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Abstract

Let S be a compact oriented surface of constant curvature —1 and let T'S
be the unit tangent bundle of S endowed with the canonical (Sasaki) metric.
We prove that T1S has dense periodic geodesics, that is, the set of vectors
tangent to periodic geodesics in TS is dense in TT!S.

Let M be a compact Riemannian mauifold. M is said to have the DPG property
(density of periodic geodesics) if the vectors tangent to periodic geodesics in M are
dense in T'M, the tangent bundle of M. A compact manifold is known to have this
property if, for example, its geodesic flow is Anosov (see [1]), in particular if it is
hyperbolic. In this note we prove that the unit tangent bundle of a compact oriented
surface of constant curvature —1 shares with the surface the DPG property.
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’

Theorem ‘Lei S be a compact oriented surface of constant curvature —1 and let
_T'S be the unit tangent bundle of S endowed with the canonical (Sasaki) metric.
Then T'S has the DPG property.

Remarks.

a) Geodesics in TS do not project necessarily to geodesics in S.

b) The unit téngent bundle of any cpmpact'oriented surface of constant curvature
0 or 1 has also the DPG property.

c) The geodesic flow of TS, which is a flow on T'TS, is not Anosov.

d) T'S may be written as I'\PSI (2, R), where I is the fundamental group of S. In
general, not every compact quotient of a Lie group endowed with a left invariant
Riemannian metric has the DPG propeity.

The proof of the theorem and comments on the remarks can be found at the end
of the article. Next, we give some preliminaries. Let H be the hyperbolic plane’ of
constant curvature —1. Any oriented surface S of constant curvature —1 inherits.
from its universal covering H a canonical complex structure. If V' is a smooth curve
in T'S, then V' will denote the covariant derivative along the projection of V' to S.
The geodesic curvature of a curve ¢ in S with constant speed A # 0 is defined by
k(t) = (¢ (t),i¢(t)) /A3. We consider on TS the canonical (Sasaki) metric, defined
by [I€1? = [Imal])® + 1K(€)]|? for & € T, TS, v € TS, where m : T'S — S is the
canonical pro jectioh and K is the connection operator. Next, we recall from (7] a
desCription of the geodesics of T' H and some properties of curves in H of constant
geodesic curvature. 4

Proposition 1 Let V be a geodésic inT'H and letc=moV. Then ||V’|| = const,
ll¢ll=const =: X and one of the following possibilities holds:

,

a) If N =0, then V is a constant speed curve in the cirgle TCI(O)H .

b) If X # 0, then the geodesic curvature k of c with respect to the normal i¢/\ is
also constant and fort € R

V(t) = ez (1), 1)

where z € C is such that V (0) = 2¢(0).

Conversely, each curve V in T'H which satis fies (a) or (b) is a geodesic. More-
over, given a constant speed curve ¢ in H with constant géodesic curvature, and
Vo€ Tcl(O)H , there is a unique geodesic V in T'H which projects to ¢ and such that
V (0) = Vb.
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We recall from the proof of this proposition that if V is the geodesic in T'S with
initial velocity £, then A = |7, (g)¢]l and K(§) = —AkiV (0), in particular £ =
£/ A

In the following we consider the upper half space model H = {z + iy | y > 0} with
the metric ds? = (dz? + dy?) /y%.

Lemma 2 Let ¢ be a complete curve in H of constant geodesic curvature k. Given
fe (0, ), let cp be the curve in H defined by co (t) = ee®. |

a) If |k| > 1, the image of ¢ is a geodesic circle of radius |r| and length |27 sinhr|,
where cothr = ¢ (this implies that the length is 2m/v/K% — 1).
| b) If |k| =1, the image of c is a horocycle.

c) If K = cos@, the image of ¢ is congruent to that of cg.

Let. G = PSI(2,R) = {g € My(R)|dct g = 1}/{£[} and let g = {X € Mz(R)]|
tr X = 0} be its Lie algebra. Via the canonical action of G on H by Mébius
transformations, G is the group of orientation preserving isometries of H. Hence, H
may be identified with G/K, where K = PSO (2) is the isotropy group at the point
i€ H.
0 1

Consider the Cartan decomposition g = RZ & p, where Z = % 10 spans
the Lie algebra of K and p = {X € g | X = X*}. As usual we shall identify Tox H
with p. Under this identification, the quasi-complex structure induced on p is given

1 0 .
by adz : p — p and Xy = % 0 -1 € p is a unit vector. One can show that G

acts simply transitively and by isometries on 7' H. Hence, the map & : G —» T'H
defined by ¢ (y) = g.x (Xo) is a dilleomeorphisin which induces in G a left, invariant.
metric. From now on we identify sometimes in this way G with T H. In particular,
the unit tangent bundle of a surface I'\S may be identified with I'\G.

Let S be an oriented surface of constant curvature —1 and let k be a real number.
The x-flow on T''S is defined by @7 (v) = é% (t), where c is the unique unit speed
curve in H with constant geodesic curvature x and initial velocity v. In particular,
- the O-flow is the geodesic flow of S. Next, we obtain the x-flow on T!H using the
identification ® : G — T!'H, taking advantage of the group structure of G. Let
Ly, Ry, denote left and right multiplication by h, respectively, and set Y,, = X+ k2.

