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Abstract

In this paper we give a characterization of all the interpretations of the
varieties of bounded distributive lattices, De Morgan algebras and Lukasiewicz
algebras of order m in the variety of Lukasiewicz algebras of order n.

In the case of distributive lattices we give a structure theorem that is gener-
alized to De Morgan algebras and to Lukasiewicz algebras of order m. In the
last two cases we also give the number of such interpretations.’

1 Introduc'_tion

- We say that a variety V is interpretable in a variety W, in symbols, V < W, if for
each V-operation Fy(zy,...,,) there is a W-term fy(=y,...,z,) such that if (4, G,)
is in W, then (A, fA) is in V. Intuitively, ¥V < W mecans that all ,algcbi‘as in W
can be turned into an algebra in V by defining the V-operations applying a uniform
procedure. This notion of interpretation differs from that used by logicians in that
the universe of the algebra remains the same. It was first proposed in [7] and later
developed in [5]; for more details and information the reader is referred to the latter
monograph.

Another way of thinking about this notion is the following. The above relation
defines a functor ® : W — V which commutes with the underlying set functors,
ie.

. - (I)
w ‘ V

Uw Uy

Scts
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is commutative; here Uy : V — Sets and Uyy : W — Sets are the so called
forgetful functors which assign to each algebra its universe. Each functor @ is called
an interpretation of V in W.
If A = (A; G,) is any algebra and for each V-operation Fy(z,...,,) there is a term
fi(z1, ..., 3,) in the language of A such that (A; fA) isin V, the terms f(z1,...,%n)
define an interpretation of V in V(A), the variety generated by the algebra A. One
only has to observe that the evaluation of any term in an algebra B in V(A), is
determined by its evaluation in-A and that both (A; G;) and (B; G;) satisfy the same
equations. We sometimes say that V is interpretable in A and if & is the functor, we
. say that ®(A) is an interpretation of V in V(A). This fact is particularly useful if
"we want to interpret a variety V in a variety W that is generated by a single algebra.
In this paper we will study what are all the possible interpretations of the varieties
of bounded distributive lattices, De Morgan algebras and Lukasicwicz algebras of
order m in the variety £, of Lukasiewicz algebras of order n. As we know, this
variety is generated by a single algebra, the n element chain, which is a semi—primal
algebra. These are the main facts used in the proofs. '
The results in sections 3 and 4 are included in [6], the author’s doctoral dissertation
Interpretations between Varieties of Algebraic Logic. The general presentation and
_ most of the proofs are different from the ones that appear there.

2 Definitions and Preliminaries

Throughout this paper Dy, will stand for the variety of bounded distributive lattices,
DM the variety of De Morgan algebras, i.e., the class of all algebras (4; +, -, ', 0,1)
whose similarity type is (2,2,1,0,0) and such that (A, +, -, 0, 1)is in Dy and
satisfies

L (z+y) =2"y,
2' (IE . y)’ = xl + y’v
3. "=z,

The term z' is called the quasi-complement of z. Also,  and z' are said to be con-
jugates. The variety £, of Lukasiewicz algebras of order n is the class of all algebras
(A; +,-,", 01,--+, On-1, 0, 1) of type (2,2,1, ... ,1,0,0) such that (4; +, -, ', 0, 1)
is a De Morgan algebra and for 1 <4 <n -1,

1 oi(zty)=0i(x) +oily) and. oi(z - y) =0i(z) - 0i(y),
2 oi(z) + (oi(z))' =1 and o;(z) - (0i(z)) =0,

3 oi(0(z)) = oj(z), for1<j<mn-1,

4. oi(z') = (on-i(2))",

5 oi(z) - oj(z) = oi(x), fori<j<n-1,

6 z + 0n-1(z) = on-1(2) and <z - 01(z) = 0y(x),

7 y - (z+ (0i(z) + 0ira () = v, fori#n-—1.
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These axioms are not independent. The reader is referred to [2], [1], [3] and [4] for
more information about these classes of algebras.

The following four properties of Lukasiewicz algebras will be used extensively in
section 5. The first two are immediate from axioms (1), (5) and (1), respectively.
The fourth one was introduced in the original definition of Lukasiewicz algebras
instead of axioms (6) and (7); its proof appears in [3].

Lemma 2.1.

(L1) 0i(0) =0 and 0;(1)=1, for1<i<n-1.
(L2) o1(x) < -+ < oni(2).

(L3) If z <y, then for 1 <i<n -1, g;(z) < 0:(y).
(L) If 0i(z) = 0i(y) , for 1 <i<mn, then z = y.

