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RING OF DIFFERENTIAL OPERATORS AND A 
RELATED COMPLETELY · INTEGRABLE SYSTEM 

LUIS A. PIOVAN 

ABSTRACT. We represent the affi ne ring of an ell i ptic curve as a ring of matrix 
difTerential operators. As an application, we embed the phase variables of the rigid 
body motion on SO(3) (Euler Top) into commuting d ifferential operators with ma­

trix coefficients. Thus , showing that this algebraic completely integrable system is 

a piece of an infinite dimensional (four-component) KP hierarchy. 

1 .  Introduction. 
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In the usual Geometric Realization of Conformal Field Theory on Riemann Sur­
faces [KNTY] , the basic " Krichever" data consist of quintuples ( (C ,  (a" B) ) , p, £, z ,  
f;) ,  where (C , (a, ,B) ) i s  a Ricmann surface together with It choice of  a canonical 
horllology basis , p E C a point at infinity, £ a line bundln OIl C,  z a local param­
eter about p and t a trivialization of .c at p. To this data, one relates points in 
the Universal Grassmann Manifold of Sato UGM by t (H() (C , £(*p) ) )  E UGM 

[Mul 2] . By dividing the projcctivizatioD of the quintuples abovn by the action 

of 8p(2g, 7l) if g(C) > 1 ( the action of 8p(2g ,  7l) x Aut(C) if g(C) :S: 1 ) , we get 
the so ealled modul i space of framed and gauged Rieman n sllrfat:(�s and an em­
bedding of this space i nto UGM. Moreover,  t lw dprorrnatioTl o r  Ll j(�se d ata. al()n l� 
the .J acobiall d irectiol ls is ddel'lII i rwd by tJ]() actioIJ of tJw KP flows O i l  the points 
i (H() (C , £(*p) ) )  E UGM. Also, there is a bijection between the triples (C , p, £) 
with certain conditions on L: and the affine rings O(C - p) [Mu 1] . 

Quite a similar data can be &<;sociated to smooth elliptic curves with a divisor 
D instead of a point p at infinity. Consider for instance the data {E, 1), :F = 
[r;- lV - DJ , z ,  t) , where E is an elliptic curve, 1) = 'BP'i a divisor on E, :F a 
line bundle,  z = {zd local equations ahout the points Pi of D and t = {td 
trivializations of :F about the points of D. Then, one associates to it the point 

JIJi (HO (E, :F(*D) ) )  E UGM under sui table identifications .  
As generally believed [Sa] e t  a1 . integrable syst.ems , flnite and infinite, can be  

viewed as pieces of  infinite dimensional dynamical systems like KP (}J; multicom­
ponent. KP hierarchies [Ad-Bl .  

The main step is to define a map from the dynamical phase space of the inte­
grable system into an appropriate moduli space whORe pointR are dlaraderized hy 
Home sort o f  Kridwvef data mod ll lo relatiolls l i ke tlle qu i ntuples above . One can 
bypass this by directly defining the map from the phase space into UGM with the 
help of a basis for HO (E, :F(*D) ) (the Bal:er-Akhiezer sections) , a representation 
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of the phase variables with some matrix differential operators and an identification -, 
of a holomorphic flow on the elliptic curves with a mUl ticomponent KP flow. 

One of the results of this paper is that the data (C , 1>, C) with hO{C) = hl (C) = 0 
and 1) a particularly chosen divisor, determines an embedding of the affine ring 
O(C - 1» into commutative ring of differential operators . This yields a general� 
ization for ellipt ic curves of Krichever prescription for the dictionary (C , p, C) --+ 
O(C - p) [Mu 1] . 

We apply part of the above program to the rigid body motion on 80 (3) (Euler 
top) . The Euler top is a system that describes the rigid· body motion around 
a fi xed cent er of gravity. In the angular moment coordinates , it reduces to the 
equat ions 

( 1 )  

I t  has two independent integrals 

(2) 

2 2 2 Ql = VI + '1.12 + '1.13 
Q2 = A l  v� + A2V� + A3'1)� 

which commute with respect to the Poisson brack(�t .  Q l  being the trivial invariant 
and Q2 the nontrivial Hamiltonian . 

Although the real geometry of integrable systems is described , to some degree , 
by the Arnold-Liouville theorem [Ar] , their complex geometry is more subtle.  The 
nat ure of the solutions to integrable systems depends heavily on the complex ge­
ometry. If wc reqn ire the solutions to be expn�ssible in t.erms of theta functions 
related to abelian varieties , then, we call such systems algebraic completely in­
tegrable (a .c . i . ) . Many of these systems wer� known classically in Mechanics and 
studied in detail by several people. To mention a few,  Adler and Van Moerbeke 
[A-VM 1 ,2] ,  Dubrovin [Du) , Moser [Mo] , MUJ.l1ford [Mu 1 , 3) .  

I n  the picture introduced by Adler and Van Moerbeke for (a.c . i )  systems, the 
real phase space R2n+k is complexified, and the integrals are polynomials . The 
complexified invariant manifolds Mc = {v = (VI , ' "  , V2n+k)  E C2n+k , Fi (V) = 
Ci , i = 1 ,  . . . , n + k} are affine varieties in c2n+k . They are affine pieces of 
abeliari varieties Ac in such a way that the coordinates Vi become non trivial abelian 
functions on Ac. Thus Vi E L(1)) = functions on Ac that blow up at a divisor 1> of 
Ac , and Mc = Ac \ { the reduced divisor 1>} .  Moreover, the nontrivial holomorphic 
vector fields XF1 , . . . , XF .. have a linear motion on Ac . 

For instance, in the Euler top case, one obtains (by setting Q 1  and Q2 to 
constants) the affine part of an elliptic curve- in 1I1>:l = Jll>(L (1)) ) with 1) = divisor 
ILt i l l fin ity = Lt points.  XQ2 yioldH l i n nar motioI \  on t]w aHino d l ip t.ic: eurvn E" = 
{v E c:3 , Ql (V) = CI , Q2 (V) = C2 } and XQ ! vanishes on Ec . 

The paper is organized as follows. In Beet-ion 2 we eonstruet a k ind of Baker­
Akhiezer funct ions wh ieh are suitable " to represent , the Enler Top phase variables 
in terms of matrix differential operators . It is possible to identify the Hamiltonian 
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flow with a Multicomponent K P  flow under a suitable embedding. The Lemmas 
and Propositions in this section describe this identification. In sect ion 3 we give a 
construction of a commutative ring of differential operators associated to the data 
(E, 'D, F) ,  where E is an elliptic curve , 'D a divisor on E and F = [7; l V - D] a line 
bundle such that hO (F) = hJ (F) = O. We prove a theorem for the embedding of 
the affine ring of elliptic curves into a ring of differential operators . In particular, 
this will hold for elliptic curves in JP3 ; which are related to the Euler Top .  

There are two appendices : Appendix 1 dea.ls with some baBies about Multi­
component KP hierarcy. In Appendix 2 we construct Weierstrass p-functions on 

an abelian variety A with the help of the defining eql \ations for a divisor 1) on 

A. The construction is quite simi lar to hyperelliptic p-functions [Mu 3] . These 
functions and their related meromorphic differentials of second kind are used to 
define Baker-Akhiezer functions.  It is hoped that some results obtained for the 
elliptic curves can be extended to abelian varieties . 

2. Baker functions defined on an elliptic curve. 
In this section we present several examples. There are d i fferent attempts to 

defining a Bai<er-Akhiezer function for the divisor 1) = PI + P2 + P3 + P4 = sum of 

points.  The relevant examples 6 . 1  and 6.6 allow us to identify the Euler Top flow 
with a Multieomponent KP fl ow. 

