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ABSTRACT 
The purpose of this paper is  the introductibn of new theoretical 

solutions about urban transportation.  During the last two decades there 
have been many contributions,  such as those of Patrikson [3] , Thomas [2] , 
B ennet [ 1 ]  in order to mention a few of them. They have developed models 
u sing only heuristic approaches and then with important limitations .  
In this paper, we propose a linear model which is b ased on the assumption 
that the characterization solutions depend on the existence or nonexistence 
of cycles . From this idea, we develop an al gorithm whi ch finds all the . v 
solutions of the problem. . . - . 
The mathematical formulation corresponding to it / depends on the set of 
linear equations and on the matricial formulation of the problem. The 
obtained numerical results show that the proposed model might manage a 
great number of data. Moreover i t  may be of interest, i n  concrete for the 
transit behavior of real cities . 

1 .  INTRODUCTION 
Planning of urban transit  and transport, as well as the analysis of related 
problems (for example Improta [4] , Allshop [5], [6] , [7] ,  etc. )  motivated an 
important research branch in Applied Mathematics .  
The basic theory of the ass ignment in transport has been developed 
extensively by Patrikson[3] ,  B ennet [ 1 ] ,  and Thomas [2] . The main 
assumptions considered in our network are : 
1-1 The movement of each vehicle i s  performed between an initial and a 

- final node. This situ ation generalizes the situation of the other classical 
consideration of having the source and the sink with the important result 
of Ford-Felkerson [8] (see al so Rockefell et [9]) .  
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In the path of movement of each vehicle, there exist  passing compulsory 
nodes, which the drivers must choose. They restrict the flow of the entire 
network . ' 
1 -2 The number of vehicles that might' pass through the compulsory node 
is not restricted. 
1-3 The vehicles found in the i nitial nodes_pass through intermediate nodes 
and then all arrive at the final destination . 
1-4 All drivers have knowledge of all the characteristics of the traffic net 
and trahsit graph.  
1-5 The trip times over all  the paths used are less than those possible of 
paths which mi ght be experienced by a vehicle in any other unspecified 
way. 
1-6 The model is static in time and deterministic.  

The figure I shows the expression of the graph of transit in the case n=3 

[ -.. � 3 
fig. I 

2. INTERPRETATION AND IlROBLEM MODEL 
Trad itionally,  i n  the general  theory of transportation, i ts fl ow i n  between 
part (i nitial nodes of the transit net or graph) and as final destination (final 
nodes of such graph) . A different approach is that of Ford-Felkerson [8 ] .  
Now i f  we introduce among a i l  the ports and destinations an i ntermed iate 
s tep, which is represented by deposits (compulsory passing nodes) ,  then 
we ohta i n  a new transportat ion problem, known as the problem of two s tep 
transportation . The treatment of this situation is rather important, since it  . 
will allow the solving of new trivial proble�s or urban planning.  This 
model was introduced by Marchi and Tarazaga in [ 1'5] .  
Formal ly, a problem w i th m ports , n deposits and PI ,destinations ,  i n  which 
it i s  assumed that 
• The totality of the amount available in the ports is distributed . 
• In the deposits the capacity i s  not bounded 
• There is no accumulation in the deposits 

might be modeled as follows : 
'i : capacity of the port 1.  
tk : c apacity of the destination k. 
x� : u nits to be transported fron port i to the . deposit j ,  wh i ch are assu med l() 

be a real non negative number. 
X�k : u nits to be transported from deposit  j to the destination k and with a 



conservation law 

and 
n 

(1) LX;� = rl 
j= 1  

n 
(2) L X�k = tk 

.i= 1 
III P 

(3) LX� - 2 >�k = 0 
;= 1  k = 1  
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i = 1 ,  . . .  , 111 

k = l , . . .  , p  

j = 1 , . . .  , 11 

The description of the problem is completed with the formulation 'of the 
objective function or cost funcHon ' f ( ) 1 1 2 2 '" 1 1 '" 2 2 X = C x + C x = L.,; C;jX;j + L.,; Cjk Xjk i .j j .k 
which will  be minimized or maxi mized depending on the economic content 
described by the transportation model . 

