Revista de la Unión Matemática Argentina Volumen 41, 3, 1999.

A POINTWISE ERGODIC THEOREM

María Elena Becker

Abstract. Let (X, \mathcal{A}, μ) be a finite measure space and φ a nonsingular transformation on (X, \mathcal{A}, μ) . Necessary and sufficient conditions are given in order that for any f in L_1 the average $\frac{1}{n} \sum_{i=0}^{n-1} f \circ \varphi^i(x)$ converges almost everywhere.

INTRODUCTION AND RESULTS.

Let (X, \mathcal{A}, μ) be a finite measure space and φ a nonsingular transformation on (X, \mathcal{A}, μ) , that is, $A \in \mathcal{A}$ and $\mu(A) = 0$ implies $\mu(\varphi^{-1}A) = 0$. We consider the operator T, acting on measurable functions,

$$Tf(x) = f(\varphi x) \; .$$

Associated with T we have the averages

$$M_n(T)f = \frac{1}{n} \sum_{i=0}^{n-1} T^i f$$
.

Since T maps L_{∞} to L_{∞} and φ is nonsingular, the adjoint operator S acting on $L_1(\mu)$ can be defined by the relation

$$\int gTfd\mu = \int fSgd\mu \quad ,$$

 $f \in L_{\infty}$, $g \in L_1$. As in [3], in order to extend the domain of S to the space $M^+(\mu)$ of all nonnegative extended real valued measurable functions on X, fix any $f \in M^+(\mu)$ and take $\{f_n\} \subset L_1^+(\mu)$ such that $f_n \uparrow f$ a.e. on X. We then define

$$Sf = \lim_{n} Sf_n$$
 a.e. on X.

It is easily checked that by this process S can be uniquely extended to an operator on $M^+(\mu)$ satisfying $S(\alpha f + \beta g) = \alpha S f + \beta S g$, $0 \le \alpha, \beta < \infty$. In the sequel, S will be understood to be defined on $M^+(\mu)$ in this manner and we write

$$M_n(S)f = \frac{1}{n} \sum_{i=0}^{n-1} S^i f$$
.

1991 Mathematics Subject Classification: Primary 47A35 Secondary 28D05

The purpose of this paper is the following theorem:

Theorem 1. Let (X, \mathcal{A}, μ) be a finite measure space and φ a nonsingular transformation on X. Then the following conditions are equivalent:

36

- A) For any $f \in L_1^+(\mu)$, $\lim_n M_n(T)f$ exists and is finite a.e. on X.
- B) S satisfies the mean ergodic theorem in $L_1(\mu)$ and, further, for any $f \in L_1^+(\mu)$, $\lim_n M_n(S)(fv_0)$ exists and is finite a.e. on X, where v_0 is the pointwise and L_1^- -norm limit of $M_n(S)1$.

We will need the following well-known fact (see, e.g. [4])

Lemma 1. Let (X, \mathcal{A}, μ) be a finite measure space and φ a nonsingular transformation on X. The following are equivalent:

(i) For any $f \in L_{\infty}$, $M_n(T)f$ converges almost everywhere.

(ii) For any
$$A \in \mathcal{A}$$
, $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} \mu(\varphi^{-i}(A))$ exists.

(iii) S satisfies the mean ergodic theorem in L_1 .

Throughout this paper χ_A will be the characteristic function of the set A and we will consider two sets as 'equal' if they agree up to a set of measure zero. A measurable set A will be called *invariant* if $T\chi_A = \chi_A$ a.e.. We denote by \mathcal{J} the σ -field of invariant sets.

THE PROOFS.

In order to prove Theorem 1 we will make some previous considerations. First, we observe that by virtue of Lemma 1 we may and do suppose that φ satisfies:

For any
$$A \in \mathcal{A}$$
 there exists $\overline{\mu}(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(\varphi^{-i}(A))$

By the Vitali-Hahn-Saks theorem $\overline{\mu}$ is a measure. It is easy to see that $\overline{\mu}$ is absolutely continuous with respect to μ , invariant under φ and $\overline{\mu}(A) = \mu(A)$, $A \in \mathcal{J}$.

Let $v_0 = \frac{d\overline{\mu}}{d\mu}$, $C = \{x : v_0(x) > 0\}$ and $D = X \setminus C$. We have $\mu(C \setminus \varphi^{-1}(C)) = 0$ and hence we may suppose that $C \subset \varphi^{-1}(C)$. Then the set $D_0 = \bigcap_{n \ge 0} \varphi^{-n}(D)$ is invariant and $\mu(D_0) = \overline{\mu}(D_0) = 0$. Thus we have

(1)
$$X = \bigcup_{n \ge 0} \varphi^{-n}(C) \; .$$

It is also easy to see that the validity of L_1 -mean ergodic theorem for S implies

$$v_0 = \lim_{n \to \infty} M_n(S) 1$$

We prove the following:

Lemma 2. Let $h \in M^+(\mu)$ such that $h^*(x) = \lim_n M_n(T)h(x)$ exists and is finite a.e. on X. Then $h \in L_1(\overline{\mu})$ if and only if $h^* \in L_1(\mu)$.

