010(V) JI(U) IV +1+ 37) exp(mi(V)) ’
exp(—mr/4 — mil) 1910(U) 911(V)

g = exp(-7r1rr/4 — V) YooU) Vo1 (V) V= / wtE

cexp(—mit/4 = miU) I (U) Ju(V) .,_/ /
exp(—miT /4 — wiV) 1900(U) Yoo (V)’ v= w+t.bQ+€'

Pro =

hy=1
One uses the period relations

Yo1(z + at + B) = exp(—mia — Tia’T = 2wiaz) 9o (2),
Yoo(z + a1 + B) = exp(mif — mia®T — 2miaz) 9;o(2),

I (z + ar + B) = exp(mi(B8 — d) — mia®T — 2miaz) V11 (2), .

to find

00] @l —thi2 = Y3

900(U)  {=(=00(V))} ~ ’

Y11 (U)} I (V

1,/)23 =iexp(—mi(U - V)) {1900(U() {goo(V()}) —1)4,

{exp(—mit + 2miU)010(U)} 911 (V)
Yoo(U) {exp(+mi — mit + 2miV) 961 (V) }
= —exp(2mi(U — V)) 13, .
) . {exp(mi — wiT + 2wiU) 91, (U)} 911 (V)
Yaz = iexp(=mi(U — V) Yoo(U) {exp(—mit + 2miV) 9oo(V)}

= —exp(2mi(U — V)) 914,
{exp(—mit + 2miU) 91, (U)} 911 (V)
Yoo(U) {exp(—mit + 2miV) 9po(U)}

o1 =

a1 = —iexp(—mi(U = V))

g = +1exp(—7r1(U V))
= exp(2mi(U — V))T/)M,

Poq = 13,
P34 = P19,
hag = P31,

P = 1.
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Thus a suitable change of basis matrix (or of the coefficients ;;) is

1 P12 Pz Yua
~h1 1 -a P13 A B
M= v =
_621r'i(U—V),"[J13 _621ri(U—V) wlci 1 ¢l2 __élml(l/—V)B A

e?ﬂi(U—V),lplll _627”.((]“‘/)7/)13 —'(/)12 1

~ We can obtain other expressions for 2, %13 and ¥;4:

4MU+@.WV+§O+ﬂ)

Y12 = I(U) IV + %'r)

= —exp(miz)---

$h1a = —iexp(~mi(U — V))-
exp(mit/4 + mil) H(U + 17) exp(mir /4 + mi(V + §)) 9(V + 3(1 4 7))
' I(U) IV +3)
HU + 1) IV + 51+ 7))
IU) IV +3)

= —exp(mig (1 + 7)) exp(2wiV) -

14 = texp(—mi(U — V))-
_exp(mit/4 + mi(U + 8) + mit /A + iV + §))
J(U)
IU + 31 +7)9(V +3(1+7))
9(V)

A+ 5(1+7)) OV - §(1 + 7))

== exp(miT/2) exp(2miV) - I(U) (V)

Lemma 2:9. det M #0.

Proof. Ift =0then U=V , 912 = -

. . N N
det M = <1 + (%) ) (1 _ ((L3(],2> ) 20
apao ! agiy

for appropriate values of a;, ag, a3, ag. O

In a similar fashion as we did in the previous example we can construct a table

of the expansions for the functions 1/; around the points p;.
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We have 9;; () = 45 (€) + O(z;) and the expansions in Table II:

Table II
Py, permutations Dnn permutations Vi
p(1,1) e1/#1(1 4 O(21)) " (£ +0@)) v Ly
p(1,~1) ei1012¢2(m)(a12 +--4) . e %1}!1
p(=1,1) efr13qn(x)(arz +---) =14
p(—-1,—1) ehreraqghy(x) (14 +---) —%1/)1

With the expansions we have for Dy, Dvs, D3, D14 in table II we get
an expression Vi.¢; = £\;;Dvy; + C(1), since the matrix (a;;) is nonsingular
by the lemma. (In here we identify the time evolution parameter with the local
parameters z; about p; and with the deformation parameter ¢;).

Therefore obtaining a matrix differential operator in My|[[t#]][D]. Also, we obtain
a commutative ring of differential operators in M4[C[[#]]][D], as follows from the
representation to be obtained for the v;’s.

