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ON THE EISENSTEIN SET

Agnes Benedek and Rafael Panzone
ABSTRACT. Tn the number system (-2,D) with basc b=—2 and family of ciphers D= {O,l, w,—u—)} where

2mi3

w=e

= , w=w’, every complex number z is represenlhble: 2=(y .. Uy U ,.) ,, i€,

N . .

z=Zajbj . (-2,D) has as sct of integers W:= {aN Layaya; e l)} , the family of Eisenstein numbers
- N

E= {m+nw.'m,n eZ } The integers of the system are uniquely representable. The set ol fractional

numbers F:= {O.a_,a_2 ad, € D} coincides with a copy of the so called Eisenstein sel. This sel is a

fractile of diameter equal to \/§ that contains a ball of radius 1/8 and whose convex hull is an irregular
hexagon contained in a ball of radius +/7/9 . The Lebesgue measure of F is cqual to V3/2. The

family {I g EW } is a tessellation of the plane such that F touches 12 sets F , 2F, g € 51{0}. Here

§:=D-D. F , ~F contains only one point iff geS’:= { £(1—w),=(1 —E)ii(w —.‘;) 1cS. &FF s not a

Jordan curve. Morcover, F is a continuum whosc.intcrior and cxterior have infinitcly many componcnts.

1. INTRODUCTION. Let 5 €C, >1, D={0,d,.d,.....d, } cC. a is said representable
. M

in base & with ciphers D if there exists {a, eD: j=MM-1,...} such that « = Za,b" . We

Cwrite a=a,,..a,a_a,..= (ef), and call (¢) the integral part of « and (f) the
fractional part of a. G denotes the set of all representable numbers. F is the set of
Jractional numbers, i.e., thosc numbers in GG with a representation such that (¢)=0. The
set W of imtegers of the system is the subfamily of G with a representation such that
(H=0. A number r will be called a rational of the number system (4,D) if it has a finite

positional representation, that is, a,=0 for j < Jr). U will denote the set of rationals of

the system. We wish to represent the whole of C using a number system with a real base.
. To this end we will study the number system with base --2 and the set of ciphers D ¢ R,

1.3

D:={0,1,w,w’ } where* w—b——+1-—— D\{0}={third roots of unity}, is a multiplicative

' group such that 1+w +w'=0 (the cyclotomic equation).
DEFINITION L.1. E denotes the Eisenstein’s point-lattice: E = [1,w] :=

={(m.1+n.w: m, n € Z}. Let o= DU(-D) = {0,£1,£w +w}. S :=D-D=
={0,£1,+w,tw,t(1-w),£(1—w)H(w—-w) }, = S\o= {£(1-w),2(1-w),+(w —W) }.e
Then, S and o are subsets of the set E of Eisenstein “integers”. It is easy to verify that
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the numbers in S\{0} can be written in a unique way as a difference of two numbers in D.
The numbers in O’\{ } have modulus equal to 1 and those in S’ have modulus equal tc

V3. Besides, @ €S = |a|

'NOTATION I 1. x used as a mpher will represent the numb_er W =w. m(A) will denote
the plane Lebesgue measure of AcC and B(z;r) the open ball of center z and radius r.
The reader can find in [P] a detailed proof of éach statement in the following Ths. I 1-3.
However, we give in this section for most of them and for the sake of completeness, a
reference, a hint or an alternative proof. _

Any number in W, the set of integers of the number system (-2, {'O,l,w,w}), belongs to
E. This follows from the identity: 1+w+x=0. Moreover,

THEOREM 1 1.1) W=E. ,

if) The integer m+nw is representable with at most im|+|l_z|+l ciphers.

iii) If g €W and |g|<2* +1 then g is representable with at most +3 ciphers.

iv) 0 has a unique representation in the number system (-2, {0,1,w,x}).