3.  MODEL ANALYSIS 
The problem of two step transportation, described by 1 ) , 2 ) and 3) 
together with the payoff function is a l inear programming problem . 
If the cost function is non l i near it ':"1i11 become a non I i neat program ; sce 
Mangaras ian [ 1 3 ] and Farkas [ 14] . 
For the analysis in the general context rdlated to the existence of optimal .  
solutions it is  pos sible ta use the traditional result of Farkas [1 4] ,  
o r  Tucker, o r  Gale, etc . (See for examp le I\1angarasian [ 1 3  ] ) 
B u t  g i ven the general characteri st ics of thb model , wc w i l l  study t he model 
from a more adequate perspective , allowing us to find a general algorithm 

for fi nding the extremals' and therefore to obtain in art easier way the set of 
optimal solution s .  
In the first place, note that i t  i s  trivial t o  prove: 

Proposition 3-1 .  The. set. of possible solutions of 1), 2) , 3) is a convex 
polyhedron. 

3.2. MATRICIAL REPRESENTATION 

The matricial representation of the problem, has the form : 

Ax = b 
where A is the matrix of order (m + p + 11) X [(m + p)n] given by: 



ail = {� for i = 1 ,  . . . ,m + p and 

a, -hI 
for i = m + p + l ,  . . .  ,m + p + n. 
Therefore 

mn 

1 
1 . . . 1 

1 5 1  

j = (i - l )n + I , . . . , 1l 
ollzelYl'ise 

j = i - (m + p) + kn 
j = i - (m + p) + (111 + k)1I 
othelYl'ise 

pn 
I . .  

1 . . . 1 
1 . . . 1 

A= 

1 1 1 
1 1 :" 1  - 1  

1 1 1 - 1  - 1  

rl 

rill 
t l 

b = 
t"  
() 

° 

k = O, . . . , n - l 
k = 0, . . .  , 1' - 1 

m 

-1 
p .. 

1 . . . 1  
1 -1 
- 1  n 

- 1  J 

From the descriptions; of the matrix A ,  it is possible to compute the 
dimension of the subspace generated by its row vectors in the matrix,  from 
which we obtain 

. 

Proposition 3-2-1 The rank of A is 111 + P + n - 1 .  
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Proof. Let 

Since r(A) = dim SF > we will prove that dim SF = In + p  + 11  - I .  In ' order to 

show it we will prove that B = {F2 . . . .  ; Fm+I'+II } in a base of SF ' 

Indeed 
3-'2-2- 1 B is a set of generator of SF since 

and F; (for 2 ::;; i ::;; m + p + n )  it is possible to trivially write it  a� a linear 

combination of elements of B .  

3-2- 1-1 B is a set 0f linearly independent vectors because i f  one takes 
m+p+n 
" h. F = O  L..J I I 

it turns out a system of 111 + p + n -":  1 unknowns and (m + p)ll equation of the 

form : 

for i = l . . . .  , (m +  p)n 
Splitting the system into blocks of n equ ations from the first block of n it 
turns out that 

and from the l atter 

and consequently 
hm+p = 0  

As a consequence of 3-2-1-1 and 3-2-1 -2 the propos ition i s  proved . 
As a final part of th is paragraph we wish to point out, for the use given in  
the next considerations,  A �an be partitioned as 

[A I 0 1  
A =  0 A2 

v, V2 

3-3 EXTREMAL CHARACTERIZATION, 
As it was said, the ,model is l i near • .  and as a consequence, the 
characterization of the extremals of the convex pol yhedron of pos sible  

solu tions (op . c i t .  prop. 3- 1 )  will  hold, j f  i t  is  not  empty, to the obtention of 
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the hull optimal solution (see Dantzig G.B . [ 1 1 ]) .  Given the particular 
characteristic of the problem , which i s  reflected in · the matrix A ,  we 
conjecture that the extremal ctKlracterization can be derived from itself. 
On this line, as a first result we present :  
Proposition 3-3-1 Each ey.tremal of the convex polyhedron of 

. admissible solutions of the problem given by 1), 2) and 3) has at most 

m + p + 11 - 1 positive elements .  

Proof : 
Let e E S (op .  cit. prop.  3-2-1) ,  e extremal . Then e satisfies 

Ae = B  
From the proposition 3-1 ,  let B be a non singular submatrix of A .  of order 
111 + p + 11 - I .Consequently 

[B. N{:: ] = b  
and, from the general theory of matrix algebra, if we take e N  = 0 ,  at most 

the m + p + 11 - 1 componen ts of e B are positive. 