We want to study in more detail the relations arisen from the action of the

translation group G = Z/2 x Z/2, whose elements we indicate by 7;; = p; — p;.

The action on functions is defined by 7% f(z) = f(z + 7;;) and one can show the

formula
(21) Pp, (T 4 Tig) = by, (py (T + Tig) Py ”(p'“)('(: + Tij)s
where ;.7 %) i5 defined as follows:

735 : o
[ty th9+6+ M) .‘92 (e +€)

9 (
71J(T’k)(m+,r ) -
ij p— ) Tred : .
D2 (frij_(p:) wtE+ :: w) g (fi;r(;:) wttf,Q+ §)

The above formula translates.into the multiplicative cocycle formula

(+) Drey oy () = 6179 () P, ().

Indeed, 1dent1fy1ng the elements of ‘with the translation points {p;} and with
the translations 7;; = p; — p; once an origin pg € {p;} is chosen , we have the

elements {1, }, 1, € I'(E x {|t| < €}, F*(*D)) = $, which is a ring that contains
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S = I'(E,0(xD)) and ¢]\”) = 7 -4, = 1 + O(it, z) which are also elements in &.
Thus, equation (*) is the cocycle relation 7 - vy, == 74 /90

Now, if we differentiate with respect to ¢ we obtain

(22)  Dibrypy(®) = { D87 ™ (0) + 677" (1) D1og b, (1) } s (0).

Let the cocycle relation () be written ¢or = T - Yo = V1o [P0

Now, one has the expansions around the points v € {p;} .
Vo (about v) = €% (g, (t) + Bop (t)z +---).
One obviously has D, (about v) = E + O(l)] Yo (about v) (assuming a, ,(0) #
0). Around the points v the expansions of the coordinate V; (about v) = % +
o(1) = %5 + B, + O(z), where @, is a constant. Thus
Vi (about v) -, (about v) = £\, ,D¢, (about v) +O(1)e*.
Since the poles in z have to be peeled off, this leads to the equation

(23) Q, Qg p = Z /\a,p ap,u(t)- ’
op

This means that (Ao))(apu(t)) = (a0, (t)) diag(a,); namely
- Lemma 2.10. (\,,) is diagonalizable and nonsingular if det diag(c,) # 0.

In an analogous way we obtain a relation for the coefficients A, , of the 0® order

part: we have the (\.qnatioﬁs

(24) ofop + Butoy = Z Ao,p (B + a:u,u) + Z Ho,pQp,v-
p p

Namely

(l‘o,p)(_ap,l'(t)) = (Bow(t)) diag(o:,,) + (@00 (t) diag(By) — (Aop)[(Bp,w () + (a;w)]'

- Let p = (#o,p), @ =‘(at;,l'),ﬂﬂ= (Bo,v), T = diag(ay,), s = diag(By), A = (As,p);
then we can write the operator as follows: AD+pu, but ™} (AD+p)a = o~ XaD+
o'\ + o lpa = rD 4 s+ [a718,7]. Thus, by an appropriate-conjugation the
operator is almost with constant coeflicients. '

Actually, by looking at the expansions of V; we obtain s = 0 so thét the repre-

sentation of V; as differential operator is r;D + [a, 73], a = 7113
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Proposition 2.11. There is a unique pseudodifferential operator ¥; associated
with I); = 7,0 + [a,7;], and a unique W = 1+ Y o2, 8_,07% pseudodifferential
operator such that I); = W—1U,W for any i. Any such W differ by a diagonal

matrix.

FW; =rid+ 5oy a_;07%, then the equality WI); = ¥;W yields the following

equations:

[S._l + a, Ti] =0

(25) [s22,75) = a—1 +ris_ 1 — s_1[a, 7]
n—in—j-1 n—j _’1 . X
j=1 k=0

n—1
win—1
“Z(—l)k< k >S—<n—k>[a,n]"°’-
k=0

One can choose s_; = —a, and the remaining s_j such that [s_g,r;] = 0 for
any ¢ = 1, 2, 3. Since r, = diag(1,1,-1,-1), r» = diag(1,-1,1,-1), r3 =
diag(1,—1,~-1,1), being commutative with the group of matrices generated by
(r1,72) means that s_; is_ diagonal, £ > 1. Then, the valués of the a_j are
uniquely determined. If we perturbe the coefficients of W by diagonal matrices

we obtain another solution to this representation.