v) m+nw has a unique representation in (—2,{0,,i,x}). ®

PROOF. i) cf. [P] or [E]. ii) can be proved by induction. iii) same proof as in [B], lemma
1,i). iv) If 0.(0) =e.(c)and both expressions are different then, after multiplying by an
adequate power of the base » we obtain an analogous equality with e e D\{0}. Since D -

isa multiplicative group we can assume that e=1. But then we must have —1 = 0.(c) and
this is impossible. v) We have d,,d; e D,d, #d, =>d,-d,; #b.r,r eW . But iv) is the

is™jy
hypothesis HO) in [Z], §2, which together with the preceding statement imply that the
ciphers have a unique representation as integers of the number system. Since W is a Z-
module, an application of the theorem of uniqueness of that paper proves that any
number in W has a unique representation in (b,D), QED.
DEFINITION L 2. [,:=g+1" where gel.e
Thus, F, =F, the fractional set of the number system (-2,{0,1,w,x}). We shall call it the
I'Iscnstcm set (Tig 2 §1).. The definition 1 2 can be extended in the following way (see
Figs. in §Vl) ,
(1Y F,, a0, {x X=0yty Ay, } p
z,l_ 2,
b 2
Then, F = U(D‘(F) Thus, the 4-reptile F is the invariant set of the ['amily {D,}.

il
THEOREM I2. i) The compact set F cB(0; l) is invariant under rotations of 2/3 and
is the attractor of the family of s1milar1t1es {D;

ii)IfzeCand |z|<1/8 then z el
i) G=C, i.e, C= | JF, .o

geld
PROOF. ii) can be proved as in [B], lemma 1, ii). For iii), cf. [E] or [P]. It follows
immediately from ii), QED.

DEFINITION I 3. For j €D = {0,1,w,x} let us define ®,(z) = %:—
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THEOR&wi I 3. i) The family {1e gek } defines a tessellation in the sense that not

only R*=U {I';:g e[s‘} but also that any two different sets of the family have an

intersection of plane Lebesgue measure zero.
ity m(F)=+/3/2.0

PROOF. To prove i) observe that m(b*17) = (16)*m(I") and that b*I" = U Iy s
d.ef,geD

the union of 256 copies of sets congruents to F. Thus, (defg), = (d'e' f'g"), implies that

m(Iyp NIy, 00 ) =0. We show in section 2 that ['n [, # 0= g €§. But we know

from Table 1 that any number
- in S is representable with at
most 4 ciphers. Therefore,
m(l°~1,)#0 only if g=0

.- and 1) follows. _

" i) The tiling of R*by - the
parallclograms defined by the
Eisenstein’s point-lattice is
composed of tiles of area

; ﬁ /2. Therefore, i) imf)lies
- \ . that m(F) =+/3/2, (cf. [HW]

\ . \T{—w . L \ ~ §3.110r [Z], §4), QED.
Eisel.nstéin'spoini»ljatﬁce . . \ ' \ ‘ \\ w= (~1+1¥3)/2

' ‘ ' TABLE 1.

Positional representation of the numbers {m+n.w: mneZ,

"FIG. 1

m|,ln| <4} in the number system (-2,D).

- -4-4 w=x00 -2-2.w=xx0 0+1.w=w 2+3 w=xw
-4‘-3.w=x0w 2-lw=xxw 0+2 w=ww0 24+4 w=xx10
“4-2w=11lw0 2+0.w=10 - 0+3 w=www 3—-dw=11x11
“4-1Tw=1Tww 24+l w=1lw 0+4 w=w00 3.3 w-lwx
4+0w=1100  2+2w=11x0 l-4.w=wwOl 3-2w=wwx |
4+1.w=110w 2+3w=11lxw I-3 w=wwxx 3-1.w=10x
4+2 w=wwxwl0 2+4.w=wl0 1-2.w=wl 3+0w=111
-4+3 w=wwxww -l-4.w=wwll I-1l.w=11x 3+]1w=xxwx
4+4 w=wwx00 -l -3 . w=wx . 1+0.w=1 . 3+2.w=xl
3-4.w=x01 A1 -2.w=xxl. 1+1.w=xx 3+3 w=xx0x
3-3.wW=XXX -l-1w=x 1+2 w=wwl 3+4w=xxll
3-2w=1llwl A +0 w=11 I+3.w=xx1Ix 4-4w=11x00
S3-lw=1x A+l w=wwx I+4w=w01l 4-3.w=11x0w
3+0.w=1101 - 1+2w=11x1 2-4w=11x10 4-2w=1woO
S3+1l.w=1lxx -1+3.w=w0x 2-3.w=llxlw 4-1w=1lww
S3+2w=wwxwl -1+4 . w=wll 2-2.w=wwx0 4+0w=100"
S3+3.w=wlx 0-4.w=ww00 2-1.w=wwxw 4+1.w=10w
3+4 w=wwxo0l1 0-3.w=wwOw 2+0.w=110 4+2 w=xxw0
2-4 . w=wwlO 0-2.w=w( . 2+ 1lw=11lw 4+3 w=xxww

