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Abstract 

Lct S be a compad oriented surface of constant curvature - 1  aml let TI S 
be the unit tangent bundle of S endowed with the canonical (Sasaki) met.ric. 
We prove that TI S has dense periodic geodesics, that is, the set of vectors 

tangent to periodic geodesics in TI S is detlse in TTI S. 

Let, M be a compact Iliemannian mauifold . M is said to llave the DPG pro;Jcrty 

. (dcnsity of periodic gt-'Odesics) if tlle vectors tangent to periodic geodesics in M are 

dense in T M, the tallgent bundle of M. A compact manifold is known to have this 

property if, for example, its geodesic flow is Anosov (see [1 ] ) , in particular if it is 

hyperbolic. In this note we prove that the unit tangent bundle of a compact oriented 

surface of constant curvature - 1  shares with the surface the DPG property. 
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Theorem . Let S be a campact aríented surEace aE canstant curvature - 1  and Jet 

TI S be the unit tangent bundle aE S endawed witll tlle cananical (Sasaki) metric. 

TlJen TI S has tllC DPG property. 

Remarks. 
a) Geodesics in TIS do not project necessarily to geodesics in S. 
b) The unit tangent bundle of any compact oriented surface of constant curvature 

O or 1 has also the DPG property. 

c) The geodesic flow of T1S, wliich is a flow on TIT1S, is not Anosov. 

d) T1S may be written as r\PSl (2 ,  R) , where r is thc fundamental group oí S. In 

general, not every compact quotiellt of a Lie group endowed with a 10ft invariant 

Riemanniall metric has the DPG property. 

The proof of the theorem and comments on the remarks can be found at the end 

of the article. Next, , we give sorne preliminaries. Let. H be t.he hyperbolic plane' of 
constant curvature - 1 .  Any oriented surface S of constant. curvat.ure - 1  inherits 

from its universal covering H a canonical complex st,ructure. If V is a smoot.h curve 

in TS, t.hen V' will denot.e t.he covariant derivat.ive along t.he projection of V to S. 
The geodesic curvat.ure of a curve c in S with const.ant. speed >. 1= O is defirred by 

K, (t) = (e' (t) , ie (t)) />.3 . We consider on T1 S t.he canonical (Sasaki) met.ric, defined 

by 1 1 ';- 1 1 2  = 111l'*v� 1 I 2 + I IK(O I l 2 for � E TvT1 S, V E Tl S, whete 1l' : T1 S - S is the 

ca�onical projection and K is the connection operator. Next., we recall froin [7] a 

description of the geodesics of TI H and some properties of curves in H of constant 

geodesic curvature, 

Propositioll 1 Let V be a geod��ic in TI H and let c = 1l' o V .  Then I l V' 1l  "= const, 

l I e l l  = consto = :  >. and oue of the following possibilities holds: 

a) Jf ,\ = 0, then V is a constan( speed curve in the circle T:(o)H .  

b) Jf >. 1= 0,  then the geodesic curvature K, of c with respect t o  the normal ie/ >. is 
also constant and lor t E R  

( 1) 
where Z E e is such that V (O) = ze (O) . 

Conversely, each curve V in TIH which satisfies (a) or (b) is a geodesic. More
over, given a constant speed curve c in H with constant geodesic curvature, and 
Yo -E Tc\O) H, there is a unique geodesic V in TI H which projects to e and such that 
V (O) = Yo. 
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We reca11 from the proof of this proposition that if V is the geodesic in TI S with 
initial velocity e ,  then >. = 1 1 7r.v(o)e l l  and ,qe) = ->'",iV (O) , in particular ", = 

± I IK(e) I I />' · 

In the following we consider the upper half space model H = {x + iy 1 y > O} with 

the met.ric ds2 = (dx2 + dy2 ) ly2 . 
Lelllma 2 Let c be a complete curve in H 01 constant geodesic curvature "' .  Given 
O E (O, 7r) ,  let co be the curve in H defined by co (t) = eteiO • . 

a) JI 1"' 1 > 1 , the image 01 c is a geodesic circle 01 radius I r l  and length 1 27r sinh r l ,  
where cot.h r = , .  (this implies that lhe length is 27r I J ",2 - 1). 

b) JI 1"' 1  = 1 , the image 01 c is a horocycle. 

c) JI '" = cos O , the image 01 c is congruent to that 01 co · 

Let. G = PSl(2,  R) = {g E M2(R) 1 det. 9 = 1 }/{±I} and lel; g ,;". {X E M2(R) 1 

tr X = O} be its Lie algebra. Via t.he canonical act.ion of G on H by Mobius 

transformations, G is the group of orientation preserving isometries of H. Hence, H 
may be identified with G I K, where K = P SO (2) is the isotropy group at the point 

i E H. 