Proposition 2.12. Given the operator 0 + [a,7], with T constant diagonal ma-
trix, 7> = 1, then, there exists a pseudo-differential operator K = 1 + Sw_;0™*
such that r@+ [a,r] = K(r8)K~'. Any such a solution K differs from a given one

by a constant matrix pseudodifferential operator commuting with r.
Proof. Let L(z) = [z, 7]; this is a linear derivation and satisfies rL(z)+ L(z)r = 0.
We want to find a solution K ‘to-the equation

(26) (r0 + L(@) (1 + Dw_i0™) = (1 + Sw_i0™)(rd).

This gives a system that implies the differential equations in w_;

- (e
| Lw_(i+n) = rwl; + La)w—; = P(w_;).
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Notice that we have the following identities:

(27)  LP(z) = PL(z) = 2rL(a)x and P(rz) = rP(z) — 2rL(a)x.

Also
(28) L*(z) = [L(z),7] = 2(x — rar) = —=2rL(z) = L(z)(2r).
Now any 4 x 4 matrix # can be written as # = —3rL(z) + d, with L(d) = 0.

Indeed, this follows from the above properties of the operator L. Let us (leco}npose

w_g = —%rL(w_i) +d_;. On one hand we have
'f—2rL(w_(i+1)) = L*(w_(ip1)) = LP(w_;) = PL(w_;) — 2rL(a)w_;.
Namely, |
(29) L(w_(i41)) = —37PL(w_;) + L{a)w_;.
Replacing, we obtain |

. ] .
L(w_(i41)) = —§L(w'.i) — gri(a)L(w_;) — $L(a)rL{w_;) + L(a)d_;
=—3L(w—;) + L(a)d_; = L(—3w’; +ad_;).
This implies that w_;4q) = —%w’_i +ad_; +d_(;y1y, where d_(;, 1) belongs to the
kernel of L. A
In order to solve (), we will represent the solution w_;; 1y as the sum of a

term in Image of L -4+ a term in Ker L. Thus, we can write the following recursion

formula. for w_;:
(30) w_(ip1), = §rL(w-s) — grL(a)d—i + d_),
where the d_; are to be determined so as to satisfy the system (+*) since we have

L(w_(i41)) = L(zrL(wl;) — grL(a)d—; + d-.(i+1)) = —3L(w-3)" + L(a)d—;
=rw'; —rd_; + L(a) (w—; + 3rL(w_;))

= P(w_;) — '_”d’—i + 5 L(a)rL(w_;).
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Assuming that L(w_;) is known, it follows that d_; = —}L(a)L(w—;). This
element belongs to Ker L since L(L(z)L(y)) = —2(rL(z) + L(z)r)L(y) = 0, and

gives, up to a constant matrix commuting with r, the solution we want. 0O-

The first terms are

w_y = —3rL(a) +d_, where d_; = —3 /L(a)2
w_y = trL(a) — irL(a)d_y + d—_s where d’_y = —§L(a) (§7L(a)’ — %1'L(a)d_1)

We now determine the differential onerator part of the pseudo-differential oper-

ator K(ro?)K~L. If K = 14+Sw_;0~", K~ = 1—w_;8~ ' + (w2, —w_2)0 "2+ - .

K(rd® )K" = (1+w_107" +w_20"2+--)
| (rd® —rw_;0 — 2ruw’_| + r(w?, —w ) +---)

= 710> 4+ L(w_1)0 + L(w_s) — 2rw’_, + ru?; —w_yrw_y +---
The independent term can be written as:

rw’_ + L(a)w-y — 2r (—4rL(a) — $L(a)?) + (rw—; — w_yr)w_y =

=—rw_, = iL(a) + %rL(a)2.
Thus
(*;) (KoM K7YY =0 1 Li(a)d 1 SLa(a) 1 riLi(a)®.