First , we consider the usu al method for constructing Baker-Akhiezer functions . 
Given the divisor E ,  one eonsiders the -l9-function 8 associated to it ( [We] , [Ig) ) , 

i .e .  e vanishes once on E .  Let Ax,-, : A -} HO (A , Ol ) * /Hl (A, Z) be a set of 

Albanese's maps , Ax" (x) = (J:', w) , for some conveniently chosen .T ", E A. Here , 
the integrals are along a path 'Y joining x", and x .  For elli ptic curves these maps 
am isomorphisms and any two or t.hem differ by a translation on B. 

There is a holomorphie differentia.ls w ,  and ba.sis of homology cycles {a, b} , such 

that the period matrix has the form (Jo, w, Ifj w) = ( 1 , 7) . According to Igusa [Ig] 
any -a-function 8 can be written as a l inear combination of 19-series of the form 

(3) 8m (7, Z) = L e( � (p + rn!)T(p + m') + (p + m') (z + ml/ ) ) 

where m 
satisfies 

l}EZ 

(m'm" ) and m' , m" in lR and e (x) exp (2 7fi:!:) . Such a -a-series 

for any element n' 7 + nil , (n' , nil E Z) , belonging t.o the lattice of the elliptic curve . 
Moreover, if 8 is the integ;er defining the pola.riza.tion type of E ,  then there exist 

n�1l1 m l m h (�rs rn' , mll E � s l I d l  t.h at 

(5 ) 8 (z) = L constant · 8 (r+mI6- 1,mll ) (7, z) , 
r mod Z 

where r runs over a complete set of representatives of ( t  Z) /Z. 
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Following [Du] , [Sh] and [Ma-Ka] we define the Baker-Akhiezer function asso� 
eiated to the divisors D and E as follows . . 

'l/J(u, ft, x"' , x) , u E C, 8 (u) =I- 0 ,  ft E CCXl , x E A - D = Un , 

(6) 

Z", a local parameter around ,r-", E D defined on the chart U'" 
such that the U", 's are disjoint .  

where w� 's are normalized 2nd kind differentials and ]B their matrix of b-period : 

]B = (fb w�) . The w� 's have local expansions around D n u", ! 
. . dz", . w� "" (- l ) 'Ci HI + O(z;:;' )  dz", .  z" 

As we increase w by the period n'T + n" we get the change 

r mod Z 

= [ L cr.8 (r+mIC-l,mll ) (T, W) e ( r + m'O- I )n") ] ' 
r mod Z 

. e( - �n'Tn' - n' (m" + n") - n'w) . 

, 8 (w + wo) . , 8 [n"] (w + wo) rhus t1 ( ) IS changed by e(-n wo) 
8 [ ] ( ) 

, where 8 [n"] (w) is a 
- '/1J ':' n" w 

thf�ta function vanishing on a divisor linearly equivalent to E .  Since we want the 
same B-function we have to ask feE) = 1 and therefore 15 = 1 .  . .  

Now, changing L t i  .r�j w� by the homology cycle n'b + n" a produces the extra 

factor e (Li tin' t (J� w� ) )  in '1/) , which cancels with the contribution of the term 

e (-n' (Li ti t (fb w�) ) )  = e( -n']Btft) due to the quotient of theta functions . 
This shows that the function (6) extends to a well defined meromorphic function 

tm the open set Uo that blows up once at E where E = {x E A : 8 (u - Ar", (x) )  
= O}  and h as  essential singularities at the points o f  D.  

Let t be  a uniformizing parameter and Zi = O(t) the local parameter at the 
piece Pi of the divisor D = PI + P2 + P3 + P4 . ni' the normalized differential of 2nd 
kind with a single pole of order 'TI. + 1 at Pi and holomorphic everywhere else . 

Consider the map cp : E � PicO (E) defined by cp(x) = [TxD - D] (the canonical 
map) . .  This has a finite kernel (the translation group H(D) ) .  Let E be a divisor in 
PicO (E) sHch that D = cp- lE .  Then 8(cp(p) ) is a theta funct ion for the divisor D .  

A Baker function can b e  obtained as 

(7) 
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where w is a nonzero holomorphic differential , and (}i theta functions a..'lsociated to 
translates of 'D. As we go around a b-cycle of E we pick a b-period of Of . So the 
exponential gets increased by the factor exp(tn J On , which will cancel out with 

factors of (}l and (}2 . 

bn 
'--v-"' 

Lemma 2.1 .  The expression (7) is a Baker function at Pi associated to the divisor 
1). It has the expansions 

(8) 
arollnd Pi 
around P.i ' j =I 't .  

Proof. Assume (}l , ' (h are () functions of  order v with characteristics [ � ] ,  i .e .  
satisfy a relation of the type 

Ov [ � ]  (z + 27riN + BM) = 

exp { -� (BM, M) - v(M, z) + 27ri( (ex ,  N) - ({3, M)) } Bv [ � ] (z) . 
If fh and B2 are of the same type and order then all the factors cancel except the 
factor exp {-v(M, tnUi) } = exp { -v tn J Mbi Or } . . . 
, So if we add the factor v in the exponential of the Baker function we obtain the 
desired cancelling, Le. (7) is a well defined meromorphie functioll outside T1i , with 
zeroe8 at (}l (Jp�l W + tn Ur + �) = 0 and poles at (}2 (J;:l w + �) = 0 

(9) 
so 

As candidates for (}l and (}2 one can pick the functions O [ (Ot+;}/v ] ( In l vB) . 
Around Pi we have 

(10) 
1x 1 

Or = �( 
) 

+ 0(1)  and 
Po Zl x 

One can pick as Zi the time 'parameter t of a holomorphie vector field in E. One 
also has the expressions (8) around Pi . 

' 

Let Tij be the translation that sends Pi -t Pj , Le . ,  addition by Pj - P'i , and let 
OJ = Ttj Oi be the pull back of Oi .  Then nj blows up at Pj . 

Now we have the formula fa OJ = Jri.i a Oi = .fa Oi (since a + T-ij is homologous 

to a) for a period a of o'i (Le. , the periods are the same) . (Notice that one can 
ehoose a so that all the translates Ti.iG. of a do not meet the poles of Oi or its 
translate OJ . )  
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I·f - JPO+Pi -rJ ' JX JX+Pi �-r:i - . we let CiJ' - nJ' then we have -Di - DJ' - -CiJ" In � . � � 
other words , one can interpret the cycle Cij as the difference between the infinite 
. 1 JX+Pi-PJ n J'x n 0 h mtegra s Po Hj - Po Hi as x -7 Pi . ne as Cij + Cjk = Cik ·  

The correlation function hi defined by d/ij = Di - Dj is defined on the universal 
cover of E. Up to a constant we can pick /ij = JX Di - JX Dj which is a function 
that blows up at Pi and Pj . 

Now, we can write r Di = r Dj + fij , and let Ctij = jPJ Di , i =I- j.  Thus , we 
have 

( 1 1 )  
1/Jr = ev t"O<;J ( l  + O(z.i ) )  

= 0(1 ) 0 
about Pi 

Lemma 2.2.  We have the estimates 

( 12) 

Pmof. 

if x is around Pi , 

jf x is around Pj , j =I- i .  

d�n (ev tn/zf (l + O(Zi ) ) ) = :r ev tn/zf ( 1 + 0(zi) ) + ev tn /zI' Ol (Zi )  

= (:r. + 02 (Zi ))  1/Jf,v ' 

Proposition 2 . 3 .  TlIore is ;l. I lI1iqlW fl l fldioll , /Jp to H lJ elomnlJ t; il J  II(Eo ) ,  luwing 
essnntial singularity at the point; P'; , zeroes at Eo and blowing up at Eoo . 
Proof. If '1/) and 1� are two Baker functions then '�/'l/J is meromorphic on the elliptic 
curve because the essential singularities cancel. The poles at foo also cancel. Thus , 
the divisor of ;j;N) comes from the zeroes of 1b and '1/.) , namely to and Eo . So, we 
have to linearly equivalent to Eo for all I tn l « 1 .  Since the group of divisors 
l inearly equivalent to Eo is finite (the translation group H(Eo ) )  we have that s11ch 
a Baker function is unique' up to' an elemf'nt in the Translation group of Eo . 0 
Note 2 . 4 .  It follows from Proposition 7.:3 the following lemma: 
Lemma 2 . 5 .  On an elliptic curve, a Baker function with expansion 'l/J = O(z)etdz 
and no other zero or pole has to be zero. 

