A REMARK ON EULER'S CONSTANT

PABLO A. PANZONE

ABSTRACT. Let x_0 be any real positive non-natural number which satisfies $\Gamma(x_0).k = \Gamma'(x_0)$ with k a rational number. We prove that either Euler's constant γ is trascendental or x_0 is irrational.

Define for $p,q \in N$, $\alpha(p,q) := \sum_{i=1}^{\infty} \left(\frac{1}{qi} - \frac{1}{qi+p}\right) \text{ and } F(x) := \sum_{i=1}^{\infty} \left(\frac{x^{qi}}{qi} - \frac{x^{qi+p}}{qi+p}\right)$ Obviously $F(1) = \alpha(p,q)$ and $\frac{dF}{dx} = x^{q-1} \frac{(1-x^p)}{(1-x^q)}$. Thus $\alpha(p,q) = \int_0^1 x^{q-1} \frac{(1-x^p)}{(1-x^q)} dx$ and one obtains, for example, $\alpha(1,2) = 1 - \ln 2$, $\alpha(1,3) = 1 - \frac{\ln 3}{2} - \frac{\pi}{6\sqrt{3}}$, etc. Indeed one can compute $\alpha(p,q)$ in closed form with the following formula due to Gauss ([1] pg. 35):

(1)
$$\alpha(p,q) = -\frac{1}{2q}\pi\cot(\frac{p}{q}\pi) - \frac{1}{q}\ln(q) + \frac{S}{q} + \frac{1}{p}$$

where $S = \sum_{r=1}^{(q-1)/2} cos(2\pi r p/q) \ln[4sin^2(\pi r/q)], (q odd),$

$$S = \sum_{r=1}^{(q-2)/2} \cos(2\pi r p/q) \ln[4\sin^2(\pi r/q)] + (-1)^p \ln 2, (q \text{ even}).$$

Lemma 1. $\alpha(p,q) - \frac{1}{p} \neq 0$ for $p,q \in N$, $0 < \frac{p}{q} < 1$.

Proof. Suppose $\alpha(p,q) = \frac{1}{p}$. Then as $0 , <math>\frac{1}{p} = \int_0^1 x^{q-1} \frac{(1-x^p)}{(1-x^q)} dx \le \int_0^1 x^{q-1} dx = \frac{1}{q}$, a contradiction.

The following theorem, proved in 1966, is due to Baker (see [2] pg.11):

Baker's Theorem. $e^{\beta_0}.\theta_1^{\beta_1}...\theta_n^{\beta_n}$ is trascendental for any non-zero algebraic numbers $\beta_0,...,\beta_n,\theta_1,...,\theta_n$.

We use this theorem to prove the following result.

Theorem 1. $\alpha(p,q)$ is trascendental for every pair $p,q \in N$, $\frac{p}{q}$ non-integer.

Proof. There is no loss of generality if we assume p, q coprime. It is enough to prove the theorem for $0 < \frac{p}{q} < 1$, because $\alpha(p,q)$ and $\alpha(p+q.n,q)$, $n \in N$, differ by a rational number. Thus assume p, q are coprime and verify $0 < \frac{p}{q} < 1$. Moreover one can assume $\frac{p}{q} \neq \frac{1}{2}$ for $\alpha(1,2) = 1 - \ln 2$ and $\ln 2$ is trascendental by Lindemann's theorem ([2], pg. 6).

Recall that the set of algebraic numbers is a field. First observe that $sin(\frac{p}{q}\pi)$ and $cos(\frac{p}{q}\pi)$ are algebraic because $sin(\frac{1}{q}\pi)$ and $cos(\frac{1}{q}\pi)$ are algebraic, and this last assertion follows from De Moivre formula $e^{inx} = (cos x + isin x)^n$ with $x = \frac{1}{q}\pi$ and n = q.

Thus from (1) for one sees that $\alpha(p,q) = \pi \cdot \zeta_0 + \sum_{j=1}^n \delta_j \log(\zeta_j) + \frac{1}{p}$ with ζ_0, \ldots, ζ_n , $\delta_1, \ldots, \delta_n$ algebraic and non-zero.

Assume that $\alpha(p,q)$ is algebraic. Then $\beta_0 = \frac{\alpha(p,q)-1/p}{\zeta_0}i = i\pi + \sum_{j=1}^n \frac{i\delta_j \log(\zeta_j)}{\zeta_0}$ is algebraic and non-zero by lemma 1. Therefore

$$e^{\beta_0}.\zeta_1^{-i(\frac{\delta_1}{\zeta_0})}\zeta_2^{-i(\frac{\delta_2}{\zeta_0})}.....\zeta_n^{-i(\frac{\delta_n}{\zeta_0})} = -1$$

which contradicts Baker's theorem.

The point $x_0 \in R$ stands for a non integer positive number which satisfies $\Gamma(x_0).k = \Gamma'(x_0)$ where k is a rational number. Then we have

Theorem 2. Either x_0 is irrational or γ is trascendental.

Proof. If x_0 is irrational then the theorem is true. Thus assume $x_0 = p/q$ is a positive rational non-integer number. Recall the well-known formula $\sum_{i=1}^{\infty} \left(\frac{1}{i} - \frac{1}{i}\right)$

 $\frac{1}{i+x}$ $-\frac{1}{x} = \frac{\Gamma'(x)}{\Gamma(x)} + \gamma$. Then, replacing x by x_0 in this formula we get $q\alpha(p,q) - q/p = k + \gamma$ and therefore γ is trascendental by theorem 1.

NOTE: One such point x_0 could be the point where the minimum of $\Gamma(x)$ is attained.

REFERENCES

- 1. Harold T. Davis, The Summation of Series, The Principle Press of Trinity University (1962).
- 2. Alan Baker, Transcendental Number Theory, Cambridge Universety Press (1979).

Pablo A. Panzone. Instituto y Departamento de Matemática. UNS. Av. Alem 1253. (8000) Bahía Blanca. Argentina. e-mail: inmabb@criba.edu.ar

Recibido en Julio 1998