2-3.w=wwlw O0-1T.w=ww 2+2 w=x0 444 w=xx00
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Some a1 ilhmelic: to prove that [.10=0.01 obscrve that 0.10= -2/3, 0.01=1/3. Since
(]l)b —-1, we gel (ww)=-w, and from 110=h(11)=2 (hat 11x=2+x=1-w. That is,

11x.10= (1/3)—w=ww, 01. From this, afler multiplying by 57, we get the desired

equality 1.1w” 10=0.wwOl.

FIG. |

Iil. THE CONVEX HULL of the
FRACTIONAL SET F of the SYSTEM
(-2,{0,1,w,x}). We show in the theorem that
(::3«;--2,/)=1+-'~‘£3—,1;= —-574--?’7-_—; then

343 6 2
|C-Dl=1/V3, & (E)=5= 2. ’f

THEOREM 1 1. co(/)=co («/)/:1/, /)(_)4.

(C}=FnT '/)~—/m“,,/'~/m/

wel®

Then, according to Theorem 11 1 ii) and Lemma
i,

C=(l—x,§)b=(0 ﬁ) _ .._MZ(___)W +i(:%)21=e 3,u,=s(:;§)+%=2+j‘/§’

J! “~ J

—  — 3 5
D=w —x.rx=0.x1 ——l—tl?\—[; E=w-1wl=0lr ——%’—\[—»- On the other hand, we
D

have, ®,(C)= fi,d),(ﬁ) =/, Since ®,(z) is a conformal mapping, ®,(H)c /. In
general, d e D= ®,(//)c H . In consequence, /< /{. Since, C, D, E and its complex
conjugates belong to /I, we obtain co(/")y=/1, QED

The next corollary improves Th. 11 2 ).

COROLLARY. i) /' ccl B(0;4/7/9 ); ii) diam /=+/3 ; iii) o co(F) = {0}.e
Conspicuous‘points: A=-2/3, X = (x.}\‘t_")b =(0.1) = —1/3=w.wx=the fixed point of @,

B=1/3=0.01=1.10, (see Fig. 1).
!‘ _

FIG. 2. It shows the relative position of /4 in the
tessellation H defined in Th. TV 2. Obscrve that

the convex hexagon #/ docs not tile the planc,

IV. SOME PROPERTIES of the
~ (EISENSTEIN) FRACTIONAL SET of
| the SYSTEM (-2,{0,1,w,x}).

DEFINITION IV 1. /%= |z:z=a '} =
| ]
L N

the set of rationals in /. e
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Fig. 1.
THEOREM 1V 1.i) F¥*cint F.

ii) cl(F*) = cl(int F) = F.

iii) If g=0 then (int F)nF =0 e

PROOF.i)If z=0.c,... and €D then ®,(z) = 0. ... . Besides, P, (int /) cint/.
Since 0 is an interior point of F it follows that @, ‘ o..‘o(Da__N(O)=0.a_“,...a__N €int F.

i) follows from i) since cl([**)=F,

ui) If z e/, then z=(g),.a.,... . Because of Theorem 1 1 v), z,, =(g),.a.,...a , is not
in F. Thus, z=1im z,, does not belong to int(F), QED.