Note 2 . 6 .  For elliptic curves it will be shown in Theorem 3 . 1  that there is an 
embedding R = reA - D, 0 A )  into a commutative ring of differential operators 
with matrix coefficients. 
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Example 2 .7. In order to i llustrate Note 2 . G  we draw Table I with the expansions 
of 'I/h ,  . . . , V)4 and DV)I , . . . , D1/J4 around the points PI , . . .  , P4 , where the Pi 'S are 

the points of the divisor of the Euler Top .  Let {V t , V2 , V3 }  be the generators of 

the affine ring associated to the Euler top system which satisfies equations (2) . 
The invariant manifolds of this system have divisor at infinity V = �;I)(8 1 ' /)2 ) = 
p(1 , 1 )  + p(l , - 1 )  + p( -1 , 1 )  + p( - 1 , - 1 )  = PI + P2 + P3 + 1)4 , and the expansion 
of the functions {VI , V2 , V3 } about D, in terms of the time evolution parameter t 
associated with the Euler top flow, are 

( la) 

Table I 

1/)1 

1/J2 

1i'3 

1/J4 

D1/JI 

D1/J2 

D1j'3 

D1!'4 

V1 1h 

VI = ..jafJ VI = 81 (� - (u + v) t + . . .  ) 82 - 82 - 1 t - 2 - , 

V2 = ..JiYY '02 = 82 (� + ut + . . .  ) 
v'3 = ..;;y(J '03 = 81 82 (� + vt + . . .  ) 

p( 1 , 1 ) 

evt t !Z l ( l  + O(Zl » 

evt 1 <>2 1  (1 + O(Zl » 

evt 1 <>3 1 ( 1 + O(zI l ) 

evt 1 <>4 1 (1 + O(Zl » 

(:, + O(Zl ») 11>1 
0(1) 

1 -1/)1 + . .  , 
t . 

p(l ,  - 1 )  

ev t 1 <> ' 2 ( 1 + 0(Z2 » 

e" t t ! Z2 (1 + 0(Z2 » 

evt ' <>32 ( I + 0(Z2 » . 
evt 1 <>42 ( 1 + 0(Z2 » 

0(1)  

(� + 0(Z2 ») 1/)2 

1 
- 'rh t 

a = Al  - A2 , f3 = A3 - AI , 

'Y = A2 - A3 . 

p(- I , I) p( -1,  - 1) 

e" t ' <> 1 3 ( 1 + O(Z;l » e'd l <> 14 ( 1 + O(Z4 » 

evt ' <>23 ( 1 + 0(Z3 »  evt ' <>24 ( 1 + 0(Z4 » 

e"t t / z3 ( I + 0(Z3 »  e"t l <>34 ( 1 + 0(Z4 » 

e"t l "'43 ( 1 + 0(Z3» evt J / Z4 ( 1 + 0(Z4 » 

0 ( 1 )  0 ( 1 )  

( !� + O(Z:I ») 'Ih z;J 

(� + 0(Z4 ») 1/)4 
1 1 - - 1/J1 - -1/Jl t t 

Notice that 'lj;j (x + Pi - Pj ) = .exp(lI tnci,i ) 1Pi (X) (with g: Oi = J:: o.i - Cij ) , 

onee one chooses convenient f) functions to construct t.he rel l laining Ba.ker functions 



1 26 

from a given one. This is because we have 

( 14) 

and 

lx lX+Pi -Pi 1X lX+Pi -Pj l
Pi 

( 15) W = W + W = W + W ,  
PO Po X+Pi -Pi Po 1'. 

since w are translation invariant I-forms on an elliptic: curve . 

Example 2 .8 .  Consider now a 2nd kind normal ized differential form n that blows 
up at the !-periods PI , P2 , P3 and P4 to order two, thus having local expansion 

- d�i , where Zi is the local parameter at the point Pi . Let T-ij be the translation zi 
by the vectors Pj - Pi . Assume that these translations are all �-periods . 

We assume that the differential n is invariant under the group of translations 

Tij (X) = x + Pj - Pi . This is a subgroup of the group of translations associated to 

the divisor 'D = PI + P2 + P3 + P4 . We have the following relation: 

where �t: j = Xi + P.i - Pi and Xi is close to Pi (and x,i is close to Pj ) .  

One can pick Po so that j,Xl n = _(1 
) 

+ O(Zl (Xl ) )  = _(1 )
- - t;j + O(Zj (Xj ) )  N � XI � � 

with Xj = Xl +Pj -PI and for certain coefficients <,1 satisfying the cocyc1e condition 

C,I + C' _ ..J  c' - d 'i,i Jjk - Cik ' ij - - 'ji '  

Now o n  the long range curve 'Yi we have 

1 n = l
x
i n + 1x 

n = 1 n + periods = l
Xj n + 1x n + periods of n. 

1'i (X) po 
X
i 1'j (X) po Xj . 

Namely 

(17) Cij = lX
j 
-,· lx

i n = 1'" n - lx n + periods of n 
po Po Xi X

j 
On the other hand, for a holomorphic normalized tmnslation invariant differ­

ential W we have 

lXj 
l
xi+Pj -Pi lxi lxi+Pj -Pi lxi iPj 

(18) W = W = W + " ' W = W + w, 
Po Po Po X

i 
' Po Pi 
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where we assume J1'.; w is a -21 _period . Also, modulo a period p ,  

( 19) 1x 1x £pj w =  w + w.  
X i  X j  • P i  . 

Given the 19-functions 191 , 192 related to any of the points p/s ,  and of the same 
order, we define the following Baker functions 

(20) 

where the points Xi are in a chart Ui abol lt Pi . 
One can relate the behaviour of 'l/Ji as x approaches Pj . We have 

where r* represents tl"anslation by the �-period ��j W.  
Now, we would like to estimate the term within braces a s  x � Pi and t � O .  We 

tak� 191 = 1900 and 192 = 19l1 , the elliptic B-functions with �-integercharacteristics . 