Proposition 3-3-2. If '.I' = (s: , , . . .  , .1'),," , s�i ' . . .  s�, ) is an element of s ,  such that 

for each 1 $; i $; m ,  1 $; k $; p ,  there exists a unique j (1 $; j $; 11) such that Si� 
and S�k ' then s is extremal. 

Proof : 
Let s be a solution such that it satisfies the hypothesis and assume that s i s  
not extremal . Then 
3-3-2-1 there exist s' and s" solut ions,  such that s is a convex combinati on 

s = ;t s'+( t - ;t)s" wi th 0 s ;t s I 
3·3·2·2 (Vi) (3j) [(Si� = r, ) 1\ (si, = 0 if 1 :#  j ) ] 
3-3-2-3 (Vk) (3j) [(S�k = tk ) I\ (S�k = O if h ::t j ) ]  
From 3-3-2-1 ,  3·3-2-2 and 3-3-2-3 i t  results that 

s = s' = s" 

contradicting the assumptIon that .I' i s  not extremal . 
In order to characterize all the extremals ,  we oberve that if we have a 
solution : 

( I I 2 2 ) S" , . . . • S"'" ' S' I , . . . .  sp" 

of the two step problem, indeed we have the solution of each one of the 
two linear problems defined by A, and A2 '. respectively . 
In figure II the reader' might visualize a graphic arrangemen t for such a 
situation, where in the inferior part we have exchanged rows by columns .  



1 54 

i 

k 

fig. II 

From such an arrangement of Fig. Il , which we will use each time that we 
refer to a s olution, it  was possible to find a characterization of the 
extremals .  In order to illustrate such point we will consider an example.  
For the problem 

I X I I 
I XI 2  

1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 0' 0 0 

0 0 0 0 0 0 0 0 0 1 1 1 

J 0 0 \ 0 0 - 1  0 0 - 1  0 0 

0 1 0 0 1 0 0 - \  0 0 - 1  0 

0 0 1 0 0 1 0 0 - I  0 0 - 1  

I X 1 3  
I X2 1 5 

X�2 3 I x2J 3 2 = 
XI I  0 2 X2 1 0 X;I 0 
X�2 
x 2, 

22 
2 Xn 

are solutions 

\; '3 

13 3 
and 
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12 112 
�/2 si2 
V2 3/2 
/2 3/2 

from which the first i s' extremal , and the second i s  a convex combi nation of 

1 I 1 
5 5 l and 
3 3 3 3 

We note if we call support of the solution to the set 

S = {(i , i , k ) 1 X� )O A X�k )O} 
we see that such sol utions are possible and they behave in differen t  ways 
on the possible supports . In the second of them there exi sts a support 
subset on which it is possible to have a path begi nning from one positive 
entry (from now on vertex) ,  arriving to such an entry 
Definition 2-3-3 Let s = V , S2 ) be a solution of the problem, a cycle in 

the support of s is a. sequence of indexes 
iq, j'II · · · .iq, 1 '1, iq, .iq, . . . i'll 

in the support of s ,  where it is possible that : 

We remind that 

/) .i'l, :t= jq, t\ I q, = iq, = kq, 

II) · _ . 
iq, - .Iq, 

Theorem 3-3-4. If a solution does not have cycles in the support there 
necessarily exists 
(i , j , k ) such that 

or 

t\ for 

The proof is trivial usmg the contrareciprocal proposition . The facl that the 
extremals do not conta in  cycl es has a reason : 

Theorem 3-3-5. A solution of the problem defined by 1) ,  2), 3) is 
extremal if and only if i t  does 110t contain cycles in its support. 
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Proof . 
The condition i s  necessary. Indeed, let e be an extremal of the problem and 
assume that e contains a cycle in i ts support. Let 

V = {(hp l, ), . . . , (hu , l.. } } 
be the set  vertices of such a cycle and besides suppose that the cardinaI i ty 
of such is even (if this  were not true, it is ahvays possible to consider a 
subset of such .a set of even cardinality which ! determines the s ame cycle).  
Let s' and s" be the solutions which are obtained using e in the fol l owing 
w ay : 

for 

Then 

�re 1I,t. 

