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Abstract

Under the hypothesis that an almost complex submanifold M™ of
RV is (2,0)-geodesic and homogeneous, a formula for the canonical
covariant derivative of the second fundamental form of the submani-
fold is obtained. As a consequence of this formula, it is proved that
if the submanifold is full then the first normal space coincides with
the whole normal space. Other consequence is obtained under more
restrictive conditions.

1 Introduction and main results

Let (M,g,J) be a connecled Ricmannian manifold with metric ¢ and an
almost complex structure J. We are not assuming, at least at this point, that
the manifold is Hermitian ie. ¢g(JX,JY) = g(X,Y). Let N be another
Riemannian manifold and ¢ : M — N be an isometric immersion. As usual,
we shall denote by a the second fundamental form of the immersion ¢. Let
T (M) denote the tangent bundle of M and let T (M) be its complexification.
The almost complex structure J, extended to 1T (M) induces a decomposition
of this bundle into its eighenspaces

T (M) = T* (M) @ T° (M)

which in turn induces a decomposition of the c0mp1exiﬁed second fundamen-
tal form aCof the isometric imersion . This 1s of course delined as

(X1 +1Y7, X + 1Y) = a (X1, X2) — a (Y1, Y2) +i o (X1, Y2) + a (Y1, X2)]
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54

and if Z;, Z, € T° (M) then we have, for k = 1,2,
1 1
Then

vac (Z],ZZ) = of Z_(l,()) 7(1,0))_*_' c( (1,0) 7(0’1))
Jaf (/((”) /(] 0)) e c( 01) 7(10)).

It is usual to define now

a2.0) (Z], Z2) = o Z(l 10) Z(l 10)
o0 (2,,2,) = ot (70D, 74
o) (Zl, Z) = of Z}l,O)’ Zéo,l) +at (Z{O,l)’ Zél,O)) .

The isometric immersion ¢ is called (3, k)-geodesic if () = 0.

In the present paper we want to assume that ¢ is a (2, 0)-geodesic.

Now recall that, due to the almost complex structure Jp, the tangent space
Tp, (M) is a complex vector space which is isomorphic to the holomorphic
tangent space T (M)™"® by the correspondence X 1 (X —iJ,X) . Then,
for X, Y €T, (M) we get, compuling by dcfinition

ot (X —iJX, Y—1IY)
—a(X Y)—a(JX,JY)+ia(X, JY)+a(JX Y))
= af (X(IO)’y(IO)) = a9 (X,Y)

Then the condition o?% = 0 is clearly amounts to

(i) a(X,Y)-a(JX,JY) =0
(@) a(X,JY)+a(JX,Y) =0

and it is clear that (i) and (44) are equivalent. Then ¢ is (2,0)-geodesic if
and only if :
a(X,Y)=a(JX,JY) VX, YeT(M). (1)

The objective of the present paper is to present the followmg two results
concerning (2, 0)-geodesic isometric immersions.
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Theorem 1 Let M be a compact homogeneous almost complex Riemannian
manifold and ¢ : M — N an isometric (2,0)-geodesic immersion which is
substantial or full (i.e. ¢ (M) is not contained in any proper totally geo-
desic submanifold of N). Assume furthermore that the imiersion ¢ has
the property that its second fundamental form o satisfies Codazzi’s equa-
tion (I (vxa) v,2) = (Vya) (X, Z) where Va denotes the usual covariant
derivalive of the second fundamental form a). Then, at each point, the first
normal space of the immersion coincides with the whole normal space. i.e.

the space generated by the image of the second fundamental form coincides
with the normal space.

If the Riemannian manifold N is R™ then any isomelric immersion has
the property that its second fundamental form satislics Codazzi’s cquation.
In-a general Riemannian manifold N this may not be the case.

By a homogencous almost complex Riemannian manilold we mcan a Rie-
mannian manifold M supporting a transitive action of a Lic group G of
isometries. and having an invariant almost complex structure J which is not
necessarily compatible with the metric (when this compatibility exists it is
customary to say that the manifold is Hermithian).

Let us denote by (.,.) the Riemannian metric.in the ambient manifold V.
In general an isometry g of the group G does not extend to N but it {ollows
easily from the above theorem, that the necessary and sufficient condition
for the existence of these extensions is the invariance, by the group G, of the
- tensor ¥ (XY, Z,W) = (a(X,Y),a(Z,W)) (see for instance [7]).

The presence of the transitive action of the Lie group G on M yields
the existence on M of a canonical affine connection (see [4] or [3]), usually
denoted by V°. The invariance of the metric induced by (.,.) on M, by the
action of the group G, implies that V¢ (.,.) = 0 i.c. the connection V¢ is
compatible with the metric on M.