We will now define a very important Lukasiewicz algebra.
Definition. Let n= {0,1,...,n —1}. We define the algebra
N = (n;'f‘, *y ’aala--';an—la 0, 1))

where z+y = max {z,y},
z -y = min {z,y},

/

m' = n—1-m, foreachm€n,
0 =0
1 = n-1,
(1 ifi<m,
and for1<i<n-1 Ui(m)={0 ifz;z

It is easy to check that N is in £,. The next theorems give some of the most
important features of Lukasiewicz algebras that we will use in the sequel. Their
proofs and much more can be found in [I], [2] and [3].

Theorem 2.2. (Cignoli) [3]

Let L € L,,, n > 2 and L of cardinality greater than 1. Then the following are
equivalent. ’

1. L is a chain.
2. L'is an L,-subalgebra of N.
3. L is subdirectly irreducible.
Corollary 2.3. The variety Z,, is generated by the algebra N.
This corollary has a \fery important consequence. As we said in the introduct.ion,'

_ any interpretation of a variety V in £, is determined by an interpretation of V in

N, that is to say, by defining new term-defined operations f;, for each V-operation
F,, such that N = (n; f¥) e V.
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Theorem 2.4. N is a semi-primal algebra.

As we know, in a semi-primal algebra all functions that preserve subuniverses can be
represented by term functions. In the following theorem we will state this precisely
in the special cases which we will use, that of unary and binary functions.

Theorem 2.5. If f:n — n is such that for alla € n, f(a) € {0,a,d',1}, then
there exists a term @(x) such that

¢" (2) = f(z).

If g:nxn — n is such that for all a,b € n, g(a,b) € {0,qa,a’,b,V,1}, then
there ezists a term y(w, y) such that

'7/\/(-75 y) = g(.'l:, '!/)-
Lemma 2.6. For any u,b € n and any L,-term a(z) or f(z,y),
o (a) € {0,a,d',1} and ,BN(a; b) € {0,a,d',b,V',1}.

"Proof. Simply observe that {0,a,a’,1} and {0, a,d',b,V’,1} are subuniverses of N.
a

Corollary 2.7. If a ¢ {0,1} and a = ﬁ”(b, c) for some term BV (z,y), then either
be {a,a'} orce {a,a'}.

3 Interpreting Dy in L,

We will let N = (n;®, 0O, 0 1) be an mterpretatlon of Dy in L, that is, x @ K and
z © y are binary £,-terms, 0 and 1 are £,-constant terms such that (n;®, ®,0 1)
is a bounded distributive lattice.

Notice that while theorem 2.5 glves us a lot of flexibility, lemma 2.6 restricts the
possible values of z @ y and £ ® y. As for the constants, {0, 1} = {0, 1}.

We will prove several lemmas that will enable us to determine some special cases
and a general structure theorem. The strategy is to use lemma 2.6 and the fact that
N is a distributive lattice to determine the possible values of the term functions
defined by the terms z ® y and z © y.

Throughout this paper, the following well known property of dlstrlbutlve lattices
will be used without explicitly mentioning it. If aVb=aVc and aAb=aAc,
then b= c.

All the lemmas in this section refer to the lattice N. The first ten deal with the
cases when 1 is join-reducible and 0 is meet-reducible. The next three are the cases
when 0 is meet-reducible, when 1 is join-reducible and when there are some other
meet-reducible and join-reducible elements. The main theorem 3.12 summarizes all
these.

Lemma 3.1. There is at most one pair of conjugates a, a’ € n, different from 0
and 1, such thata® d = 1. :
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Proof. Assume there exists a, b € n, a, b different from 0 and 1, a and b not
conjugates, such that a®a’' =1 and 0@V = 1. By lemma 2.6 and since NV is a
lattice, this implies that a®a’ =0 and bO ¥ =0.

Assume a @ b = 1. Then multiplying by a’, we get (a ® a') dboad)=b0d =d
and then a®@b=2d',50 b=(a®b) D (a’ ®b) (a@b)®a’ and then Corollary 2.7
forcesa®@ b =10'. But then b=b@® (a®b) =1, a contradiction, so a® b # 1.
Assume cither a ® b= a or a ® b = b. In this case either o’ ®b=0a' @ (a ®b) =1
or a®l =(a®b)®V =1, and this is the same as case 1. interchanging the roles
of a and a' or those of b and V. -

Assume either a® b= o' or a® b =V'. In this case cither a®a' =a®b # 1 or
bob =a@b#1.

Since obviously e ® b # 0, under the llypolhcscs a @ b cannol, b(, delined, so we may
conclude that there is at most one pair of conjugate elements a and a' such that
a®a =1. : a

Lemma 3.2. There is no element diﬁerent from 0 and 1 that covers or is covered
by more than two elements.