Lemma 3 If pf denotes the k-flow on T'H, then for all t we have

pr 0P = Do Rexpieva)-
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Proof. a) follows from the fact that Y, = : ( ) ) diagonalizes with eigen-

values +a/2, since |k| < 1.

b) If a,h arc as above, then R), o Rexp(atxo) = Rexp(ty,) © Ba for all t. Therefore,
Lemma 3 implies that pf = F ol o F~! for all t. One checks that F (yv) = vF (v)
for all v € ;v € T'H and the existence of f is proved. The last assertion follows
from straightforward computations.

c) We have that the k-flow on TS is conjugate to a constant rate reparametrization
of the geodesic flow of S, which is known to be Anosov and has dense periodic orbits
by Theorem 3 of [1]. O

Lemma 5 Let S be a compact oriented surface 'of constant curvature —1. Let c be

a periodic constant speed curve in S of constant geodesic curvature g, with |ko| < 1.
Then, for each k with |k| < 1, there ezists a periodic constant speed curve c, in S,
of constant geodesic curvature x, such that

a) ¢, =,

b) cx (0) converges to c (0) and ¢, (0) converges to é(0) for k — Ko,

c) the function k — klength (ck) is continuous, odd and strictly increasing.

'Proof. We may suppose that c has unit speed and that S = I'\H, where T is

a uniform subgroup of G which acts freely and properly discontinuously on H.
Suppose that tg is the period of ¢ and that C is a lift of ¢ to H. Then there exists
g € I such that g,C (0) = C (to). Since G acts transitively on T'H, by conjugating
' by an element of G if necessary, we may suppose without loss of generality, by
Lemma 2 (c), that C (t) = e'®in®ei with cosfy = g, 0 < fp < 7 and, additionally,
that g (2) = az, where a = etosin%,
For || < 1, let ¢, be the projection to S of the curve Ck (t) := e**"’", where
cos = K, 0 < 0 < 7. Clearly, c, satisfies the ﬁrst two conditions. By Lemma 2 (c),
cx has constant geodesic curvature k. Since g,C (0) = Cx (tosin 8/ sin 6) and Ci
has unit speed, then ¢ is periodic and ‘

, sinlp [1-k}
length (CK) = to sing to 1—:—;5

Thus, the function k + & length (c,) has the required properties. O

Comments on the remarks.

(a) follows from Proposition 1. Next we comment on (b). If S is flat, then S is

covered by a flat torus (see [8]) whose unit tangent bundle is again a flat torus and
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clearly has the DPG property. On the other hand, if S has constant curvature 1,
then S is covered by a sphere, whose unit tangent bundle is isometric to SO (3)
endowed with a bi-invariant metric, all of whose geodesics are periodic (see also
[4]). (c) is a consequence of [5], since T'H has conjugate points. This follows from
the proof of Myers’ Theorem (see [2]), since if v is the geodesic in G =~ T'H with
initial velocity Z, then Ricci (4) is constant and positive. Indeed, v is the orbit
of the one-parameter groilp t — exp (tZ) of isometries of G, and Ricci (Z) > 0 by

Theorem 4.3 of [6]. Finally, a counterexample for (d) can be found for example in

3].

Proof of the Theorem.

Let I be the fundamental group of S and suppose that S =I'\H. Let P : TT'H —
T'H and 7 : TH — H be the canonical projections. By abuse of notation we call
also 7 the restriction of the latter to T'H. Let T'T'H = {¢ € TT'H | m& # 0}
and let T'T'S = T\T'T'H. These are open dense subsets of TT'H and TT'S,
respectively. Let now

F:TT'H— {(v,Y,s) e T"HXTH xR |Y #0and 7 (v) = (Y)}

be defined by F (¢) = (P¢,m,¢, & (€)), where x'(€) is the (constant by Proposition 1)
geodesic curvature of 7V, V being the unique geodesic in G with initial velocity &.
F is a diffeomorphism since it is differentiable and so is the inverse F~! (v,7, n)\ =
V (0), where V is the unique geodesic in T'H such that V (0) = v, and C := 7V
has constant geodesic curvature x and satisfies C (0) = Y (see Proposition 1).

Fix vo € T'H and 1 € T}, T'S. Suppose that 7 lifts to £ € T, T'H and that
F (&) = (vo, Y0, ko). We have to show that given € > 0 and open neighborhoods U
and V of vp and Yy, in T H and T H respectively, then there exist x with |k — xo| < &,
v €U and 0 £ Y €V, with the same footpoinut, such that the geodesic V in T'H
with initial velocity F~! (v,Y,k) projects to a periodic geodesic in T'S. By the
expression (1), it suffices to show that ¢ := I'rV is periodic and 2Axty € 27Q for
some positive number £ such that ¢ (0) = ¢ (o), where A, & are as in Proposition 1.
Suppose that |kg| > 1. In this case choose v = vy, ¥ = Yy and k such that
|k — x| < & |&] > 1 and 2x/v/k2—1 € Q (such a k exists since the function
K+ 2k/v/k% — 1 is odd and strictly monotonic for £ > 1). Indeed, by Lemma 2 (a),
¢(0) = ¢(to) holds for ty = 2m/Av/kZ — 1, since ¢ has constant speed A. Hence,
2tgr\ € 2mQ by the choice of .

If |ko| < 1, then by Lemma 4 there exists (vy,Y;) € U x V C T'H x TH close to

(vo, Yo) , with 7 (v1) = 7 (Y1), such that I'c; is periodic, where ¢, is the constant
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speed curve in H of constant geodesic curvature k¢ with ¢, (0) = Y;. By Lemma 5,
since V is open, there exist & with || < 1, |& — ko| < & and (v,Y) € U x V close
to (v1,Y1), with Y # 0 and 7 (v) =« (Y'), such that C projects to a periodic curve
c in '\H with length ¢ satisfying 2«<¢ € 27 Q, where C is the constant speed curve
in H with constant geodesic curvature « and initial velocity Y. If t; = €/, then
¢ (0) = ¢ (to) and 2\kty = 2x¢ € 27Q. Consequently, for v,Y and k as above, the
geodesic in G with initial velocity F'~! (v,Y, ) projects to a periodic geodesic in
T'S. This completes the proof of the theorem. O ‘
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