Example 2.13. Assume now that the coordinates V;, Vs, V3 (having the expan-

sions shown in Example 2.7) satisfy the Euler top equations

dV, :
S -VaV3 V2 N \: .\ V2
dV, ' 0 . (621 %) 30 (63X %) -
(31) = = -V Vs with relations MV2 VR MgV2
. + + = h.
d& =-WV, Qa(x3 [e %1231 ) Qg
dt )

Here Vi = & —ag(u+v)t +---, Va = & +eut+---, V3 = 42 + 16901,

A =e&=1u= A —has+ (hr-A)a), v =F((h— M)z + (M — b)),

w=—(u+v)= %((h — A3) + (A2 — h)as).
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We have seen that the differential operator associated with V; is D; = r;0 +
Li(a), Li(a) = [a,r;]. Thus, D? = 8% + r;L;(a’) + Li(a)? and D;D; = D;D; =
r0% + Lg(a)d + m:Lj(a’) + Li(a)Lj(a) (cycle i — j — k). We wish to compare

: . . . Vi .
the operator () with the operator associated to the function —l—k, ie., D;D;.

dt
Since the operators I; satisfy the equations
3 3 .
.
(32) L a; D} = oy aping, E Xia; D} = ayaaash,

we obtain the relation D} — D} = a(h — Ag), i = j — k — i.
If s; = r;L;(a’) + Li(a)?, then we can also write s; — s; = ar(h — A\g). Let

T =r;Lj(a") + Li(a)L;(a) = rjLi(a’) + Lj(a)Li(), then it follows
(33)  [Li(a), Li(a)] = s La() — iy @) = rs L)y (i j = k= ).
Also

(33) T = sj—Lj(a)2+rkLi(a)Lj(n,) = simLi(a)g—!—rij (a)Li(a) (e = mi75),

which yields, using the relations

(33") Li(a) = riLj(a) + Li(a)r; = r;Li(a) + Lj(a)r; (i — j — k)

Li(@)(r;Lia) = r:Ls(a) L2 Liy(a)r; Lu(a)r;
(34) =sg;—sj=agh—-M) (F—-7—k—1)

Let us compute the differences between the independent terms of the operators

(Kr(re0?)K; ')+ and D;D;. This is 28 = 2T — ris

2"°kS =7, T+ Rl — Sk

83 5~ Li(a)? + ruL;(a)Lila) + m;L;(a’) + ri Li(a) L;(a) — sk

PEY o - s - L@ il @Li)+
+ e (Li(a)Li(a) ~ Li(a) Lk(a))rs + i Li(a) Ly (a)

Y& o — sk — Li(a)r;Li(a) + reLi(a)Li(a)ri + riLi(a)rsLi(a)

=s;— Sk + 7'k(Li((z)fr'kL,-(a)'r'k)rk
= 8; — Sk + rr(ci(h — X))

= at-(h - A,) — Otj(h - A])
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Thus
(Kk(rk52)ch—1)+ =D;D; + § {a;(h— ;) — ai(h — X))} ri = DiDj + cxr,

and we can write

(Kk(rk62 — C]‘;’I",‘,).Kk—l)_F = DiDj,

with 7,02 — exrr = Gi(ri0?)Gy', Gk being a scalar differential operator and

therefore commuting with 7.

3. Riné of differential operators.

We consider here the construction of a map (4, D, F) — R into a commutative
ring of differential operators IR for the data related to a smooth elliptic curvé A,
an ample divisor D on A, and a line bundle F on A such that h®(F) = k! (F) = 0.
The triple (A, D, ) will be called Krichever data as similar to the Krichever data
in [Mu 1]. One can keep in mind the example of an elliptic curve in P3 with D
the divisor cut out by an odd section (i.e. four points at infinity which form a
group of translates isomorphic to Z/2 x Z/2 ). The bundle F will be of the form
F = [1;'D — D] for some z € A, i.e. F € Pic?(A) will be the image of a direction
vector D € Lie(A) =C .

We want to construct a line bundle 7* on A x C*® ( C*® := lim C" ) in the
following way. Take the covering [ormed i)y (U - D) x C*® = Uy and neighbor-
hoods Uy x C*° = U, around the points {zo} X C® of D x C® , and let 7* be
defined by F ® Q¢ on each of these open sets and given by the transition func-
tions go o (4, Za, t) = exp Ztipolar part ( / ’ Qi> at the overlappings U, Up.