Proof. Suppose a ¢ {0,1} covers three different elements b, ¢, d. That is a =
bdc=bdd=dodc

From Corollary 2.7, we may assume w.l.o.g. that b = a’ and ¢ # @/, d # a/, but then
d ® c = a, contradicting lemma 2.6.

A dual argument shows that a is not covered by more than two elements O

Lemma 3.3. If therc ezist three elements a, b and c different from 1 such that
i=a®b=0dc=c®a, thenn=38.

Dually, if there ezist three elements a, b and ¢ different from 0 such that 0 = a®b =
bOc=cOa, then n=8.

i
a c
a v
0
Diagram 1

Proof. Let us assume that there exist three such elements a, b and c as in Diagram
1. (1 is not necessarily a cover of a, b and c.)
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Suppose a @b =0. Then a =a®1l =00 (0®c)=a®c,s0 a®c#1,a
contradiction, so a @ b € {d/,b'}. Similarly, a ®@c € {da’,c'} and bO c € {V/,c'}.
Moreover the three products are all different or else a = b, a = cor b = c¢. In
particular this also implies that no two of them are conjugates and that a # o',
b# 0V and c # ¢’. So we have at least eight elements.

Let a ® b = a’, then by the last remarks, a © ¢ = ¢’ and this implies b®© ¢ = V'.
Similarly, if a @ b = V', then b® c = ¢ and a ©® ¢ = d/, that is, the choice of a ©® b
(or of one of the others) determines the values of a ® ¢ and of b © ¢ and we get the
lattice in Diagram 1, (or one with I, a’ and ¢’ instead of a/, ¢’ and V', respectively.)
.Let us now assume that n > 8 and let d be different from all of the above.

Suppose a€B d = 1. Then of course a® d ¢ {a,d, 1} and also a®d ¢ {a’,0}, or else
de {bV}, (ord € {c,¢}.) Thus a®@d=d".

Now b@®d # 1, or else the same argument would show that b d = =d' and thlS leads
to a = b. Similarly, c® d # 1.

Also, b@®d # d, or else c®d = 1 and bdd # d’, orelse a = a®d’ = a®(bdd) = 1. So
b®d = b and similarly c®d = c. But then 0.= a® (bOc) = a® ((b®d) O (c®d)) =
a®((bOc)®dd) =a®d=d’, a contradiction, thus a® d # 1. Similarly we prove
that béBd;él and cdd # 1.

Suppose now that a@d € {d,d'}. Then d®b=1 or d'®b=1,a contradlctlon
Finally, the only choice is a ® d = a, so multiplying this by ¥, we get d ® b’ = 0.
But then d @ b’ ¢ {1,0,d,0'}. Also, d®b' # b, or else d = a' and deb' #d, or else
a®d = 1. Since there is no possible value for a @ d, such an element cannot exist
and n = 8. ,

The proof of the dual is similar. ’ ' O

Lemma 3.4. Assume there ezists an a ¢ {0,1} such thata®a' =1. If a®b=1

for some b ¢ {a,d',1,0}, then the subalgebra of N generated by a and b is the
lattice in Diagram 2 ( a). .

[y

a

(a) (b)

Diagram 2
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Proof. Let b ¢ {0,1,a,d'}. Sincea®b =1, a®b ¢ {a,b,1}. Alsoa® b #0, or
else b=a a®b7‘-a orelse a®a'=a#1,s0 a®@b=">'andthus a®@¥ = V.
But then o' OV =ad'© (a @) =0

A similar dual argument shows that a @Y =b, which completes the proof of our
lemma. , O

Corollary 3.5. If1 isa cover ofd and a', then n = 4.

Lemma 3.6. Letn # 4, 8. Assume there ezists ana ¢ {0,1}, such that a®a’ = 1.
Ifa®b=1 for someb ¢ {0,1,a,ad'}, then for all ¢ ¢ {0,1,a,a’,b,V'}, either

a®c=1 and aG®Gc=¢ or
a®cd=1 and a0 =c

and thus N is the lattice in Diagram 2 (b). The intermediate elements need not
exist.

Proof. By lemma 3.4, the lattice generated by @ and b is the lattice in Diagram 2
(a). Let c ¢ {0,1,a,d’,0,0'}

Ifadc= then by lemma 3.4, the subalgebra of N generated by a and c is the
lattice in Dlagram 2 (a), with b replaced by c, that is, a@c="¢.

Since n # 8, b®c # 1, soeither b@®c=0b or b®c = ¢, in which case either
bdcd=cand bO =V or Y®c=1>0 and ' ©c=C, respectively. Since this is
the case with any other element d such that a @ d = 1, the theorem follows. .
Ifa®c=a, then @’ ®c = 0 and thus ¢’ @ ¢ # 1, since the latter would entail a = c.
So ddc=¢ and thus a@® ¢ = 1 and we are back in the previous case.