Let V denote the Riemannian connection on M associated to the metric
andlet D (X,Y) = VxY — V%Y be the difference tensor. Both, the tensor D
and the almost complex structure J, are invariant by the action of the group
G and hence V°D = 0 = V°J. Even when the connection V° is compatible
with the Riemannian metric it has, in general, non zero torsion and it is easy
to see that it has the form T' (X, Y) = D (Y, X) — D (X,Y).

As in [6] and [2] we say that the canonical connection V¢ satisfies Axiom
6 (with respect to the immersion ¢) if for each p € M and every X, Y, Z €
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Tp (M) the second fundamental form of ¢ satisfies the identity
aP(T(X7Y)aZ)=aP(Y)D(-X:Z))—aP (X,D(Y,Z)) (2)

There are plenty of compact manifolds M and isometric immersions ¢ :
M — RY such that M admits a canonical connection V¢ which satisfies
Axiom 6. In fact if M is an R-space (also called orbit of an s-representation
or real flag manifold) and ¢ is ils canonical imbedding then, for any of the
possible canonical connections, Axiom 6 holds (sce [6] or [2]).

The following consequence of the proof of Theorem 1 shows that in the
case that N = R", thefact that Axiom 6 holds for a (2, 0)-geodesic embedding
 of a compact homogeneous almost complex manifold, implies that M is an
R-space and in fact ¢ must be its canonical imbedding.

Theorem 2 Let M be a compacl homogeneous almost complex Riemannian
manifold and ¢ : M —R" ‘an isometric (2,0)-geodesic embedding which is
substantial or full (i.e. ¢ (M) is not contained in any proper totally geodesic
submanifold of N ). Assume that the canonical connection satisfics Aziom 6
with respect to ¢. Then M is an R-space and @ 1is its canonical embedding.

This result generalizes Theorem 4 in [1, p. 88].
The proof of these two results is contained in the next section.

2 Proof of the results.

Proof of Theorem 1.

Let ¢ : M — RN be the (2,0)-geodesic isometric immersion and recall
that in [5] a ”canonical” covariant derivative of the sccond fundamental form
was introduced by the formula

(Vi) (¥, 2) = Vx (@ (Y, 2)) — a(VXY, 2) — a(Y,VZ).

This covariant derivative is the key ingredient in the characterization of gen-
eral R-spaces obtained in [4] (see also [2]).

By recalling the definition of the Riemannian covariant derlvatlve of the
second fundamental form we obtain immediately

(V5@) (Y, 2) = (Vxa) (Y, 2) + o (D(X,Y), 2) +a(y,D(X,Z)). (3)
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Since the second fundamental form a of the immersion ¢ satisfies Co-
dazzi’s equation, by interchanging the letters X and Y and substracting we

get
(Vya) (X, Z) - (Vko) (Y, Z) (4)
= a(T'(X,Y),2) - [e(Y,D(X, Z)) — a (X, D(Y, 2))].

This formula replaces Codazzi’s equation for the canonical covariant deriv-
alivc of the sccond fundamental formn a.

Now since our immersion ¢ is an isometric (2, 0)-geodesic immersion we
have by the condition (1)

a(JX,)Y)=—-a(X,JY). : (5)
and this yields very easily
(Vy0) (JX, 2) = = (V§e) (X, IZ) (6)
Now starting with the identity (4) we write |

(Vye) (X, Z2) = |
= (Vxa) (Y, 2) + o (T(X,Y), Z2) — a (Y, D(X, Z)) + a (X, D(Y, Z))
== ( Y 3((1) (Y’ J2Z) +a(T(X)Y)1Z) - a(),aD(Xa Z)) +a(X)D()/a Z))

because J? = —1.
Then by (6)

(V5a) (Y, 1) + & (T(X,Y), Z) - « (Y, D(X, Z)) + a (X, D(Y, Z).
Now we may change (V@) (JY, JZ) using again (4) and then the last
equation becomes
(V3-0) (X, 2) =
= (Viya) (X, J2) + a(T(X,Y), Z) — a(Y,D(X, Z)) + a (X, D(Y, 2))
4a(T(JY,X),JZ) — a(X,D(JY,JZ)) + a(JY,D(X,JZ)).
By using (6) now we get - -

(Vi) (X, 2) = ' -
= —(Viya) (JX, Z) +a(T(X,Y), 2) — a (Y, D(X, 2)) + a (X, D(Y, Z))
+a(T(JY, X),JZ) — a(X,D(JY, JZ)) + a (JY, D(X, JZ))
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and (4) again yields

(Vya) (X, 2) = |

= —(V5a) (JX,JY) + o (T (A Y), 2) — a (Y, D(X, Z)) + a (X, D(Y, Z))
+a(T(JY,X),JZ) - a(X,D(JY, JZ)) + a (JY, D(X, JZ))
—a(T(2,7X),JY) +a(JX,D(Z,JY)) — a(Z,D(JIX,JY)).