Consider the Cmtan decomposition g = RZ EEl p, where Z = � ( O 1 ) . spans . - 1 O 
the Lie algebra of K and p = {X E g 1 X = Xt} .  As usual we sha11 identify TeKH 
with p .  Under this identification, the quasi-complex structure induced on p is. given 

by OOz , V � p and Xo � l ( �  �1 ) E p is a  unit vector. One can show that G 

ads simply transitively aud by isomet.ries on TI H. Hence, the map <P : G � TI H 
defined by <}1 (y) = y.K (Xo) is a difl'eomorphislIl which induces in G a left. illvariant 
metric. From now on we identify sometirncs in this way G with TI H. In particular, 

the unit tangent bundle of a surface r\S may be identified with f\G. 

Let S be an oriented surface of constant curvature -1 and let '" be a real number. 

The ",-flow on TIS is defined by rfJ7 (v) = c� (t) ,  where c� is the unique unit speed 

curve in H with constant geodesic curvature '" and initial velocity v .  In particular, 

the O-flow is the geodesic flow of S. Next, we obtain the ",-flow on TI H using the 

identification <P : G � TI H, taking advant.age of the group structure of G. Let 

Lh , Rh denote left and right multiplication by h, respectively, and set Y/t = Xo + ",Z. 

Lemma 3 JI <p7 denotes the ",-ftow on TI H, then lor all t we have 

<p� o <P == <P o R.,xp(tYt<) ' 
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Proof. a) follows froro Ihe fael Ihal Y. � � ( �" 
values ±a/2 , since l li l  < 1 .  

Ii ) diagonalizes with eigen
- 1  

b) If a ,  h are as aboye, theIl R" o Rcxp(atXo) = Rexp(tYK ) o Rh for aH t .  Therefore, 
Lemma 3 implies that cp� = F o CP�t o F-I for aH t. One checks that F ('}'v) = '}' F (v) 
for aH '}' E r, v E TI H and the existence of f is proved. The last assertion foHows 
from straightforward · computat.ions. 

c) We have that the Ii-fiow on TI S is conjugate to a constantrate reparamet,rization 

of the geodesic fiow of S, which is known to be Anosov and has dense periodic orbit,s 
by Theorem 3 of [ 1 ] . O 

Lemma 5 Let S be a eompact oriented surfaee of eonstant eurvature - 1 .  Let e be 

a periodie eonstant speed curve in S of eonstant geodesie eurvature lio, with l lio l  < 1 .  
Then, lor eaeh Ii with l li l  < 1 ,  there exists a periodie eonstant speed curve el< in S, 

01 eonstant geodesie eurvature Ii ,  sueh that 
a) cito = e, 

b) el< (O) converges to e (O) and CI< (O) converges to C (O) lor Ii -+ lio, 

e) the lunetion Ii 1-+ K length (el<) is eontinuous, odd and strietly inereasing. 

Proof. We may suppose t,hat, e has unit speed and that S =- r\H, whe!e r is 

a unifonn sl Ibgrollp of G which act.s freely and properly discont,inuolIsly on H. 
Suppose that to is' the period of e and that e is a lift of e to H. Then there exists 

9 E r such that g.é (O) = é (to ) . Since C ads transitively 011 TIH, by conjugating 

r ,  by an element of G if necessary, we may suppose without loss of generality, by 

Lemma 2 (c) , that e (t) = et sin Ooei90 with cos Oo = KO , 0 < 00 < 7r and, additionally, 

that 9 (z) == az, where a = eto sin Oo .  
Por I K I < 1 ,  let. el< be t.he projection t,o S of t,he curve el< (t) : =  ct 8in OCiO , whel'e 
cos O = K, O < 0 .< 7r. Clearly, el< satisfies the first two con�itions. By Lemma 2 (c) , 
el< has constant geodesic curvature K. Since g.61< (O) = él< (to sin 00/ sin O) and el< 
has unit speed, then el< is periodic and 

sin 00 

J
I - '¡ 

length (el<) = to -:--O 
= to __ o -2. sm · 1 - K 

Thus, the function K 1-+ K length (el<) has the required pl'Operties. O 

Comments on the remarks. 

(a) follows from Proposition 1 .  Next we comment on (b) . If S is fiat , then S is 

covered by a fiat torus (see [8] ) whose uuit tangent bundle is again a fiat torus and 
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clearly has the DPG property. On the other hand, if S has constant curvature 1 ,  

then S is covered by a sphere, whose unit tangent bundle is isometric to SO (3) 

endowed with a bi-invariant metric, all of whose geodesics are periodic (see also 
[4] ) .  (e) is a consequence of [5] , sin'ce TIH has conjugate points. This follows from 
the proof of Myers' Theorem (see [2] ) ,  since if "1 is the geodesic in G � TI H with 
initial velocit,y Z, then Ricci (1) is constant and positive. Indeed, "1 is the orbit 
of the one-parameter group t f---t exp (tZ) of isometries of G, and Ricci (Z) > O by 
Theorem 4 .3 of [6] . Finally, a count,erexample for (d) can be found for example in 
[3] . 