COROLLARY. i) The family {int/7,:g I} is pairwise disjoint.

ii) F is a self-similar set that satisfies the open set condition. e

THEOREM IV 2. /7is a connected set.e

PROOF. The tessellation H of the plane given by regular hexagons of apotheme 1/2
centered at the points of the Eisenstein’s point-lattice (sce Figs. 1, 2) is invariant under a

translation by a vector of the lattice and under multiplication by e*™ =, ™=y or
¢™=-1. The similarities ‘®,,d € D, transform the tessellation H into the tessellation H/2.
And the similarity @, o o®, transforms H,=H into H =H/2". To recognize the
position of a hexagon in H, it is suflicient to know the coordinates of its center in
E=[1,w]. If 7', dcnotes the central hexagon in H then the sct of centers of the hexagons
inH, , n>0,.contained in 7, ;= (U{D, o oD, (1):(d, ,...d) D" '), for a fixed

deD.ist -—{“;:;..4,,___,_55

nd n

d _ .
k;;dk eDk=1,.,n-1}. Applying v) of Th. I |, we get
that d #d'=>1, ,
This explains the behaviour of the relevant subsets of the familics of hexagons in the
preceding diagram. For example, at its extreme right we can distinctly see the families of
hexagons in H, contained in the sets 7,,,7;,,7,,.,7, . I Q, denotes the compact set

N, =D Therefore, (int7, ) (int7,,)=O.

nd

U'I,',,‘, then, because of a theorem due to Hutchinson (cf. [H]), the sequence {2 }
deD .

converges to F in the metric of Hausdorfl. To prove that F is connected, it is sufficient to
prove that €, is a connected set. It suffices to show that given d /) there exist a

¢ e\ {0} and two families of ciphers, {/,_,,....d}, {1, ,....,{,}, such that
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(v db’ +d, b Adb b =0, b b "

n-l nl

In fact, (IV 1) implies that 7, ,~7 ,#&. Obviously, it suffices to consider the case
d=1. In this case (IV 1) reads: b™' +cb™" +d, b7 +.+db™" = 1, b7+ .+1,b"". The
problem is reduced to find, for n>1, y =y (n) € S, j=1,...,n~1, and a c=c(n) €\ {0}
such that 6"'+c=[y, ,...,7,), (Square brackets in expressions like [...], have the
same meaning as (...), cxcept for the fact that thc numbers inside them may not be

n-1

ciphers). But, since b=—2 and 2" —1—22’ we have " +(-1)"" Z( N =

=[- l 1, -1,..,(-1)"],, QED.
The prcccdmg proof is borrowed from [P]. Fig. 3 of scction I illustrates the fact, already
proved, that each 7/, touches exactly twelve different tiles. This property is shared with

the regular tiling by equilateral triangles.
PROPOSITION WV 1. The process shown in I'ig. 1 of
this section provides a tessellation F ., n>0, with
FG. 2 central tile Q. that uniformly approximates the tiling
‘ F={I'_’g,:g eE}. Irach tile in F is in contact with
exactly six different congruent tiles.
1 PROOF. The centers of the hexagons in Q, and Q -+g,
g€k \{0}, are of the form: d,b™"+..+d, b7 +d b
and 107"+, . +1b 7 +c,+ob+.. 4, b" with a ¢, 20,

respectively. After multiplying by 5", we obtain two different integers of the system
because of Th. I | v). That is, m(Q, n(Q,+g))=0if g=0. It is easy to prove that