Once more (6) implies

(Vya) (X, 2Z) =

= (Vza) (X, J¥Y) +a(T(X,Y),Z) — a(Y,D(X, Z)) + a (X, D(Y, Z))
+a(T(JY, X),JZ) — a(X,D(JY,JZ)) + a (JY,D(X, I Z))
—a(T(Z,JX),JY) +a(JX,D(Z,JY)) — a(Z,D(JX, JY)).

Using again the identity J2 = —1 we have

(Via)(X,2) =

=—(Vza) (X,Y) +a(T(X,Y), Z) — a(Y,D(X, Z)) + (X, D(Y, Z))
+a(T(JY, X),JZ) — a(X,D(JY,JZ) + a (JY,D(X, JZ))
—a(T(2,JX),JY) +a(JX,D(Z,JY)) + o (Z,D(JX,JY))

- and (4) once again yields

(Vi) (X,2) =

=—(V{a) (X, 2) + a(T(X,Y), Z) — a(Y,D(X, Z)) + a (X, D(Y, Z))
+a(T(JY,X),JZ) — a(X;D(JY,JZ)) + a(JY,D(X, JZ))
—a(T(Z,JX),JY)+a(JX,D(Z,JY)) — a(Z,D(JX,JY))

— (T(Y’X)a Z) +a (Xa D(Ya Z)) - (Ya D(X’ Z)) )

which obviously becomes

2(Vya) (X, 2) =

=2a(T(X,Y),Z2) - 2a(Y,D(X, Z)) + 2a (X, D(Y, Z)) .
+a(T(JY, X),J2) — a(X,D(JY,12)) + «(JY,D(X,J2)) )
—a(T(2,TX).JY) +a(JX, D(Z,JY)) — a(Z, D(JX, JY)).

In the particular case in which X =Y = Z (7) reduces to

(Vg{a) (X’X) = (8)
=a(T(JX,X),JX)—a(X,D(JX, JX)) +a(JX,D(X, JX)).
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By counsidering formulas (7) and (3) wesee immediately that the covariant
derivative of the second fundamental form can be written as a linear com-
bination of elements of the first normal space (which, by definition, is the
subspace of the normal space generated by the image of the second funda-

“mental form). This clearly implies that the first normal space coincides with

the normal space ol our immersion ¢. and completes the proof of Thcorem
1.m

Proof of Thcorem 2.
It follows immediately from Axiom 6 (formula (2)) and formula (8) that,for
each point p € M and each X € T,, (M),

(Vi) (X, X) = 0. ' 9)

IFurthermore it {ollows from (4) that the canonical covariant derivative of
the second fundamental form satisfies the identity

(Vi) (X, 2) = (Vie) (Y, 2)

for each point p € M and each X,Y, Z € T, (M) . This easily implies that the
canonical covariant derivative of the second fundamental form vanishes iden-
tically on M and since ¢ is an isometric embedding into a Iluclidean space,
it follows from [4] that M is an R-space and ¢ is its canonical embedding.
This completes the proof of Theorem 2. B

References

[1] Ferus, D.: Symmetric submanifolds of Euclidean spaces, Math. Ann. 247
(1980), 81-93.

[2] Hulett, E. and Sédnchez, C. U.: An algebraic characterization of R-Spaces,
Geometriae Dedicata 67: 349-365, 1997.

[3] Kowalaski, O.: Generalized Symmetric Spaces, Lecture Notes in Math
805, Springer Verlag, New York 1980.

[4] Olmos, C. and Sénchez, C. U.: A geometric characterization of the orbits
of s-representations J. Reine Angew. Math. 420 (1991), 195-202.

[5] Sanchez, C. U.: A characterization of extrinsik k-symmetric submanifolds
of RN. Rev. Unién Mat. Argentina. 38 (1992), 1-15.



60

[6] Scinchez, C. U., Dal Lago, W., Garcia A. and Hulett, E.: On some prop-
erties which characterize symmetric and general R-spaces Differential
Geometry and its Applications 7 (1997), 291-302.

[7] Spivak, M.: A Comprehensive Introduction to Differential Geomelry,
Publish or Perish 1979

Fac. de Matemética Astronomia y Fisica
Universidad Nacional de Cordoba
Ciudad Universitaria

5000, Cérdoba, Argentina

and

Irac. Ci. Ii. Mat. y Nat.

Universidad Nacional de San Luis
Chacabuco y Pedernera

5700, San Luis, Argentina.

Recibido en Noviembre 1998