! o

i>1 .
Here # = (t1,%2,..., tn,...) € C® and ; are differential forms of 2"¢ kind on

A whose expansions around points of D is (—-1)'%@(’6) + O(z=(-1) dz with
"z € D. An arsenal of such forms is gotten by taking the differential of derivatives
of log¥ (as wiil be shown in Appendix 2), where 4 is the theta function vanishing
on D. Of course, one makes sure that the go (1, Zs, ) are compatible transition
functions. For instance, this is done by requiring the existence of a covering of D

by contractible charts (small disks) U, around the points zo of D .
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IFor any line bundle G on A, we can also define similarly the line bundle G* on
A x € . This bundle will have transition functions §(u, t) = gu,p(w)go(u,1t)
where g, g is a set of transition functions for G.

Notice that ( around D ) f 0 a(:ra) + ¢(zq) + O(z) where z is the local

parameter about z, € D such that 6—; is a holomorphic vector field on A. We

want to define a differential operator V : * — F*(xD) such that

V(s) = a(r)s + section of F*
for a section s of F*.
0 0 - a(z) . ~
Take V := — = —, then Vjap = —Gap + (c(x) + O(2))jap. Now, for
6t1 0z z '
a holomorphic section s of F* we have V(s) = Vs, = Viapsp = 2(:—')30 +

g

fla/a(’VSﬁ + ¢(z) +O(z$) on U,g, since there are holomorphic functions s, such
that sq = gagsp on Uayg.

a(z) a(z)

On U,py we have the relation ——= s+ goptg = 8+ Jaryty. Thus, tg = gpyt,
2 2

over Uygy, i.e. t is a section of F*.

We consider the situation where A is an elliptic curve and D = sum of different
points = £p;. Let Uy = A — D be the affine piece and Vp = UU,, whe‘re Vp is a
disjoint union of small disks around the points p; and also take V := —.

ot

For any n we have the exact sequence over A x C*®
(35) 0.5 F*(nD) 5 F*((n+ 1)D) -» F*((n + 1)D)/F*(nD) — 0

(F*(nD) = F* @ O(nD) ).

This induces the exact sequence of cohomology groups
(36) 0 — I'(F*(nD)) - I'(F*((n+1)D)) = I'(F*((n+ 1)D)/F*(nD)) — 0

This follows because HY(F*) = 0,4 = 0,1, and H'(F*(nD)) = 0 for any
n>1. A

Indeed, the hypothesis H:(F) = 0, i = 0,1 , implies H*(A x C®,F*) =
Hi(vri'l.u,f*) =0,7=0,1, where i is an afﬁne cover of A for which F* is
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isomorphic to F ® Oce on any open of w7 '8 , and 1 : A x C® — A is the
projection. Now, the sheaf F*((n + 1)D);/F*(nD) is supported at D x C* , thus
HY(F*((n+ 1)D)/F*(nD)) = 0. Then, by using induction on the exact sequence
(37)

- HY(F*(nD)) — H'(F*((n + 1)D)) — Hl (F*((n +1)D)/F*(nD)) —
follows that H'(F*(nD)) =0, all n.

On the other hand,

I'(F*((n + 1)D)/F*(nD)) ~ &;I'(Up, x C=,F*((n + 1)D)/F*(nD)) ~ ®;C|[[#]]
= €[] %5 D, | |

Given the C[[t]]-linearly independent sections sy, ..., sy belonging to the space _
I'(F*(nD))\I'(F*((n — 1)D)) , then, the sections Vs, ..., Vs are in I'(F*((n +
DD))\I'(F*(nD)) and they are C[[#]]-linearly independent.

Indeed, if $;0;Vs; = 0 ( module I'(F*(nD)) ), then V(Z;Aisi) = E;(VA;)si+
LiAiVs; = 0 ( module I'(F*(nD)) ) implies $;\;s; € N'(F*((n — 1)D)). Namely,
iAis; = 0 ( module I'(F*((n — 1)D)) ) , and from this follows X; = 0.

Now, since the rank of I'(F*(nD)) is n.deg(D), we have that if s),...,s; (k=
deg D) is a C[[t]]-basis of I'(F*(D)), then {V"s1,...,V"sx; 7=0,1,...,n}isa
C[|#])-basis of I'(A x C>®, F*((n + 1)D).

Now, we wish to show the representability of the affine ring R = I'(A—D,0,)
as a ring of differential operators. Let- D = Xp; , there is an embedding R =
(A =D,0,4) = @&, (A, O(D)?") = homogeneous coordinate ring.