If 19 represents the Riemann B-function a"lsociated to the elliptic curve of lattice 

Z{ 1, r} ,  then we have the usual relations: 

19oo (z, r) = 19(z ,  "")�' '!9Ol (Z ,  r) = 19(z + � , r) , 

'l? lO (Z ,  r) = exp{rrir/4 + rriz) 1? (Z + � r, r) , 

.19 1 1  (z , r) = exp(rrir/4 + rri(z + � ) )  '!9(z + � (l + r) , r) 

·t9 (z + ar + (3, r) = exp( -rria2r - 2rriaz) '!9(z, r ) . 

and the relations on page 19 [Mu 2] . 
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Now, let Pij = J�j w, so that PI2 = ! , PI3 = !T, PI4 = � ( 1  + T) , By our choice 
and use of tables we obtain 

1h2 = _ 1'J01 (U) , 19 u (V) 
= 

17 (U + � ) , 19 (V + � (1 + T» ) , exp(ni (V + � ) ) 
1'Joo (U) 1'J1O (V) 1'J (U) 1'J (V  + 1 + !T) exp(ni (V) ) ' 

'lj1] 3  = _i exp( -niT/4 - niU) , 19lO (U) , 19u (V) V = r w + I;, . exp( --niT/4 - n'W) '/'Joo (U) 1901 (V) , )3'i ' 

7P1 4 = i exp(-n�T�4 - niU) , 19 1 1 (U) , �l 1 (V) , U = r w + t r n + 1;, , . 
exp( -n 'lT/ 4 - niV) 19()o (U ) '19()o (V) )", )b 

One uses the period relations 

to find 

190 1 (Z + aT + f3) = exp( -nia - nia2T -.: 2niaz) 1901 (Z) , 

'/'JOO (z + aT + !3) = exp( ni!3 - nia2T -:- 2niaz) 1910 (z) , 
t911 (z + aT + (3) = exp( ni ((3 - a ) - nia2T - 2niaz) t9 1 1  (z) , _ 

'190 1 (U) (-H? l l (V) ) . 
'l/J21 = t900 (U) 

, {_ ( -19 10 (vj"IT = -'ljJl� = 'lj143 , 
_ , {-t9 1 1 (U) }  t9l 1 (V) 'l/J23 = z exp(-nz (U - V» 19oo (U) {19oo (V) } = -'ljlt4 , 

,I, ' '
U V 

{e
.
,xp(-niT + 2niU)t9IO (U) } 19 1 1 (V) 1/-'3 1  = - 2  exp( -1n ( - ) ) -=---"=:7--':---;-----'---'-'-':-: , {)()() (U) {exp( +ni - niT + 2n'N) 19()1 (V) } 

= - exp(2ni(U - V) )  1PI 3 , 
ni, ' ( ' (U V))  

{exp( n i  - niT + 2niU) 191 1  (U) } 19 1 1 (V) '1-'32 = z exp ,-nz - " .  T 19oo (U) {exp( -7r2T + 2nzV) 1900 (v ) } 

= - exp(2ni (U - V)) 'l/J14 , 
n' '

( 
' (U V) )  {exp( -niT + 2niU) 19 1 1  (U)} 19u (V) 

ljY41 = +z exp -n2 -
, _ ,  t9oo (U) {exp( -niT + 2niV) 19oo (U) }  

= cxp(2ni(U - V )  1/Jt,! , 



1 29 

Thus a suitable change of basis matrix (or of the coefficients ?Pij ) is 

1 7P12  '1/)13 7/J14 
-7/J12 1 -7/J14 7/Jl:3 

= ( _e2'i�-V)B 
M = 

-e27ri(U-V)7/J13 
_e27ri(U - V) 7/J14 1 '1/)12 

e27ri(U -V)'l/J14 _e27ri (U - V) 7/)1 3 -'VJ12 1 

We can obtain other expressions for 7/J12 , 7/J13 and 'ljJ I 4 :  

. 1. _ _  . � (U + 1) . � (V + � (l + r)) _ _ ( . 1. ) . .. . 
'f'12 - � 9 (U) ( 1 ) - exp 7r� 2 

? .� V + 2 r  

7/J13 = -i exp(-7ri(U - V) ) · 

: ) 

exp(7rir / 4 + 7riU) 79 (U + !r) exp ( 7rir/ 4 + 7ri(V + ! ) )  '19 (V + ! ( 1  + r) ) 
� (U) �(V + ! )  

-

?J(U + lr) �(V + 1 ( 1 + r) ) 
= - exp ( 7ri! (1 + r ) ) exp(27riV) . 2( ) 

( 
21 ) 

. � U ?9 V + 2 

lPI4 = i exp( -7ri(U - V) ) ·  

exp(7rir/4 + 7ri(U + � ) + 7rir/4 + 7ri ( V  + � ) )  
'O (U) 

�(U + ! ( 1  + r) ) v (V + ! ( 1 + r) )  
19(V) 

'17 (U + f ( l + r) ) 'I? (V - I - .l ( l -!- r) )  = - exp(7rir/2) exp(27r'iV ) · __ _  .2 . 19 (U) 17 (V)  2 

Lemma 2;9.  det M =I- O.  

In a similar fashion' as we did in  the previous example we can constru ct a table 

of the expansions for the functions Vii around the points Pi . 
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We have Wij (X) = aij (�) + O(Zj ) and the expansions in Table II: 

Table II 

1)( 1 , 1)  

p(l ,  - 1 )  
pC-l , l )  

p(- l , - l) 

oh. permutations 
et t /Zl  (1 + O(Z1 ) )  

et1 c!2 'I/J2 (X)(G12 + . . .  ) 
et 1 C! 3 '/)3 (X) (G13 + . . .  ) 
et l c14 '1/)1 (x) (a14 + . . .  ) 

D'h (* + O (zt )) '1/)1 
permutations V1 '1/)1 

t'P1 
t'h - *,,) 1 

- t'h 

With the expansions we have for D1Pl , DW2 , DW3 , DW4 in table II we get 

an expression V1 .Wi = 'EAi.jDWj + 0(1 ) , since the matrix (aij ) is nonsingular 

by the lemma. (In here we identify the time evolution parameter with the local 

parameters Zi about Pi and with the deformation parameter td .  
Therefore obtaining a matrix differential operator i n  M4 [[tt] ] [D] . Also , we obtain 

a commutative ring of differential operators in M4 [C[ [/tl l ] [D] , as follows from the 

representation to be obtained for the Vi 'S .  

We want to study in more detail the relations arisen from the action of the 
translation group G � Z/2 x Z/2 , whose elements we indicate by Tij = Pj - Pi . 
The action on funct ions is defined by Tijf (;¥;) = f (;!: + Ti.i ) and onc can show the 
formula 

(21) 

The above formula translatesjnto the multiplicative cocycle formula 

/, ( ) _ A. Tij (Pk ) ( ) ; , /. ( ) 1PTi.; (Pk ) Y - 'Pij Y lpPk Y . 

Indeed , ide;.-tifying the elements of G with the translation points {Pi } and with 

the translations Ti.i = Pj - Pi once an origin Po E {pd is chosen , we have the 

elements {1/Ja } ,  1Pa E r(E x Wl < d , F* (*V) ) = S" which is a ring that contains 
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( r (,,) , A S := r E, O(*'D) ) and c/Jij = T ' '1/-'" = 1 + O(it , z) which are also elements in S. 

Thus, equation (* ) is the co cycle relation T . 'Ij)" == 'Ij)ru /1P(1 ' 
Now, if we differentiate with respect to t we obtain 

(22) D'ljJri; (Pk ) (Y
) = {Dc/J;Y (Pk ) (y) + c/J;y (Pk ) (y) D log 'l/JPk (y) } 'Ij)Pk (y) . 

Let the cocycle relation (*) be written q>u,r = T ' -,p" = 1Pr,, /1/Ju . 
Now, one has the expansions around the points v E {Pi }  

1/J,, (about v) = et/Z (a",v (t) + !3",v (t)z + . . .  ) . 

One obviously has D1/J,, (about v) = D + 6(1)] 1/J,, (about v) (assuming a",v (O) f:; 
a 0) . Around the points v the expansions of the coordinate Vi (about v) = � + 

z 
0(1) = av -I- f3v -I- O(z) , where O:v is a constant . Thus 

z 

Vi (about v) . 'Ij)(7 (about v) = l:,A",pD1/Jp (about v) -I- O(l ) e f . 