If either a® ¢ = ¢ or a® c = ¢, then there is an element between a and 1. We
may assume it is ¢. But then b@®c=1 andsincec>a>c,b@c=c is theonly
possibility for b ® ¢, but this is clearly impossible since in that case a = c. O

Lemma 3.7. Ifa and b are not conjugates, aGBb =1 and a@b =0, then neither
a=a norb=1"0".

*Proof. Suppose a®b=1, a G) b=0and a =d'. Then b # V', since there is only
" one element = such that z = z'. v

If b =1, then else a =V, so either b < b’ or b’ < b.

Ifb<V, a®b =1 andinthatcase a®b # 0, orelse ¥ =b. So a® b = b, but
then a=a® (aOV)=a®b= 1.

On the other hand, if /' < b, a®b' = 0 and the dual of the above argument provides
a contradiction. O

' Theorem 3.8. Ifa and b are not conjugates, they are both different from 0 and 1,
a®b=1 and a®b=0, thenn =6 orn=8.

Proof. Notice that by lemma 3.7 we need at least six elements. Also, a®a’ # 1 and
b b # 1 or-else a and b are conjugates.

By renaming if necessary, we may assume that a®a’ =a and b® Y =V

This implies that ' © b= 0,50 @’ ® b # 1 or else a = @, contradicting lemma 3.7.
We can easily check that the subalgebra generated by a and b, is the one depicted
in Diagrain 3.
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Diagram 3

This proves that if n = 6, there is a possible interpretation with the features of the
hypothesis. )

Let us now assume n > 7, so let ¢ be different from all of the above. Suppose
a® c = 1. Using a now familiar argument, a © ¢ ¢ {i,a,d’,c}, the latter would
imply b' = c. Also, a® c # 0, or else ¢ = b, so the only possibility is a ® ¢ = ¢.
Multiplying by ¥/, we get a’'©@c= Q.

If V@®c=c,then OV =ad0c=d 0 ®dc)=a andif b'®c =, then
dOc=d0b =0Udc)ob =1Ub. Both cases contradict lemma 2.6. The only
possibility left is b'@®c =1, so by lemma 3.3, n = 8.

Suppose a @ c =c. Then bdc = 1, so b® ¢ = ¢ and similarly ¥ & ¢ = 1, so
b' ® ¢ = ¢ and this implies b =0', a contradiction. We get a similar contradiction
if we assume a @ ¢ = ¢’ and since there are no other possibilities, the theorem is
proved. (]

Lemma 3.9. Let n # 6, 8. If there exist elements a and b such that a © b =
0,a0b=10V and a®a' # 1, then there ezists an element c € n such that the
interval [0,¢) of N is the lattice depicted in Diagram / (a) and c is the N -largest
such an element, (that is, for any element d such that d ®a = 0, doc= c.) The
intermediate elements need not ezist. ¢ is meet—irreducible.

Proof. If there is no = € n other than b such that z ® a = 0, we let ¢ = b.

" Since n # 6, 8 and, a®a’ # 1, there isno z € n such that ©a =0 and z®ae = 1.
We will now prove that there is no € n such that ®a=0 and z2@®a =a'. If
on the contrary there is one, since n # 8, bO z # 0 and obviously b® = # V.
Suppose b ©® z € {z,z'}, then bOad =bO (x®a) =bOz € {z,z'} and this
contradicts lemma 2.6.

Suppose bO £ =b, then b'®z = (a®b)®z=a® (bDz) = a®d z = a', which also
contradicts lemma 2.6. ‘
Soift®a=0,then z2@®a#a’ and thus z@a =z’ as in the Diagram.
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b/

(b)
Diagram 4

Now the set of all elements z € n such that ©a =0 and z@®a =z’ has to be
linearly ordered since if for two such elements z and y; 2Oy # z, y, then 2Oy = 0,
contradicting the fact that n # 8. Take c to be the largest one. By Corollary 2.7,
¢ is meet-reducible. , 7 O

By duality, we can prove the following.

Corollary 3.10. Let n # 6, 8. If there exist elements a and c such that a ® c =
1,a0c=¢,and a®ad # 0, then there ezists an element ¢ € n such that
the interval [c',1] of N is dual to the lattice depicted in Diagram 4 (a) and c is
the N -least such an element. The intermediate elements need not exist. Also, c is

join—irreducible.

Lemma 3.11. If there ezist a, ¢ both different from 0 and 1 such that a ®c= ¢’
and a ® c = a', then the interval [a’,c'] is the lattice in Diagram 4 (b).