Also, we have an induced mappihg

(38)  I'(A,0(D)") ® I'(A x C®, E* (kD)) — I'(A x C=°,F*((n + k)D)),

and,ifa€ R a=3Y (-—(1—73(%—1—))7— + lower terms < I'(A,0(D)").
— Z\Ty
Thus
S1 \
(39) i=y_ a (1)V"s; = () al(1)V") ( : ) ,
Sk

51 n [al-(®) ... a._’fr(lt) 1
N
Sk =0\ al.(tt) ... ,w(#) Sk
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We define an immersion ring map @ : R — M (C[[#]])[V] by

n

®(a) = Z (agr(it)) vr.

=0

Let F be associated to e. For an elliptic curve and a divisor € on it, h%(g) = -
hl(e) = 0 if dege = 0. Conversely, if € € Jacobian of A = {e, dege = 0}, then
€ ~¢ p— Po and therefore h0(¢) = hl(e) = 0 unless & ~; 0 (e.g. Prop. 4.1.2, [Ha)).

Thus, the above proves the

Theorem“ 3.1. Let D = Spi be a divisor on an elli ptic curve A with A—D affine
and F a line bundle on A such that h°(F). = h'(F) = 0. Suppose D gives rise
to a set of compatible transition functions for the bundle F*. Then, there is an
injection of the affine ring R = I'(A— D, 0,) into the ring Mk(C[[ft]])[V], and the
space I'(F*(D)/F*) has a finite C[[tt]]-basis of k elements, (k =degD).

Example 3.2.- If A is an elliptic curve in P® and D = Z:=1 pi (typically
the section cut out by an odd theta function). Then I'(F*((n + 1)D)) has gen-
erators {sy, 82, 83, 84,...,V"81,V"s9,V"s3,V"s4}, where {s;} is a C[[#]]-basis of
I(Z*(D)). .

"Thus, there is an embedding of R = I'(A - D, O,4) into My(C[[#]))[V].

Appendix 1. Multicomponent KP hierarchy.
Let us introduce some notation to consider the multicomponent KP equations.

See [Ad-B]. We will consider wave functions of the form

) = <I+sz ) (1)

>0

where w; are k x k matrices depending orn # and ¢(#) is the exponential diagonal

makrix
U
. 2
i .
¢(t) =exp [ ) . Z
i>0 .
tk
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and = (t1,42,... 1 ...) is the vector of time variables t/.

We have

0,0() = = 1 o(8),

and if 0 = Z;c_l By dp(tt) = Lop(t).

Given the matrix pseudodiflerential operator W = I + Y 02 w; 0~ © we have
Wo(tt ( + ) wiz ) (#) = w(t).
i>0

The multicomponent KP equations can be written as the set, of Lax equations

where Q = W~1(A9)W, A = constant diagonal matrix with nonzero entries and
) i
= W™1E;;0'W, E,; = diag(0,...,0,1,0,...,0), and [ ] indicates the differ-
ential operator part of R}.

The set of equations (41) is also equivalent to the equations in the wave operator

W
(42) 8 W = -WI[R}]-

where [ |- is the formal pseudodifferential operator part.

Proposition A.1.1. Given the wave function w* () = W~ ¢(t), there is a ma-

trix diflerential operator P}, such that

0
— t v* (%).
o 0) = Pl 0
Proof:
T[fw *(it) = O(2)p(t) + (I + X ;o0 wi2*) Ejjz 7 d(tt). On the other hand d%w* (i)

= O(2)p(t) + (I + > ;50 wizi)%gb(tt). Therefore _8% — 0'E;; is a differential -
operator that acting on w* (i) has order O(z) and we continue by induction.
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. Then we can write

az- (Wig(n)) = dg;— () + w—l-af‘%m) - 5?;; B) + W By (1)
| = () + W B0 8() = PIW (),
with
(43) W W\(E;;07) = PPw

Using the relation W~'0,;W + R} = [R/]; from (42) we find in particular
P} = (WY (E;;0)W]y = [R]];-

Now, if Q = W1 AW, we have
0Q ow-! oW1
ot ot Q-q ot

= [Q? [R;]—] = _[Qa [R;]-l-]

W = (P - R))Q - Q(P! - R})

Proposition A.1.2. The operator Q) satisfies the multicomponent K.P. hierarchy.