Since the poles in z ha.ve to be peeled off, this leads to the equation 

(23) a" aa,v = L A(1,p ap,v (t) .  ' 
I' 

This means tha.t (Aap) (ap,v (t) ) = (aa,v (t) )  diag (av) ; namely 

Lemma 2 . 1 0 .  (A"p) is diagonalizable and nonsingular if det diag(av ) f:; O . 
In an analogous way yve obtain a relation for the coefficients Aup of the Oth order 

par t :  wo have the e<lllations 

p p 
Namely 

Let J.L = (J.Lo',p) ,  a = , (ap,v ) , '!3 '= (!3",v) ,  r = diag(av ) ,  s = diag(!3v ) ,  A = (A",p) ; 
then we can write the operator as follows : AD+J.L, but a-I (AD+J.L)a = a-I AaD-I­
o:-- l Aa' + a-I ,La = r D -I- s -I- [a-- I,A ,  r] . Thus , hy an appropriate -mnjllp;at.ion the 
operator is almost with constant coefficients. 

Actu ally, by looking at the expansions of Vi we ' obtain .'< = 0 so that the repre­
sentation of Vi as differential operator is riD -I- [a , -ri ] ,  a = a-I;3 . 
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Proposition 2 . 1 1 .  Tllere is a unique pseudodifferential operator Wi associated 

with JI])i = rJ) + [a , ri] , and a unique W = 1 + L::J Lia-i pseudodifferential 

operator sucb that JI])i = W-IWiW for any i. Any sllcb W differ by a diagonal 

matrix. 

If W i = ria + L:%:I a_A:a-A: , then the equality WJI])i = W i W yields the following 

oquations: 

[LI  + a, ri] = 0 

(25) [8":"2 , ri] = a_I + rJ-I - LI [a, ri] 

I �n�1 k (n - j - 1) . (k) [8_ (n+1) , ri] - a_n = ri8_n + � � (- 1) 
k 

a_ (n-k-j) S_j 
j= J A:=O 

-- I:(-l )k (n � 1) 8_(n_k) [a, ri] (k) , 
k=O 

One can choose 8-1 = -a, and the remaining 8
-

A: such that [8-k , ri] = 0 for 

any i = 1 ,  2 ,  3. Since rl = diag ( l ,  1 ,  - 1 ,  -1 ) ,  T2 = diag(l ,  - 1 , 1 ,  -1 ) ,  r3 = 

diag(l , - 1 ,  - 1 , 1 ) ,  being commutative wi th the group of matrices generated by 

(rI , r2) means that 8-k is diagonal , k > 1 .  Then, the values of the a_k are 

uniquely determined . If we perturbe the coefficients of W by diagonal matrices 

we obtain another solution to this representation. 

Proposition 2 . 1 2 .  Given UIC opcmto; d) + ra , r] , wiU, 7' r.onst;nn t; riingona.l mn.­

trix, r2 = 1 ,  then, there exists a pseudo-differential operator K = 1 + 'Ew_ia-i 
such that ra + [a, r] = K(ra)K- l . Any such a solution K differs from a given one 

by a constant matrix pseudodifferential operator commuting with r . 

Proof. Let L( x) = [x , r] ; this i s  a linear derivation and satisfies r L( x) + L( x)r =: O. 

We want to find a solution K to ·the equation 

(26) 

This gives a system that implies the differential equations in W-i { L(a) = L(w-d . 
L(w_ (i+ l ) ) = 1'1V'-i + L(a)w_i = P(W-·i ) . 
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Notice that we have the following identitiefl : 

(27) LP(x) = PL(x) -'- 2rL(a) :c and P(rx) = rP(:1:) - 2rL(a):r: . 

Also 

(2�) £2 (:1:) = [L (x) , r·j = 2 (x - rxr) = -2'rL(x) = L(x) (2r) , 

Now any 4 x 4 matrix x can be written as :c = - �'/'L(:r;) + d, with L(d) = o.  
Ind eed , this follows from the above properties of the operator L. Let us decompose 

W-i = :  -!rL(w_i )  + d-i . On one hand we have
' 

Namely, 

(29) . 

Replacing, we obtain 

L(W-(i+l» )  = - �L(W�i) - � 'rL(a)L(w_i) - � L(a)rL (w_i )  + L(a)d_i 
= - �L(-W_i ) + L(a)d_i = £( - �'W�_.i + ad_i ) . 

This implies that 'W- (H l) = - !'W�i + ad-d- d_ (i+ l ) , whef(� d-(i+l) belongs to the 

kel'lld of L. 
In order to solve (**) , we will represent the solution 'W- (H l ) as the sum of a 

term in Image of L + a term in Ker L. Thus, we ean write the following recursion 

formula for W-i : 

(30) 

where the d_ i are to be determined so as to satisfy the system (**) sinee we have 

L('W-(i+l » ) = LOrL('W�i ) - �rL(a)d_i + d-- (i+ l ) ) = - � L('W-d + L(a)d_i 

= TW�i - 1'd�i + L(a) (l1'-i + � rL('W_i ) ) 

= P(7lLi ) - Td�i + 1L(aJrL('1ILi ) .  
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Assuming that L(111-.i) is known, it follows that d'-i = - !L (a)L(w_i) .  This 

element belongs to Ker L since L(L(x)L(y) ) = -2 (rL(:r) + L(x)r)L(y) = 0, and 

gives, up to a constant matrix commuting with r, the solution we want . O ·  

The first terms are 

W-:- l = - �TL (a) + d_1 where d_1 = - � J L(a)2 

W-2 = �rL(a)' - ! 'rL(a)d_ 1 + (L2 where d'-2 = - � L(a) ( �rL(a) '  - � 7'L (a) (Ll )  

We now determine the differenti al operator part o f  the pseudo-differential oper­

ator K(r02)K-1 . If K = l + �w_io-i , K-1 = 1 - W_ I O- 1 + (W:.1 - W_2)a-2 + . . . . 

K (r02 )K- 1 = ( 1 + w_.10-1 + W_20-2 + . . .  ) 

(TIP - rw� d ) - 2TW'-1 + T(W�_ l - 'I1J.-2)  + . . . ) 

= r02 + L(W- l )O + L(W_2) - 2'T'W'- 1 + 1"W:' 1 - W_ l 'rW_t + . . .  

The independent term can be written as : 

no'-l + L(a)w_ l - 2r (- �rL(a)' - !L(a)2 )  + (7'W _ l - w-I 'r)w- l = 
== -rw'-l = !L (a)' + !rL(a)2 .  

Thus 

Example 2.13.  Assume now that the coordinates \t] ,  V2 , \.-':1 (having the expan­

sions shown in Example 2 .7) satisfy the Euler top equations 

(31)  with relations 

Here Vl = 7- - Et (U + v)t + " ' , V2 = Et2 + E2ut + " ' , \.-':1 = '\E2 + EIE2vt, 

rr = E� = 1 , n = � ( (A3 - h)a3 + (h - Al )al ) ,  v = t ( (h - A2)lY.2 + (AI  - h)at } ,  

'w = -- en + v) = � ( (h - A3) + (A2 - h)a2) . 
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We have seen that the differential operator associated with Vi is Di = ri8 + 

]�'i (a) , L; (a) = [a , r,; ] ,  Thus, DJ = 82 + r;Li (a' ) + L.; (a)2 and DiDj = DjDi = 

'rk[P + Lk (a)8 + riL.i (a' ) + Li (a)Lj (a) (cycle i ......... j ......... k) . We wish to compare 
. . . dVk . 

the operator (*k )  wIth the operator assocIated to the funct.IOIl - - ,  l . e . , DiDj . dt 
Since the operators Di satisfy the equations 

(32) 
3 

I:: A;CtiDf = Ct]Ct2Ct3 h, 
;= 1 

we obtain the relation D; - D; = Ctk (h - Ak ) ,  i ......... j ......... k ......... i .  