Moreover, ifthere is no element b such that a®b = 1, then there ezists the N—largest
such an element c. The intermediate elements need not ezist.

Proof. Let a and ¢ be two.such elements and let b-be any other element in [c, a'].
Suppose c@®b =0b Then ¢ > a®b=a®cdb=Db>,s0cdb=d,
contradicting lemma 2.6. A similar contradiction is obtained if a @ b = ¥'.

So either ¢ ® b = ¢, in which case one obtains the lattice in Diagram 4 (b), or
c® b = c and we obtain that lattice with b and b’ interchanged.

If there is no element b such that a @b = 1, the largest such an element c exists
by an argument similar to the one used in lemma 3.9. O

For the main theorem of this section we will use the following notation. If A and
B are two lattices, T 4 is the largest element of A and Lg is the least element of B.



90

We define A 1 B as the lattice obtained by identifying T 4 and Lz and extending the
order in the natural way, i.e. if z, y € AU B then

z,y€ A, and z <, ¥y
z<yiff { z€ A yeB
z, y€ B, and = <gy.

Theorem 3.12. Let n # 6, 8. Then any interpretation of Dy, in N is of the form
At Azt -t Am,

where for each i < m, A; is either a chain or one of the lattices in Dia%ram 5.
Conversely, each such lattice gives rise to an interpretation of Dy in n each

casce Lhe inlermediale clemnents need nol crist.

i

Diagram 5
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Proof.

If there is no mect-reducible element in A, the interpretation is a chain.

If there exist meet-reducible elements, then there are several cases.

Case 1: The N-least meet-reducible element is 0 and there is an element a such
that a®a’ = 0. Then by lemma 3.4, the mterpretatlon is a lattice as in Diagram 5
(a).

Case 2: 0 is the N -least meet reducible element and there are elements a, b, not
conjugates, such that a® b = .

Since n # 6, 8, a @ b must be elther a' or . We may assume w.l.o.g. that aEBb =d.
Then by lemma 3.9, there exists a A/~greatest element c such that the interval [0, ¢]
is a lattice as in Diagram 5 (b). We let ¢; = ¢ and A; = [0, c;]. Observe that since
¢ must be meet irreducible, it has a unique cover.

1. If there is no meet-reducible element z such that ¢; < z < 1, welet A, = [c1, 1]
and thus N' = A; t A;. Observe that A, is a chain.

2. If there is one, let c; be the A'-least meet-reducible element greater than c;.
We let A; = [c1,¢2). Again A is a chain of length at least 2.

Since c; is meet reducible, there exists an element a such that a ® c2 = cp.
Again we have two possibilities, either a® cy =1 or a ® ¢, = a'.

(a) In the first case, by lemma 3.10 the interval [c,, 1] is a lattice as the one
in Diagram 5 (c). Let A3 = [cp, 1] and N=AtA,1As.

(b) In the second case, by lemma 3.11, there exists the largest element c such
that the interval [c, ¢'] is a lattice as the one in Diagram 5 (d). We let
c3 = ¢ and Az = [cg, c3).

We can now continue as in the previous sten, searching for ¢4, the next meet— .
reducible element, if one exists, and proceed as we did with c;. The process must
eventually terminate and we have N = A; t Ay t--- 1 A ’

Case 3: 0 is not the A/-least meet-reducible element. Then since 0 is meet—
irreducible, it has a single immediate successor. Let ¢ be the N-lcast mect—
reducible clement and define A; = [0,¢;]. A, is a chain. Now proceed as in step 2
with ¢; in place of 0. This completes the proof of necessity.

That each such lattice gives rise to an interpretation of Dy; in A is immediate from
theorem 2.5. ‘ |

4 Interpreting DM in L,

We will now study the interpretations of the variety DM of De Morgan algebras
in the variety of Lukasiewicz algebras. In this case we also have to interpret the
unary operation ’, the quasi-complement. Of course, since De Morgan algebras are
distributive lattices, all that was proved in the previous section holds for them.
Throughout this section, we will let N = (n;®,®,°,0,1) be an interpretation of
DM in L,, where (n;®,®,0,1) is.-an interpretation of Dy, in L, as in section 3
and © is a unary operation, the interpretation of the quasi-complement ’.
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The first lemma is a straightforward consequence of the definition of a guasi-
complement and lemma 2.6.

Lemma 4.1.

1. The quasi—complement © is one—to-one.

a

2. 0°=1 and i°=0.
3. If a® = a, then «'® =d'.
4. If a <), then V° < a®.

Theorem 4.2. If n # 4, 6, then the underlying lattice of every interpretation of
DM in L, is a chain and the new quasi—complement coincides with the old one.