Retui‘ning to the Euler Top case, we have scen that starting with a given set
{1} of Baker functions, we have the representation Vit = D;t),. Here, the 1,’s
correspond to a certain element W in the Lie group G=I + G_ where G_ is the
space of matrix pseudodifferential operators Z:; w;07t.

‘By Proposition 2.12 I; = K;r;0K;, so for some conjugation of the opera-
tors I); by elements S; of G, we get S’,,-_"!'IID,-S,; = W~ 'r;0W. Therefore, if r; =
diag(Xi1, Ai2, Ai3, Aig), then the differential operators [S; DiSi)y = (W lridW],
equal Zf Xij P! and this corresponds to the multicomponent KP flow 37 XijOg .

Appendix 2. Weierstrass ’g)-'funct.ions on abelian varieties.

We consider a generalization of Weierstrass gp-functions to the case of an am-
ple divisor D on an abelian variety A. We assume the divisor D = D, (Dq
irreducible) has a symmetry group G of a certain order. This group is usually
given by translations 7, such that 77D = D and (-1) involution ¢ (D - D

and so they belong to the finite translation group associated to the divisor D,
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H([D])) = {z € A : 7,'D is linearly equivalent to D}, unless the variety A has
nontrivial automorphismsl (which i‘s not a generic casei. If ¥ is the theta-function
describing the zero locus D = {1 = 0} then ¥ changes whith G by automorphy
factors, and so the differentials of 2" kind d(% log¥),i=1,... ,9, which have a
pole of order two at D, are invariant. These differentials and the higher order ones
d(0 log V) can be used to get a definition of Baker-Akhiezer functions for abelian
varieties similar to that of Manin-Kapranov [Ma-Ka| and Nakayashiki [Na 1].

Let {(Uq, fo)} be a local data for the divisor D on the abelian variety A, and
;= % : 04 — O 4 the usual derivations with respect to the complex coordinates
7z of C? = universal covering of A. The line bundle [D] is given by transition
functions gap = % € O%. Now 0;log gap = af_,{,, - a—f—f— is a 1 cochain in O 4 wich »

defines an element [0; log gas] € H' (A, O4) ~ Hg’l(A).
Lemma A.2.1. The derivations a—‘:’z— induce the zero map in H'(A,O4).

Proof. Let {75} € H'(A,O4). Then, by Dolbeault isomorphism-there is a form
S Hg’l (A) such that 6*(w’) = {7as} through the sequence

HO(A, A% — HY(A,22") & HY(4,04) -0

where 0 — 04 — A° 2, Zg‘] — 0 is the sheaf exact sequence in which A° are
C* functions and Zg’] the (0,1) O-closed forms. Tiet w denote the (0,1)-form
such that 6*(w) = {b—"z—iraﬂ}, w = 0y, Qo = C* functions such that 6{Q} =

Qp — Qahom%gousg%Taﬂ. Thus, there are holomorphic functions {4} such that
Qs — pg = b%qu + (Ra — fte). Analogously there are functions 2, and p,

such that €Y, = w' and Qf — up = Tap + (24 — pz). We get the C* function

- =0
e N
f=0Qa—pa— %(Q’a — ) such that 8f = w— -a-z—iw’ —B(ptex - 2. Ito)- However,

w’ can be chosen to be harmonic. Indeed, it follows from the Hodge decomposition
(see [G-H]), that ' = H(w')4-8(x), where H(w') is the harmonic picce and u a C*
function on A. But on an abelian variety a harmonic form has constant coefficients.
Thus —£—i’H(w’) = -5% S a;dZz; = 0 and we obtain w = J(f + %(u)), which proves

the lemma. O
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Now we get that 5% (i—iloggag) = §{pta} = pa — pp for functions p, €
O4(U,), thus obtaining the function

2 2

44 = 108 fo — oo = =
(44) P = g 8 020025

lngﬁ — Kp,

which is a holomorphic function blowing up twice at D. Namely, p;; €T'(4, O(2D))
= I(2D). By taking further derivatives we get

6n—2
mpﬁ € I'(4,0(nD)) = L(nD).

These are the so called generalized Weierstrass functions.