I f  Si = riL., (a' ) + L; (a) 2 ,  the� we can also write Si - Sj = Ctk (h - Ak ) '  Let 
T = r;Lj (a') + Li (a)L.i (a) = rjLi{a') + Lj (a)Li (o.) , then it follows 

(i ......... j ......... k ......... i) , 

Also 

which yields , using the relations 

(34) 

Let 11S eomput.e tho di ffereuees hetwoen the indepeudeut terms of tlw operators 

2rkS = rkT + rkT - Sk 

by (33' ) , ( )2 ( ) ' ) ( ' ) « ) = 8i - Li a + 1'"Lj a Li �a + rjLj a -I- rkLi a)Lj a - Sk 
by (33) 2 = Si - Sk - Li (a) -I- rkLj (a) Li (a)-I-

-I- rk (Lk (a)Li (a) - Li (a)Lk (a) )ri + r"Li (a)Lj (a) 

by (33" ) = Si - Sk - Lk (a)rjLi (a) -I- rkLk (a)Li (a)1"i + 1'kLi (a)rkLi (a) 

= Si .- Sk + 1'dLi (a)1"kLi (a) 'rk )rk 

= Si - Sk + 1",, (oi (h - A, )rk 
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Thus 

and we can write 

with rk82 - Ckrk = Gk (rk82)G"k l , Gk being a scalar differential operator and 

t.herefore commuting with rk . 

a. Ring of differential operators. 

We consider here the construction of a map (A, V, F) -+ R into a commutative 

ring of differential operators R for the data related to a smooth elliptic curve A, 

an ample divisor 1) on A, and a line bundle F on A such that hO (F) = hI (F) = O . 
The triple (A, V, F) will be called Krichever data as similar to the Krichever data 

in [Mu 1] . One can keep in mind the example of an elliptic curve in JlD3 with 1) 

the divisor cut out by an odd section (i .e .  four points at infinity which form a 

group of translates isomorphic to '1.,/2 x 'L/2 ) . The bundle F will be of the form 

F = [7;lV - V] for some x E A, i .e .  F E  Pic° (A) will be the image of a direction 

vector D E Lie(A) = C . 
We want to construct a line bundle F* on A x Coo ( Coo := � en ) in the 

following way. Take t.he covering formed by (U -- V) x Coo = Uo and neighboi·. 
hoods U a X Coo = Ua around the points {za } x Coo of 1) x Coo , and let F* be 
defined by F0 Ocoo on each of these open sets and given by the transition func-

tions gO"a (U, Xa , ft) = exp (I::iiPolar part (lU Oi) ) at the overlappings uanuo . 
i� l Xu 

Here ft = (tl , t2 , . . . , in , " ' )  E Coo and Oi are differential forms of 2nd kind on 

A whose expansions around pofnts of 1) is (_ l )i z�:l Ci (X) + O(z-(i- l) ) dz with 

:.c E 1). An arsenal of such forms is got ten by taking the differential of derivatives 

of log 19 (as will he shown in Appendix 2) , where '19 is the thp.ta funetion vanisl:ing 
on 1). Of course, one makes sure that the gO ,a (n, Xa , it) are compatible transition 

functions . For instance, this is done by requiring the existence of a covering of 1) 

by contractible charts (small disks) Ua around the points Xa of 1) . 
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For any line bundle Q on A ,  we can also define similarly the line bundle Q* on 

A x Coo . This bundle will have transition functions jj('/I" It) = 9o,,{3 (u)gO,'Y (u, It) 

where ga,{3 is a set of transition functions for Q . 
Notice that ( around D ) r 0 1 = a (xa ) + C(Xa ) + O(z) where z is the local Xn Z a 

parameter about Xa E D such that -;)' is a holomorphie vector field on A. We uz 
want to define a differential operator 'V : F* -+ F* (*D) such that 

for a section 8 of F* . 

'V(8) = a(x) 8 
+ section of :F* 

z ' 

Take 'V : =  ';:)0 = � , then 'Vga{3 = a(x) ga{3 + (c(x) + O(Z) )jja,B ' Now , for 
utI uZ Z 

a holomorphie section 8 of F* we have 'V(8) = 'Vsa = 'Vga{J8{J = a(x) 
Sa + Z 

tf! .-__ A ..... __ -., 
901.{3('V8{3 + C(X) + O(z)) on UOl./1 , since there are holomorphic funetions Sa such 

that Sa = gOl.{J8{J on Ua{3 . 

O U· h h l '  
a(x) - a (x) - Tl' -n a(3"( we ave t e re atlOn -- 8  + ga{3 t{J = --8 + ga'Yt"(' lUS , t(3 = g(3'Yt'Y Z z 

over UOI./1'Y ' i .e .  t is a section of F* . 
We consider the situation where A is an elliptk curve and D = sum of different 

points = 1::Pi . Let Uo = A - V be the affine piece and VD = UUl'i where VD is a 
disjoint union of small disks around the points Pi and also take 'V : =  ;:,0 . 

\.It I 
For any n we have the exact sequence over A X Coo 

(35) 0 ·,--+ F* (nD) � F* ( (n + l )V) - �  F* ((n + l)D)jF* (nD) -+ 0 

( F* (nV) = F* &; O(nD) ) .  

This induces the exact sequence of cohomology groups 

(3fi) 0 -+ r(F* (nV) ) -+ r(F* ( (n + l )V) ) -+ r(F* ( (n + l )V) /F* (nV))  -+ 0 

This follows b(�callse JIi (F* ) = 0 , i = 0 , 1  , and HI (:F* (nD) ) = 0 for any 
n :::: 1 .  

Indeed, the hypothesis Hi (F) = 0 , i = 0 , 1 , implies Hi (A x coo , F* )  

Hi (7r1 1 U, F* ) = 0 , i = D, l , where 11 is an affine cover of A for which F* is 
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isomorphic to :F ® Ocoo on any open of 7f[111 , and 7f1 : A x COO -t A is the 

projection. Now, the sheaf :F* ((n + l )D)/:F* (nD) is supported at D, x Coo , thus 

]f1 (:F* ( (n + 1 )D) /:F* (nD) ) = O. Then, by using indllction on the exact sequence 

(37) 
' "  --t H 1 (:F* (nD) ) -t HI (:F* ((n + l)D) ) -t HI (:F* ( (n + 1 )D) /:F* (nD) ) -t . ' ,' 

follows that 1-]1 (:F* (nD))  = 0 , all n .  

On the other hand, 

r(:F* ( (n + l )D) /:F* (nD)) � ffi" r(Upi x CC-<> , :F* ( (n + 1)D) /:F* (nD) )  � ffiiC [ [ttl l  
� C( [ttll deg V .  

Given the C( [ttl l- lincarly independent sections SI , . . . , S k  belonging t o  the space 

F'(F* (nD) ) \r(:F* ( (n - 1)D) )  , then, the sectionS vs1 , " " VSk are in r(:F* ( (n + 
l )D) ) \r(:F* (nD) )  and they are Q[l/;l l-linearly independent . 

Indeed, if L;i AiV.'Ii = 0 ( module r(:F* (nD) ) ) ,  then V (L;iAi.'li )  = L;i (VAi ) Si + 

)::" '-\iVS" = 0 ( module r(:F* (nD))  ) implies L;iAi S.j E r (:F* ( (n - 1)D) ) .  Namely, 

;Ci AiSi = 0 ( module r(:F* ((n -- 1)D) ) ) , and from this follows Ai = O .  
Now, since the rank o f  r(:F* (nD) )  i s  n.deg(D) , we have that if S I , • . • , Sk (k = 

deg D) is a C[[tt] ]-basis of r(:F* (D) ) ,  then {vr s I ,  . . . , \7r Sk i r = 0 , 1 , . . . , n} is a 

C[ [ltl l -basis of reA x Coo , F* ((n + 1 )D) . 