Proof. Let N be an interpretation of DM in L£,, and suppose there exist a meet-
reducible element c. We have several cases.
Ifc=0and 0=a0®ad, then underlying lattice of AV is like the lattice in Diagram
5 (a) and since n # 4, 6, there exist at least four elements by, bz, b} and b, like
the ones depicted in the Diagram. But then b & b2 =0, and b > ble. So
by > b9 © b4° = b9 € {by,5} and this is not possible.
Ifc=0and 0 = a®b, where a and b are not conjugates, then since n # 6,
the underlying lattice of A is like the lattice in Diagram 5 (b). In this case, since
b >, l—be@cee{c b'}.
If c =0, n =8 and the underlying lattice of N is the one in Diagram 1, then
a®@c= c’, but taking quasi-complements, o' @ ¢’ = ¢ # a.
If ¢> 0. Then in the decomposition of N, A, is a chain and A, is either the lattice
in Diagram 5 (c) or the one in 5 (d). These cases are similar to case 2.

So in any case we get a contradxctlon, thus there is no meet-reducible element
and N is a chain.

Assume now that there exists an a such that a® = a. By lemma 4.1.3, a'® = a'.
So il @ < ¢ and by lemma 4.1.4, o = ' < a® = g, a contradiction. A similar.
contradiction arises if we assuine that o' < a. This implies that a = @’ and thus
a® = a = a’. Now since in a chain there is at most one element such that a = a’,
for any other b, b® =V'. So for any z, z° =2z’ . O

In the following theorem we will prove that if n = 4, there are two possible definitions
for the quasi—complement.

Theorem 4.3. There are 8 interpretations of DM in Ly.

Proof. Let n = {0, a,ad 1} Recall that the underlying lattlce of the interpretation
must be isomorphic to one of the lattices of Diagram 6.
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>
juy

(e}
[}

(a) | | (b)
Diagram 6

If the lattice interpretation is the lattice in Diagram 6 (a), since 1 can be either 0
or 1, we have two choices. For each of these, z can be either a or a' and that gives
us 4 possibilities.

An argument similar to the one in the previous theorem shows that for all z° = z'.
"This gives us four interpretations.

If the lattice interpretation is the lattice in Diagram 6 (b), again 1 can be either 0
or 1, so we have two choices, but in this case, by symmetry we have only one choice
for a. For each of these there are two possible quasi-complements, namely,

= 7

T
2° = (01(2)) + z(05(x))".

The first function defines the four element Boolean algebra. The second function
assigns 0, a, a’ and 1 to 1, a, g’ and 0, respectively. It is well known fact that these
two are DM algebras. This provides the other four interpretations. O

Theorem 4.4. There are 32 interpretations of DM in Lg.

Proof. Let 6 = {6,a,b,a,b',1}. If the underlying lattice of the interpretation is
a chain, its first element 0 has to be either 0 or 1. For each of those, the second
element can be filled by any of the four clements a, a’, b or Y, the third has only two
possibilities since the others are determined by the previous selections and lemma
4.1.4. That gives us 16 possible interpretations.

“If the underlying lattice of the interpretation is the lattice in Diagram 2 (a) and
b© = b, then by lemma 4.1.4, b© > b°, which would force »® = 1, contradicting
lemma 4.1.1, so b© = b'.But then a® OV = (a®b)® = 0,50 a® = a. So for
all z, z° = z’. The reader can easily check that the old quasi-complement works
well. A similar analysis to that of the previous paragraph shows there are another
16 interpretations of this sort.

Finally, using the same arguments of Theorem 4.2, one can check that for the other
possible underlying lattices for an interpretation, there is no acceptable definition for
the quasi-complement. For instance, in the lattice in Diagram 3, a®b =a @b = i,
so a® @ b° = a® © b'® = 0. But in this lattice this is possible only if b = '® = b,
a contradiction. There are essentially three other underlying lattices. O
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Theorem 4.5. The number of interpretations of DM in L, is

28(2 1) if n is even, n # 4, 6,
2" (235 — 1) if n is odd.

Proof. The proof is a straight forward generalization of the n = 6 case. One must
observe that in the odd case, there is one single element ¢ for which ¢ = ¢ and
by lemma lemma 4.1.4 it must be assigned to the “midpoint” of the underlying
lattice. a

5 Interpreting £,, in [’",

In the previous section we proved that De Morgan interpretations are pretty tight.
We will now extend those results to Lukasiewicz algebras, that is, we have to define
the new unary operations 6,,62,...,0m_1-

Throughout this section N = (n; @, ©,2,81 ...,8m-1,0, 1) will be an interpretation
of L, in L, where (n; ®,®,2, 0, 1) is an interpretation of DM in L, as in section 4
and the &;’s are unary operations, the interpretation of the g;’s. Of course this means
that except forn=4and 6, (n;®,0,° ,0, 1) is a chain and the qua51—complements
© and ' coincide, so we will anallze these two cases separately.

