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ABSTRACT. We prove by using elementary mcthods that if the positive pow:crs of a given
complex nonreal number b belong to a point-latticc A then they belong also to the point-lattice L

- generated by 1 and b and b is a quadratic integer. This settles the following question. Let D be a
finite set of rational integers that contains. 0 and 1. If the sct of values of polynomials with
cocfficicnts in D evaluated at b is included in A , is it true or not that it is part of L?

'L INTRODUCTION. We shall assume that b= b, +ib, is a fixed complex number with
|b| >1, b,=Im(b)>0. The point-lattice L:=[5,1]= {mb +m,m,n eZ} is naturally associated
with b. Let be u=u, +iu,, v=v, +iv,, v,#0 and A :=[v,ul={mv+nu:m,n € Z} the point-
lattice  generated by the linearly independent numbers u,v. Define P:= {b*;k=1.2,...}.

The following result holds (cf. [1]):
THEOREM 1. If u=1 then Pc A =>PcL.®

1. THE MAIN RESULT. We shall prove the following generalization of this theorem.
THEOREM 2. If &’ €A for j>N then & is a quadratic integer and PcL.»
If 5" A for j=0,1,2 and &”*" =mu+nv then

(1) ¥ =mi+ny forj=0,1,2,... with #=b""uand ¥=5"v.

So, we can assume without loss of generality that N=0.
We begin with two auxilliary results.

"PROPOSITION 1. If b’ €A forj> 0 then [p|" €Z.=
PROOF. We know that for j=1,2,..., b"'=m _ vtn ,_ju with m

Any three of these equations is a homogeneous system in 1,u and v. Then we have for
any j=1,2,... ’

j-1» M, rational integers.

-6 m_, n,
2 -6 m, n, |=0.

J J
J+l
—-b m., N,

If we define: A;=m,_\n,—man, _,, Bj=m_,n,—mn,_,, then 4,70 and

At
3) b’A,~bB,, + A, =0.

jH
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Since the coeflicients in (3) are real and b is not real, we must have

B,
4) 2Re(h) = — and |p[ = Am for j=1,2,..
4; A,
Multiplying the last identities from j=1 to £, one gets
' A
5 bt = et
© p = 2

Thus A,|b|2k is an integer for any k. Therefore |b|2 must be an integer, QED.
PROPOSITION 2. If # €A forj > 0 then there are rational integers @,, 3, such that
) Ab'=ab+p, =

PROOF. Regarding the identities 6’"'=m ,_ v+n _u for j=1,2,k as a homogeneous
system in 1,4,v, one gets that

7 -1 m, n,
@) -b m  n|=0
=b* m, n,

This yields the thesis with a ,=mn, —mn, and B,=mn —mn,, QED.
PROOF OF THEOREM 2. From (3) and proposition 1 one gets
®) =Py, '
q ‘
where k———|b|2 , P.q coprime integers. Using (8) one can prove by induction on that

N

h<j-1

where small greek letters represent rational integers.
Comparing (6) and (9) we get

j-1 h
(10) a; =4 ((ﬁj + Z O (—[—)—j ] = rational integer for all />2.
q hej-1 q :
Thus, &; = 4,(p"™ +qy;)/q’™". This can only hold for ¢=1, QED.

COROLLARY. There is an integer K=K(b,u,v,N) such that if & €A for K+N2j>N
then 4 is a quadratic integer.®

III. NECESSARY CONDITIONS FOR 5* €[1,4]. In this section we assume that
v =mb+n, mneZ, (n20). We obtain from this hypothesis that

an k= |b'=-n €N, Re(b) =m/2 €Z/2
THEOREM 2. If 5,b* € A =[u,v] with u=u, +u,iand v=v, +v,i then
U, '
u,v, €Q, 2%,-2eQ.n
1271 Q > b2 ) b2 Q

PROOF. Solving the following system
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(12) b=mu+ny , b* =mb—k=mu+ny
for u and v, we get that
Au=(n, —mn)b+nik , Av=_mm,—m)b—muk .
Taking real and imaginary parts and using (11) we obtain
A uy=(n —mn))m/2+nk , A u,=(n,—mn,)b,

A= (mm(, -m, )m 12-mk, Av,=(mm,—m)b,, QED.
NB. The results of the present paper should be compared with Theorem 1 of [3].
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