Now, we wish to show the represent ability of thn affine ring R = 1'( A - D,  0 A)  
as 11 ring o f  differential operators . Let D = L;Pi , there i s  an embedding R = 

reA - D, OA) '-t E'0nr(A, O(D)0n ) = homogeneolls coordinate ring . 

Also, we have an induced mapping 

(38) reA, O(Dt)  ® reA x coo , :F* (kD) )  -t reA x Coo , :F* ( (n + k)7J) ) , 
and, if a E R, Q; = I: '( (Y

n (t1\
) 

+ lower terms '= reA, O(D)n ) . 
z - Z :1: 1 n 

Thus 

(39) 

i .n .  

(40) 
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We define an immersion ring map g:. : R '---7 Mk (lC [ [ft] ] ) [V] by 

n 
�l> (Q) = 2::: (a{r (tt)) Vr . 

r=O 

Let F be associated to c. For art elliptic curve and a divisor c on it, hO (c) = 

h1 (c) = 0 if deg c = O .  Conversely, if f: E .Tacobian of A = {c, deg c = O} , then 

c "'t P - Po and therefore hO (c) = h1 (c) = 0 unless c "'e 0 (e.g. Prop. 4 . 1 .2 , [Ha] ) .  

Thus , the above proves the 

Theorem 3 . 1 .  Let D = l";Pi he a divisor oI,l an elliptic curve A with A - D  affine 

and F a line bundle on A sl1ch that hO (F) = h l (F) = O. Suppose D gives rise 

/;0 a set of compa.tihle transition functions for the bundle F* . Then, IJJCre is an 

injection of the affine ring R = reA - V, 0 A )  into the ring Mk (lC[ [ft] ] )  [V] , and the 

space r(:F* (D)/ F* ) has a finite IC[(ft] ] -basis of I.: elements, (k = degD) . 

Example 3.2 .  If A is an elliptic curve in J!l'3 and D = 'Lt=l Pi (typically 

the section cut out by an odd theta function) . Then r(F* ( (n + 1 )'0)) has gen­

erators {8 1 , 82 , 83 , 84 , . . . , vn S 1 ,  vn S2 , V'n S3 , V'n S4 } , where {Si } is a C[[ft] ]-basis of 

r(F* (TJ) ) .  

Thus , there i s  an embedding of  R = reA - TJ, 0 A) into M4(IC [ [ft] ] ) [V] . 

Appendix 1 .  Multicompor.ent KP hierarchy. 

Let us introduce some notation to consider the multicomponent KP equations . 

See [Ad-B] . We will consider wave functions of the form 

'
. 
w(ft) =:= (1 + 2:  wii) <p(ft) 

i> O  

where Wi are k x k matrices depending or. ft and <p(ft) is  the exponential diagonal 

matrix 

<p(ft) =, exp 

(2::: ( tf 
i>O 

t� 
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and it = (t l , ti , . . .  , f;i ,  _ . .  ) is the vector of time variables t:{ . .  
We have 

o 

1 4; (It) , 
o 

and if a = 2::�=1 0t-1 ' a4;(ft) = �4;(tt) .  
Given the matrix pscndocii frcrential operator vV = .l + 2:::1 'I/}'iiJ-i wc have 

W4;(It) = (.l + L Wizi) 4;(tt) = w(It) . 
�>O  

The multicomponent KP equations can be written as the set of Lax equations 

(41) 

where Q = T-V- 1 (AD) W, A = constant diagonal matrix with nonzero entries and 
. 1 . j 

RJ = W- Ejja'W, Ejj = diag(O , . . .  , 0 , 1 , 0 , . . . , 0) ,  and [ 1+ indicates the differ-

fmtial operator pa.rt of RJ . 

The set of equations (41 ) is also equivalent to the equations in the wave operator 

w 

(42) 

where [ J- is the formal pseudodifferential op�rator part . 

Proposition A . 1 . t .  GiveIl tlle wave fllnction w* (it) = W-l 4;(tt) , tlwre is a ma­

trix difl'cnmtial operator pi , slIch that 

Proof: 

a 
* ( ) _ pj * (  ) -. W fJ; - i W tt . 

ati 

iJ�J w *  (It) = o (z) (p(ft) + (I + 2:: .;>0 wi z i )Ejjz--i �!{It) .  On the other hand ai,w* (it) 

O(z)4;(IJ;) + (I + 2:: >O Wizi ) �4;(ft) . Therefore � - aiEjj is a differential ' 2:' ae . . . , 
,operator that acting on w* (tt) has order OC'�- l ) and we continue by induction. 



. Then we can write 

with 

(43) 

1 4 1  

fJW-1  - 1  ( !Cli ) j .  - 1  -,-.- + W EjjU = Pi W 
of; 

Using the relation W-10tt W + RJ = [RJl+ from (42) we find in particular 

pi = [W-l (Ejjoi )Wl+ = [RJ1+ ·  
Now, i f  Q = W-l  AoW, we have 

oCJ. = OW�l W.Q _ Q fJW�l W = (pi ._ R i )Q _ Q(pi _ R i
) ot?, !Cle De ' J ., J I Ut·, 

= [Q, [RJ1 - l = - [Q ,  [RJ1 +l . 

Proposition A . 1 . 2 .  The operator Q satisfies the multicomponenl; K.P. hierarchy. 

Returning to the Euler Top cas(), wc have seen that starting with a given set 
hbo' }  of Baker functions, we have the representation V; 1Pu = Jllii'I/Ju .  Here, the 1!Ju 'S 

c:orresponci to a certain element W in the Lie group G=I + Q_ where Q_ is the 

space of matrix pseudodiffel'ential operators 2::!o WiO-i . 
By Proposi tion 2 . 1 2  Jllii = K(riDJ(i , so for some mnj llgation of the opera­

tors nDi by elements Si of G ,  we get 8.;�' ! JlliiSi = W- J TiDW. Therefore, i f  Ti = 

diag(Ail , Ai2 , A'i3 , Ai4 ) ,  then the differential operators [S;l Jlli.;Sil+ = [W-1TiOW]+ 
4 . . 4 equal 2:1 AijPl and this corresponds to the multicomponent KP flow 2:1 AijOti . 1 

Appendix 2 .  Weierstrass p-funct.ions on abelian varieties. 

We consider a generalization of Weierstrass p-functions to the case of an am­

!:,le divisor 'D on an abelian variety A. We assume the divisor 1) = "E'Dc< ('Dc< 
irreducible) has a symmetry group G of a certain order. This group is usually 

given by trapslations Tx such that T.;J 'D  = 'D and (- 1 )  involution /, 1.'D = 'D 
and so they belong to the finite translation group associated to the divisor 'D, 
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H ( [D] ) = {x E A :  To-: ID  is l inearly equivalent to D}, unless the variety A has 

nontrivial automorphisms (which is not a generic case) . If 19 is the theta-function 

describing the zero locus D = {19 = O} then 19 changes whith G by automorphy 

factors , and so the differentials of 2nd kind d( a�i log 17 ) ,  i = 1 ,  . . .  -' g, which have a 

pole of order two at D, are invariant . These differentials and the higher order ones 

d( 8[' log 19) can be used to get a definition of Baker-Akhiezer functions for abelian 

varieties similar to that of Manin-Kapranov [Ma-Ka) and Nakayashiki [Na 1) .  

Let { (Ua , la ) }  b e  a local data for the divisor D on the abelian variety A, and 

{)i = .. )0 . : 0 A � 0 A the usual derivations with respeet to the complex coorclinates ( Z1. 
Zi of C9 = universal covering of A. The line bundle [Dj is given by transition 

functions ga(J = ff(3 E 0:4 . Now {)i log ga(J = °fd!, - a'f· f!.!. is a 1 cochain in  0 A wich o (:J • no 
defines an element [8i log ga(J) E HI (A, 0 1\ ) � H�,l CA) . 