Lemma 5.1. If 4 is an interpretation of L in L4 and its underlying lattice is
not a chain, then 4 is the four element Boolean algebra and for all z, &,(z) =
G2(z) =+ = (z) =2

Proof. Assume that the underlying lattice of the interpretation is the lattice in
Diagram 6 (b) and that a® = a and a'® = a'. Then 6,,_1(a) # a, a’ or else
Im-1(a) ® (Gm-1(a))® € {a a'}, contradicting axiom (2)

By axiom (1), since a © @' = =0, 6pn_1(a) © Gpmor(a’) =0, so either §,,_1(a) = 0 or
6m-1(a") = 0. But &,,_,(a) = 0 (and similarly &,,_ 1( "} = 0) is clearly impossible
because by (Ly) we would have &,(a) = &3(a) = +++ = G,,_1(a) = 0, that is to say,
for all i < m — 1, 6;(a) = 6;(0), which in turn by (L4) implies a = 0.

If the De Morgan interpretation is the four element Boolean algebra, then it is a
well known fact that the only possibility for the 6;’s is the identity. See (3]. a

Lemma 5.2. If 6 is an interpretation of L in Lg, then its underlying lattice is
a chain.

Proof. Suppose the lattice reduct of 6 is not a chain, then by Theorem 4.4, it is
the one that appears in Diagram 2 (a) and z® =z’ for all z.

If 6;(b) € {b, b’} then 1 =6;(0)® (6:(b))® =b@ b = b, so for any i, 6;(b) € {0,1}.
Similarly, 6;(v') € {0,1}. :

As in the previous lemma, 6,1(b) # 0. So 6m1(b) = Om-1(b) = i, which,
by (Ls) and since a > V', implies 6,,_;(a) = 1. But then, 0 = 6_1(a ® @') =
Fm-1(a)OFm_1(a') = 6m-1(a’), which as we know implies a' = 0, a contradiction. So
there is no possible definition for &,,-1(b) and the lattice reduct must be a chain. O
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‘Lemma 5.3. Let N be an interpretation of L,, in L, for which the underlying
lattice is a chain. Then for 0 <4 <m—1, &;(z) € {0, 1}.

If we let p(a) be the least k such that ok( ) = 1, then u defines a one-to-one
correspondence between the non-zero elements of N and the 6;’s. Moreover, if the
De Morgan reduct of N is 0 = ag < a3 < -+ < an_y = 1, setting p(0) = n,
p(a;) 2 n—j. '

Proof. We first observe that since the lattice reduct of N is a chain, every element,
in particular 1 is join irreducible, so by axiom (2), for all i < m — 1 and any =,
6:(z) € {0, 1}. . :

Next, recall that by (L,), for all i < n —1, 6;(0) = 0, so for a # 0, there exists
some k such that 6y(a) = 1. If not, for all i < m — 1 6i(a) = 0 = 6;(0) and by
(L4), a = 0, a contradiction.

Let a # 0 and b # 0. We now observe that if a # b, then u(a) # u(b). If not, by
(L2), for r > p(a) = p(b), 6,(a) = 1=6,(b) and for r < p(a), 6,(a) =0= ar(b)
so again using (L), we get a = b, a contradiction.

Suppose that k = p(a;) < n — j, for some 0 < j < n. Then 6x_1(a;) = 0. This
implies that 6x_;(a;j4+;) = 1 or else by (Lz) and (L3), 6+(a;) = 6+(ajt1), for all
1<r <n,and by (L), aj =aj41- So plajy) <n—j—1.

In a similar way we prove that for s < k — 1, 6x_s(ajss) = i, in particular,
61(aj4k-1) = 1, so by (Lz), 6r(ajre—1) = 1, for1 < r < n. But by (L;) and (Ly),
this implies that ajix—1 = an_y, that is j+ k —1 = n — 1, contradicting our
assumption. -

- This completes the proof that u(a;) > n — j. ' , a

Notice that the function p determines the &;’s as follows:
. _ [0 ifj<unla),
6ilas) = { 1 ifj> ulay).

forall1 <i<m-1and 0<j <n-1. Also, since p(z) is one-to-one and the
number of non-zero elements of n is n — 1, there has to be at least as many &;’s.
This provides another proof of our next Theorem 5.4.1.

Theorem 5.4.
1. If m < n, there is no interpretation of L., in L,.
2. If m is even and n is odd, then there is no interpretation of L, in L.