each Q, has an area equal to the area of a parallelogram in Eisenstein point-lattice, that.
is, m(QQ,) = V3/2. A standard result on point-lattices (cf. [HW] or [Z], Prop. 2,2’) that
makes use of the fact that F ={g+Q,,:g eE} and H are composed of compact sets of
the same measure associated to the same point-lattice asserts that F is a tesscllation of
the plane. Itlis not difficult to show that if z belongs to €, then |z\ <V3.A consequence
of this is that Q, N (Q, +g) = only if g eo. Thus, there exists g €o\ {0} such that
QNQ,t9+2J. geo=>Q, N (Q, +g) # @ follows after multiplying by w and X
the preceding relation, QED.
Thus, cach approximating tessellation behaves like the regular tiling by hexagons.
DEFINITION IV 2. K:=38F, K, :=8F , AZ}=1. 15, {Y}=1, "]}, X==1/3.e
THEOREM 1V 3. i) Let a=®,(0)=-1/2 and M=I", OF, U I';. Then, M is a continuum
-such that a@ € 4 = the infinite open component of C\M. Besides, 0 ¢ A4 .
i) B(0;1/6) < int( XYZ) Cint()")
PROOF. We proved that [, has one point in common with /[, when t-seS’ (Th. Il |
iii)). From this and Th. IV 2, it follows that M is a continuum. Using Theorem I11 1 we



184

FIG. 3
see also that M =U {co( [ ),ce{l x,w}} is
" a continuum that does not contain 0 and
the- half line (—oo,a], (cfr. Fig. 4).
Therefore, a belongs to A Let q be a
polygonal joining 0 with  «a. Then
qAM =@ . n fact, clearly g M 2D (cf.
. Fig. 4) and q intersects one of the polygons
* co(F.) included in M at a vertex or at’
two different sides.Since the vertices of
that polygon are points of /., and/, is
connccted, we have in cither case g I, @ In consequence, 0 A . It is not hard to
prove that the interior of the triangle XYZ has to be contained in the interior of /¢, QED.
COROLLARY. The theorem holds with /], UJ. U, replaced by M:=
FOF ,OURUF _OUF, e
PROOF. The convex hulls of /7 7 have void intersection with the interior of the
triangle XYZ and the halfline (—oo,X) , QED.
NOTATION IV 1. We shall denote with V* the complement C\V of the set V.
THEOREM 1V 4. i) int(F) is the union of an infinite denumerable family of open
components
i) K is not a Jordan curve
i) Kee | Jint(F,).e -

deS\{0}
PROOF. i) 0 and —1/2=(0.1), = ®,(0) are interior points of F. Because of the preceding
theorem they belong to different components since int(F) = M*. i) follows now from the
self-similarity of F. ii) is a consequence of i) and the theorem of Jordan and Veblen.
iii) If z=0.a_,... €K then it is the limit of a sequence of points in C\F and thcrefore,
z=s5d, w1th s € S\{0}. Tt follows from Th. IV 1 that z is the limit of a sequence of'
points bclongjmgj toint( /), QED.
V. A LOCKED TESSELLATION. We wish to prove that the complement of F, F*,
has infinitely many open components. This explains the existence of holes in the diagram
of F shown in Fig. 2 of section 1. To prove that F” is not connected, it 1s sufficient to
demonstrate the next result. In its proof we use again Table 1.
THEOREM V 1. [* ¢ Q = the infinite open component of F". e
PROOF. u=1l.1wl and v=L.1wll are rationals not in F. They arc not connected in
(I oV o O 1 ul(,m‘u]w,“ )* o I This can be verified by applying the
similarity @z):=b’z—(11w1),. In fact, one readily sees that @u)=0, @(»)=0.1=-1/2,
dX0.xx0)=(xx0) , —(11w1), =(~2-2w)~(-3-2w)=1, A0.xxw)=—x, @0 .xxx)=-W,
@0.01x)y=w, @X0.xOw)=x. Therefore, &I =1, NI, )=F., A =,
NIy, =1, &I, )=1I By i) of Corollary to Th 1V 3, d(u) and dXv) arc not
connected in M = (D((]OMUF VLG o V150V Fo,)"). Hence, ueFA\Q, QED

0.xxw 0.xx
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This shows that the tessellation by F is different from the usual ones in which the tiles are
“glued” side by side. In the present situation the tiles are “locked”, each one with six

: neighbouring tiles out of the twelve with which
it has a non void intersection. The hexagons in
. Fig. 1 belong to H, .
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