Lemma A.2 .1 .  The derivations O�i induce the zero map in Hl (A, OA ) .  

Pr·oof. Let {Tap }  E Hl (A ,  0 A ) .  Then, by Dolbeault isomorphism there is a form
· 

Lv' E Ii�,l (A) such that 8* (w') = {Tn(J } through the sequence 

where 0 � 0 A -t AO ! z�,l -7 0 is the sheaf exact sequence in which AO are 

Coo functions and Z�, l the (0 , 1 )  D-closecl forms. Let w denote the (0 ,  I )-form 

�;uch that 8* (w) = {#Z-;Tap } ,  w = Dna , na = COO functions such that 8{na }  = 
- homologous {) . _ .  { } 

. 
np - Oa I"V oz., Ta(J . Thus, there are holomorphlc functIOns J.La such that 

O(J - J.L(J = a�i Ta(J + (na - J.La) .  Analogously there are functions O� and J.L� 
8uch that ao� �:;�, and O� - J.L� _= Ta(J + CO� - J.L� ) . We get the Coo function 

=0 
,----''----, 

. a . . . - a =- 8 , '  I = n - J.L - - (0' - J.L' ) such that 81 = w - --w' - 8(JI' - - J.L ) . However a a {JZi a a aZi . .  a 8zi a 
, 

Lv' ean be chosen to be harmonic . Indeed, it follows from the Hodge decomposition 
(sce [C-H] ) , that w' = H(w') -1 -7)(11.) , where Hew' ) if;  the harmonic pi ece and 1 1  a. Coo 
function on A. But on an abelian variety a harmonic form has constant coefficients. 

Thus aD HCw' ) = -aD .  " aiazi = 0 and we obtain w = aCI + a{J (u) ) ,  which proves z� , z.,. L Zt 
the lemma. 0 
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Now we get that
. 
a�j ( a�i log ga/3) = 8 {!.La } 

(:) A (Ua ) ,  thus obtaining the function 

f..La - f..L/3 for functions f..La E 

(44) 
{)2 {)2 

Pij = � log fa - f..La = -,)-,. - log f/3 - f..L{1 ,  u�u� u� ij� 

which is a holomorphic function blowing up twice at v. Namely, P'ij E f(A , 0(21))) 

= L(21)) . By taking further derivatives we get 

{)n-2 
{) a {) a Pij E reA, O(nD) ) = L(nD) .  Zl l . • •  Zg 9 

These are the so called generalized Weierstrass functions . 
As {J a }  represents V, then {T; fa } represents 7,; IV = 1). ' Now, for such :v E � A 

(A the principally polarized lattice) then r;fa = eLo. (z)  la , where La (z) is linear. 

Sec for instanee the proof of Weil in [We] . Thus, it follows that rl f:�i log I a is 

invariant under such a Ta: . If A E A then T�la = cLA (z) fO! , and , at;i 10g T� 10! = 

a�i log f O! + a�i L). (z) ==> d a�i log T� f O! = d ai�; log la , which means that d a�i log la 

is really a form on A, invariant under the action of C = {a; : T; l1) = V} . 

As for the Weierstrass functions: 

Lemma A.2.2.  Tiw Weierstrass functions (44) arc invariant under C. 

Proof. This follows because , as above, the functions az�;zj log f O! are invariant 

d C· I a2 
I * f - a2 

I . f I . '  I h 1 un er Tx E , name y, azi azj Og Tx O! - aZiaZj og .  a . n pal tlcu ar, t e cocyc.e 

/)'u - / 1'1) is invari ant hy ll.I IY T,,; E n ,  1 . i l t ls  T:</I." ._ .. 1 1." ":: <p,,; 1 ms 1.0 h( �  i t. fl l l lcl.ioi l  0 1.1 

A without poles , so £Px E C. Moreover, £P : C -4 (C , +) is a homomorphism of a 

finite group into the additive complex numbers . So £P(a:) = £Px = 0 "ITx E C, and 

this implies Pij is invariant under C. 0 

Also, the higher order Weierstrass functions are invariant . 
In this way we have an arsenal of differential forms and functions that blow UP . 

at 1) with a certain order and are invariant by C. 
In the case A i s  an elliptic curve W(l can choose a local parameter z around a 

point of 1) (e .g. , the time evolution parameter) so that the local expansion of the 

function P around this point has the form p = .� + 0(1 ) . Arollnd smooth points 
of the divisor 'D on an abelian variety A!. we c an pick coordinates (x, z) so that 
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or, = ( :rl '  . . .  , Xg- I ) are coordinates bf 1), and Z = 0 defines the reduced divisor 'D 

locally. In a neighborhood of those points we can write Pij = "i;�a;) + 0 (1 ) .  

Let us consider now a (holomorphic) derivation D o n  A. We can think o f  such 

an object as an element in Cg = Lie(A) . One has the isogeny (whose kernel is the 

translation group R (1)) ) 

7r :  A ----+ PicO (A) 
cl: I--t {7;; 11) - 'D} 

As we ean think of x = 7x = exp(D) for some derivation D,  we get the appli­

eation 

Lie(A) 
D 

expon�,l map A 

I--t X 
PicO (A) 

{7;; 11) - 'D} 
Now, by the exponential sheaf sequenee 0 � Z � 0 A � 0* � 0 the co cycle 

[D log ga.Bl E RI (A, OA) goes into the element of PicO (A) given by the cocycle 

{exp(D log ga(:J ) } . 

Since R I (A , 0 A ) = Lie(PicO (A) ) ,  we have the commutative diagTam 

cg = Lie(A) cbr RI (A, OA) = Lie (PicO (A) ) ------4 

(45) exp 1 lexp 
A 1r Pic° (A) ------4 

and one can see that the cocycle {exp(D log 9a(:J) } corresponds precisely (up to 

col )ol l nda.ry) to the c :oeyde { 1-';!!«I' } .  . . !Ju tj 

Lemma A.2.3 .  d7r(D) = [D log g'l<.Bl and ft r;g"ri } = {exp (D log ga(:J ) } .  . 9ct./3 

Proof. If 7r (x) = g"f3 (�t) on Ua.B ' we can determine the directional derivative of 
, g"fi Y 

7r in the direction D.  One has 

d 
(D) 

- 1 · 7r(exp(tD) )  -, 1 _ 1· ' ga.B (exp(tD) + y) - ga(3 (Y) ,7r - lm - lm '--'�---'--�---;---:'----'--'-"-t-,-'O , t  hO tga(3 (y) 
. " 1 ogo:(3 

( ) = hm L -- � Di + 0 1  = D log go:(3 . t-.o ga(3 UZi 

(Here D = 2.:.:: Di chi" and Zi are coordin�tes in A. )  Thus the conclusion follows 

from the commutativity of (45) . 0 
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This lemma shows that the cycle [D log ga,B] E HI (A,  0 A)  inducing the line 
T O g  bundle o f  c o  cycle '" 0;,(3 rv exp( D log ga,B ) , can be thought of as a derivation D g(� fJ 

via the map d7r, which by exponentiating corresponds to the line hundle L :::::; 

[r;;-l1) - Pl o In other words , a direction in the abelian variety A maps to the point 

L = [r;;-1V - V] in PicO (A) . 

Note A.2.4. Let now 80 , S I , . . . , 811. be linearly independent sections of r(V) . 
The zero divisor (Si )O = 1)i has to be linearly equivalent to V = (so ) o .  If D is 

a chosen holomorphic derivation (Le.  a linear combination of ��i with constant 

coefficients) then we can define, as we did , the associated Weierstra.ss function 

This function blows up at 21Ji , which is linearly equivalent to 21J. 
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