Proof. One should observe that N s an L—algebra and it is a chain, so by
Theorem 2.2, N is a an L,,—subalgebra of M. This immediately implies that n <
m . The second assertion follows from the fact that M does not have subalgebras
of odd cardinality. : _ ' O

Theorem 5.5. Let m > n. Then the number of interpretations of L., in Ly is
determined as follows.

1. Ifm is even and n. 15 odd: there is no interpretation of L., in L,,.
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2. In any other case, for each De Morgan interpretation in L',,‘” there are (I;;((T:)))

interpretations of L., in L, where for any positive integer p,

B—1 if p is even
— 2 . )
h(p)‘{%lq if p’is odd.

3. If n =4 and m > 4, there are two more interpretations of L., in L4.

Proof. Let N be an interpretation of L., in £, such that the De Morgan reduct of
the interpretation is the chain 0=ay<a < -+ <Gy =1 and a,]e = a; = Qpj.
Our problem here is to count the number of possible functions p defined in lemma
5.3. We know that they are one—to-one and p(aj) = n — j, but that is not all
we know. By axiom (4) p has to have a symmetry with respect to the midpoint
of N if nis odd or its midpoints if n is even. Recall that axiom (4) states that
Gi(a) = 6m—-i(a®)®. In this case this means that 6;(a;) = (Gm-i(an-j))"

Case (1): This is Theorem 5.4, 2. ' '

Case'(2)\: Both m and n are even.
In this case 6m(az) = (6m_%(a’%))’ ='(6z(az-1))’, and since az_; < ag, by
(L2), dm(az-1) < Gm(az). These two imply that - '

Q>

m(az_1) = i and om(an) = 0.

The information gathered so far is summarized in the following chart.

&1 gg **° a'm;n_.l a'_';_‘. &m_l

QAo O . 6 6
ay -0 1
(lf.;..] 0 i
a% ? i i

i| 1. i

? : D

2| 7 7 o1 1)1 i
a1 |11 1 1 1|1 1

Case (3): Both.m and n are odd. v
Then &m;l(aan) = (6mpu(as,)) = (6mpr(anza) ), but by (L2), Gmpr(an) 2
2 -

A

Gmt (ag_;_; ), S0 these two together with (L3) imply

(‘7%1_-_1((12_;_1):1 and &m_z-;(a%;

)= 0.
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Also, if 6m=i1 (ant1) = 0, by (L4),-@ap1 = an=1, a contradiction, so Gmor(anp) =1
2 2 2 2 P P
We summarize this in the following chart.

&1 6'2 e a'm;n R &m;l 5’_@_;_1 e ,&m—l
ap | 0 0 0 0
a) 6 1
An-1 0 0 1 1
?7 1 i 1
i1 i 1
? : : :
Anoz | ? 7 ?7 1 i 1 i i
anp |11 1 1 i1 i i

Case (4): m is odd and n is even.

‘Then if 0 = a'm;ll(a%) = (a'v_nzil(a%—l))’, S0 Gmyi(ag-1) = i and thxfs' by (La),
ompi(ag) 2 (6mp1(az_1)) =1, and also &m_z-_x(a%_l) < 6%(%) = 0. Putting
these together, by (L4), we get az = az_y, a contradiction. So

6'1 &2 &m;n et a'm;l &%Ll 6m_1

Qg 6 6 0 - ﬁ
a; | O 0 0 i
a!zl__l ﬁ 6 i
an ?7 1 1 1
i 1 1 1

? : : o

Qnp | 7 7 ?7 1 i 111 1
an1 |1 1 i 1 i 1 i 1

In the charts above we see that

5i(a;) = 0 ifl1<j<n/2 and 1<i<m/2,
%) =11 ifj>n/2 and i >m/2.

Observe that by axiom (4), the values of ;(a;) for j < n/2 and ¢ > (m +1)/2, are
determined by those of 6;(a;) for j > n/2 and 4 < m/2. Also, we must take into
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account (L), (L3) and (L4), which imply that &;(a;) must increase both with 4 and
with 7. :

Soin order to find all possible functions x, one only has to determine how many “7”
one has to replace by 0’s in the lower left hand side of the charts.

Assuming [ is the number of rows and % is the number of columns, this is the same
as the number of integers less than ! which can be expressed as a sum of & positive
integers, this number is (,‘c)
Conversely, by Theorem 2.5 any such partition defines an interpretation of L,, in
L,. So for appropriate [ and k, the number of interpretations equals the number of
these partitions. Now it is a matter of determining the particular I’s and k’s in each
of the three cases and the theorem follows. Notice that by (L;) the last line in each:
chart is fixed.

If n = 4 and its De Morgan reduct is the four element Boolean algebra, then as
we mentioned before, we have another interpretation if we let for all z, &;(z) =
G2(z) =+ =pm-1(z) = 2. O
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