Sil l = ell I + f q q q q 
e - f " .,Iq 

(f 
if 

(hq , lq )  '" V 

q is odd 
otherwise 

({ � (!Iq , lq ) '" V 

if q is non 
otherwise 

e s {min e, I } 'tl 'l 
I I e = � S'+ - .sl t  2 2 

contradicting the assumption that e is extremal . 
In  order to prove that a solution of the problem defi ned by 1),  2) , 3) w h i ch 
h as no cycles in  i ts support i s  extremal we wil l  proceed by i nduction on the 
number m + p ,  
C ' d  . �h f' I � L ( , ' 2  2 ) b onsl  er In t e lfst p ace 111 + p - 2 . et S = SI I " " ' S , ,, , s , p , , , , s" , e a 

solution with the hypothesis conditions and assume that s I S  not an 
extremal . Therefore 
T.3-3-5-1 

T.3-3-5-2 

, 2 I S' j = Sj ' . j = , . . .  , 11 

There exists a u nique .i such that 

SI'] = r, a nd s�" = I ,  
T.3-3-5-3 s = A s'+( I - A)S" ( s' and s" solutions) .  
From T. 3-3-5-2 and T. 3-3-5-3 i t  tu rn s  o ll t  : 

s = s' = Si ' 
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contradicting the assumption that 's is not extremal .  
Assume now that the assumption is  val id for III + p .  For the case m + p + I 
(which in terms of the model means that we add a port or a desti nation) , let { I  I 2 2 1 1 l ' . I h 1 l '  d' . d s ::::: SI I , . . •  , S.,/: , S I I  , . . .  , S" ,!,+ l f le a so utlOn Witll t e lypot  1eStS  con thons an 

assume that s is no t an extremal : 

T.3-3-5-4 ' . 
s = }., s'+( I- }.,)s" ( s' and s" solutions) . 

B esides , without loss of generality, suppose 
T.3-3-5-5 s;� = 'i . 
From T. 3-3-5-4 and T.3-3-5-5 it holds true 
T.3-3-5-6 ,\, 1 = ,\'0 1 = ,\', , 1  ::::: 0 for .i # .i' 

Since Sllj = 0 (respectivel y S";j = 0 )  for .i # j" , and s' (respectively ,\'' ' )  
is  a solution . Necessarily we h ave : 
So l ( t' I " I  ) i; = r; respec lve y S ij = 'i . 
When we eliminate the row i ,  we obtai n a problem of less d imension . In it  
by induction hypothesi s ,  any solution without cycles i s  extremal. Add ing 

the eliminated row, we get a solution s with no cycles which is  identi cal to 
s' and s" ,  contrad icting the assumption .  

3-4. DETERMINATION OF SOLUTIONS 
We have just solved the characterization, of the extremaI s of the 
transportation problem in two steps,  using the cycles .  Now remains the 
computation problem. With such a purpose we propose an algorithm which 
generalizes the powerfu l .Turkar and Ryser al gorithm of the classical 
transportation. 
This is determined as follows : 

Algorithm to determine the extremal in the transportation problem of 

two steps. 

Step 0 : to determine the variables 
S tep 1 :  1 . 1  To select a 3-uple (i , j , k ) 

1 .2 Determine if it forms a cycle with the already chosen . 

1 .2. 1 If it is not, �ompute min (r; , t k ) • 
1 .2. 1 .2 Assign such a min to x� and 'X�k ' 

1 .2.2 If it is yes ,  go back to 1 . 1 .  
Step 2 : If r and t are zero for all the values of i , k . Stop the al gorithm . 
In such a context, a rather important result is 
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Theorem 3-4-1 .  The previous algorithm converges to solution of the 

two-step transportation problem. 

The proof is not given s ince it  is  trivial .  
Corollary 3-4-2 The product solutions by the algori thm are extremals 
to the two-step tra nsportation problem . 
Proof. Trivial using . theorem 3-2-4- 1 and 3-2-3-3. 

Theorem 3-4-3 Given an extremaI �f the problem defined by 1), 2) , 3) , 
it is always possible to constru ct it by using the algorithm. 