Proof. If h is in $L_1(\overline{\mu})$, then by Birkhoff's classical ergodic theorem $h^* \in L_1(\overline{\mu})$ and we have

$$\int h d\overline{\mu} = \int h^* d\overline{\mu} = \int h^* d\mu \; ,$$

where the last equality follows from the fact that h^* is \mathcal{J} -measurable together with $\mu = \overline{\mu}$ on \mathcal{J} .

Conversely, assume $h^* \in L_1(\mu)$ and let $\{h_n\}$ be a sequence of nonnegative simple functions increasing to h. By (1) and the Lebesgue bounded convergence theorem, for all $A \in \mathcal{A}$ we have

$$\int \chi_A^* d\mu = \lim_n \int M_n(T) \chi_A d\mu = \int \chi_A d\overline{\mu}$$

Hence

$$\int h^* d\mu \ge \lim_n \int h_n^* d\mu = \lim_n \int h_n d\overline{\mu} = \int h d\overline{\mu} \ .$$

Proof of Theorem 1. A) \Rightarrow B). Let f be a function in $L_1^+(\mu)$ and $f^* = \lim_n M_n(T)f$. We consider for each natural N the set $J_N = \{x : f^* \leq N\}$. Since $J_N \in \mathcal{J}$, $(f\chi_{J_N})^* = \chi_{J_N} f^* \mu$ -a.e., and from Lemma 2 it follows that $f\chi_{J_N} .v_0 \in L_1(\mu)$.

Then Lemma 1 and the fact that the validity of the L_1 -mean ergodic theorem for S implies the validity of the pointwise ergodic theorem for S (see, e.g. [2]) give the almost everywhere convergence of $M_n(S)(f\chi_{J_N}v_0)$. From the relation

$$S(f\chi_{J_N}v_0) = \chi_{J_N}S(fv_0)$$

it follows that $M_n(S)(fv_0)$ converges a.e. on J_N . Letting $N \uparrow \infty$, we obtain B). B) \Rightarrow A). Since for all $f \in L_1(\mu)$

$$|S(\chi_c f)| \le \chi_c S|f| \qquad \mu - \text{a.e. on } X \ ,$$

S can be considered to be a positive linear contraction on $L_1(C, \mu)$. Let \mathcal{J}_C be the σ -field of invariant subsets of C. Using, for instance, the Chacon-Ornstein theorem and the identification of the limit function (see [1], p.41) it follows that for each $h \in L_1(C,\mu)$ there exists a \mathcal{J}_C -measurable function R(h) such that

 $\hat{h} = \lim M_n(S)h = R(h)v_0$ μ - a.e. on C .

Furthermore, we have

$$\int_{K} h d\mu = \int_{K} R(h) v_0 d\mu \quad , K \in \mathcal{J}_C$$

Now, let $f \in L_1^+(\mu)$ and set $f_n = \min\{f, n\}$, for each natural n. Then

$$\widehat{f_n v_0} = R(f_n v_0) v_0 \le \widehat{f v_0} < \infty$$
 μ - a.e. on C

where $\widehat{fv_0} = \lim_{n} M_n(S)(fv_0)$.

We take $K_N = \{x \in C : \sup_n R(f_n v_0) \le N\}$. It follows that

$$\int_{K_N} f v_0 d\mu = \lim_n \int_{K_N} f_n v_0 d\mu \le N \int_{K_N} v_0 d\mu \ .$$

Therefore, $f \in L_1(K_N, \overline{\mu})$ and by Birkhoff's classical ergodic theorem $M_n(T)f$ converges to a finite limit a.e. on K_N . Since $K_N \uparrow C$, A) follows from (1).

References

- A.M. GARSIA, Topics in Almost Everywhere Convergence, Markham, Chicago 1970.
- [2] Y. ITO, Uniform integrability and the pointwise ergodic theorem, Proc. Amer. Math. Soc. 16 (1965), 222-227.
- [3] R. SATO, On pointwise ergodic theorems for positive operators, Studia Math. 97 (2) (1990), 71-84.
- [4] R. SATO, Pointwise ergodic theorems in Lorentz Spaces, Studia Math. 144
 (3) (1995), 227-236.

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria - Pabellón I 1428 Buenos Aires ARGENTINA mbecker@dm.uba.ar

Recibido en Setiembre 1998