As {fa} represents D, then {7} f,} represents 7, 'D = ’D.._ Now, for such « € %A
(A the principally polarized lattice) then 77 f, = el2(*) f, where L,(2) is linear.
See for instance the proof of Weil in [We]. Thus, it follows that (l-(;)% log fo is
invariant under such a Ta If A\ € A then 75 fo = (3 f,, and, 5‘—2— log 73 fa =
62 log fo+ 62 Ly(2) = d - log i fo = d——— log fa, which means that daz log fao
is really a form on A, invariant under the action of G = {z : 7;!D = D}.

As for the Weierstrass functions:
Lemma A.2.2. The Weierstrass functions (44) are invariant under G.

Proof. This follows bécause, as above, the functions E—Z%Z—jlog fo are invariant
under 7, € G; namely, E%;log Thfo = 75??%2 log f.. In particular, the cocycle
Jte = ftp 18 invariant by any 7, € G Uhts Tpp, = fo = @ has 1o be a function on
A without poles, so ¢, € C. Moreover, ¢ : G — (C,+) is a homomorphism of a
finite group into the additive complex numbers. So ¢(z) = ¢, = 0 V7, € G, and

this implies p;; is invariant under G. O

.Aléo, the higher order Weierstrass functions are invariant.

In this way we have an arsenal of differential forms and functions that blow up
at D with a certain order and are invariant by G.

In the case A is an elliptic curve wea can choose a local parameter z around a
point of D (e.g., the time evolution parameter) so that the local expansion of the
function p around this point has the form p = % + O(1). Around smocth points

of the divisor ‘D on an abelian variety A we canApick coordinates (i, z) so that
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« = (1, - ,Tg—1) are coordinates of D, and z = 0 defines the reduced divisor D
locally. In a neighborhood of those points we can write p;; = ﬂi—gﬁ—) + O(1).

Let us consider now a (holomorphic) derivation D on A. We can think of such
an object as an element in C?9 = Lie(A). One has the isogeny (whose kernel is the

translation group H (D))

T A — Pic®(A)
x +— {771D-D}

As we can think of 2z = 7, = exp(D) for some derivation D, we get the appli-

cation
Lie(A) Ponemtighmer " T, pid(A)
D — r — {TE—ID—D} = {Tgi;;[’}

~

Now, by the exponential sheaf sequence 0 — Z — Q4 =B O* — 0 the cocycle
[Dloggap) € H(A,O4) goes into the element of Pic’(A) given by the cocycle
{exp(Dlog gap)}-

Since H'(A,04) = Lie(Pic®(A)), we have the commutative diagram

_ C9 = Lie(A) —=— HY(A,04) = Lie(Pic®(A))
(45) exp 1 lexp
A SN Pic®(A)

and one can see that the cocycle {exp(D log gap)} corresponds precisely (up to

(:()l)()\l(l(.l;n.l'y) to the coeycle {7{,"”/’ }

Lemma A.2.3. dn(D) = [Dlog qaﬁ] and { 'q‘;"} = {ex‘p(D log gap)}-

Proof. If m(x) = %’a(ﬁ%)l on Uyp, we can determine the directional derivative of

7 in the direction D. One has

dn(D) = lim TOPREP) ~ 1 _ - 9an(exP(ED) +y) ~ gas(y)
=0 1 t—0 tgap(y)
L O p, +0(1) = Dlog gap.

-0 9ap Oz

(Here D = Y. D; -2 3.;» and z are coordinates in A.) Thus the conclusion follows

from the commutativity of (45). O



This lemma shows that the cycle [Dloggas] € H'(A,04) inducing the line
bundle of cocycle %%E ~ exp(D lqg 9a8), can be thought of as a derivation D
via the map dm, which by exponentiating corresponds to the line bundle L =
[7, D — D). In other words, a direc;‘ion in the abelian variety A méps to the point
L =[r7'D - D] in Pic(A).

Note A.2.4. Let now sg, s1,... , S, be linearly independent sections of I'(D).
The zero divisor (s;)g = D; has to be linearly equivalent to D = (sg)o. If D is

a chosen holomorphic derivation (i.e. a linear combination of ;)% with constant
Zi

cocflicients) then we can define, as we did, the associated Weierstrass function
p = D?log(si)a + pa-
This function blows up at 2D;, which is linearly equivalent to 2D.
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