Proof. 
We will prove the preceding by induction on 111 + p 
3-4-3-1 For 111 + p = 2 .  Since the problem is feasible If = ti ' it turns out that 
the proof in the case is trivial . 
3-4�3-2 Assume that the property i s  val i d  for problems with d imension 
less  or equal to  111 + P (111 + p fixed ) . 
Let e be an extremal of the problem. B ecause e does not have any· cycles in 
i ts support, it is possible to asslline, without loss of general ity, that there 
exist io ' jo such that xi•J• = 'i. and xi•j = 0 for j :f. jo . 

Then it might happen : 
3-4-3-2-1 If. � tk for any k 

making : I X � · = �i = O  tola 0 
I X�,ko = XJoko - <}o for ko such that X;.k,, )O 
I I tko = t10 - XioJ• 
I tk = tk k :f. k, I XJk = X�k for j :f. jo , k "" ko '  
l 'i = 'i i :f.  i, ; I X� = X,� for j :f. .io , i :f. io . 
We obtain a problem of less or equal dimension of 111 + p .  for which 

1 { I  I I 2 }  l' "  e = X,} , X}k .I or I :f.  10  

i s  an extremal , where by induction hypothes i s  is const ructed by t.he 
reconstruction of the algotithm. / 
Now taking io and ko we have that 'i. {.iko ' then for iojo making : 

we obtain 
. 111 == 'iD = X'oj 

I I I . 
Xi,d. = Xioi• + In 

2 I 2 x J.i. = x i.k. + 111 

and in this way we reconstruct e using the algorithm. 
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3-4-3-2-2. there exists ko such that X.2 k ( x ,' i . 1o I) '0 0 
Let 

" , 2 
Xioio = Xioio - X ioko 
, , 2 
'io = 'io - x ioko 
. ,  . 2 tko = tko .- Xjoko 

' tk = tk k -:f::. ko 
' 'i = 'i i -:f::. io 

= 0 

' X� = Xi� j -:f::. jo , i -:f::. io 

' XJk = XJk j -:f::. jo ' k :f. ko 

Then it might happen : 
3-4-3-2-2-1 ' (ko = 0 (fig Ill) . In such cas'e we get a problem of 

dimension less or equal to 111 + p for which : 
' e ' = { ' xi� , lx�k } i , j , k :f. k o 

i s  an extremal, which by induction hypothesis , is computed by the 
reconstruction of the form of the algorithm. 
Making 

m = min{'io , t  io } 
, " 

xioio = xioio + 111 
2 ' 2 X Joko = Xioko + 111 

Now taking iojoko we conclude using e' to reconstruct that e was obtained 
u s i n g  the al gorithm . 
3·4·3·2·2·2. ' ( ko )0 (fig IV) 
Suppose ' x:ofo ( 'X�ok for each k -:f::. ko such that ' X�oko )0 . 
Making 

2X ' = ' x '  - ' x '  lofo loio iofo 

2 , " , tk, = tk, - XiDJo 
2 , 
'i = 'i 

2 , tk =  tk 



i :l: io ' i :l: io . 
i :I: io ' k :I: k l 
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we obtain a problem of dimension at most m + p for which 

is an extremal which by induction hypothesis i s · a consequence of the 
algori thm . 
Making 

resul ts 

• { I  I 1 . 1 2 I } 1nl = mm x" = r, , x ,  L = tk '010 '0 )0"'0 n 
t I 2 I X" = X " + ml 'olo '010 t 2 2 2 X J' k = X ,' k + ml o I n I 

t 2 2 X , k = X ' k 10 I )0 I and t X l , (x! '0'0 'oio 
Repeating the previous procedure with . { I 2 } � = mm Xioio ; x 1ok • 

t 2 I 2 X J k = X i k + m2 o o· 0 0 
we reconstruct e .  

fig. In J 

4. CONCLUSIONS 

. t , I  I +' , X , I = LXI J ' 11,11.-'OIA . I 0 0 "'2 

fig. IV 

We have developed a mathematical model for the described problem. We 
have propo

'
sed a theoretical solution to it and we have d eveloped an 

algorithm for its solution. Up to now we have obtained some preliminary 
numerical results , which show their  effectivity and applicability . 
Such an algorithm was written in C language. We have spent some time on 
the ilUmerical efficiency analysis. 
We will in the near future compare and extend our results related to other 
similar transportation models ,  as for example Marchi [ 1 5] .  
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