Proof of the Theorem. 

Let r be the fundamental group of S and suppose that S = r\H. Let P : TTI H -
TI H and 7r : T H _ H be the canonical projections. By abuse of notation we call 
also 7r the restriction of the latter to TI H. Let. T'TI H = {� E TTI H 1 7r*� .¡. O} 
and let T'TIS = r\T'T1 H. These are open dense subsets of TTI H and TTIS, 

:espectively. Let now 

F : T'TI H _ { (v ,  Y, "') E TI H X T H x R 1 y =1= O and 7r (v ) = 7r (Y) } 
be defined by F (�) = (P� ,  7r.� ,  '" (�) ) ,  where ", (�) is the (constant by Proposition 1 )  

geodesic curvature of 7rV, V being the unique geodesic in  G with initial velocity � .  
F is a diffeomorphism sínce i t  is differentiable and so  is the inverse F-I (v ,  Y, ",) = 

ir (O) , whcre V is the unique geodesic in TI H such that V (O) = v, and e : =  7l"V 
has constant geodesic curvature '" and satisfies 0 (0) = y (see Proposition 1 ) .  

Fix Vo E TI H and r¡ E TfvoT1S.  Suppose that r¡ lifts to � E T�oTI H and that 
F (�) = (vo ,  Yo , "'o) . We have to show that given é > o and open neighborhoods U 
and V of Vo and Yo , in TI H and T JI respectively, then there exist '" with 1 '" - "'0 1 < é,  
1 1  E U and O =1= Y E V, wit.h t,hc Ritm e  foot,point ,  81 \r.h t.hat. t.hc gcodcsic V in TI H 
with initial velocity F-l  (v ,  Y, ",) projects t.o a periodic geodesic in T1S. By the 
expression ( 1 ) ,  it suffice8 to show that e : =  r7rV is periodic and 2A",to E 27rQ for 
some positive number lo such that e (0) = e (to) , where A ,  '" are as in Proposition 1 .  

Suppose that 1 "'0 1 2: 1 .  In this case choose v = vo , Y = Yo and '" such that 

1 '" - "'0 1 < é, 1 "' 1  > 1 and 2",/.,;",2 - 1 E Q (such a '" exists since the function 

'" f---t 2",/";",2 - 1 is odd and strictly monotonic for '" > 1 ) .  Indeed, by Lemma 2 (a) , 

e (O) = e (to) holds for to = 27r / A �, since e has constant speed A. Hence, 
2tO"'A E 27rQ by the choice of "'. 

If 1 "'0 1  < 1 ,  then by Lemma 4 there exists (VI , Y1 ) E U x V e TI H X T H clase to 

(Vo ,  Yo) , with 7r (VI ) = 7r (Y1 ) , such that re} is periodic, where el is the constant 
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speed curve in H of constant geodesic curvature KO with él (O) = Y1 . By Lemma 5 ,  
since V is  open, there exist K with I K I  < 1 ,  I K - Ko l < 10, and (v ,  Y) E U x V close 

to (Vl ' Yi ) , with Y 1= O and rr (v) = rr (Y) ,  such that C' projects to a periodic curve 

e in r\H with length e satisfying ,2Ke E 2rrQ, where C is the constant speed curve 

in H with constant geodesic curvature K and initial velocity Y. If to = el A, then 

é (O) = é (to) and 2AKtO = 2Ke E 2rrQ.  Consequently, for v, Y and K as aboye, the 

geodesic in G with initial velocity F-1 (v, Y, "") projects to a periodic geodesic in 

r1s. This completes the proof of t,he t,heorem. O 

References 

[ 1 J  D. Anosov, Geodesic flows on c10sed Riema11nia11 ma11iEolds with 11egative cur

vat ure, Proc. Steklov Jnstit . Math. 90,  1967� 

[2J J .  Cheeger & D.  Ebin, Compariso11 Theorems in Riemannian Geometry, North

Holland, 1975. 

[3J P. Eberlein, Geometry oE 2-step nilpotent groups with a leEt invariant metric, 

Ann. Se. de École Normal Supo 27 No. 5 ( 1994) , 61 1-660. 

[4J H. Gluck, Geodesics·i11 the unit ta11ge11t bU11dle oE a rou11d sphere, L'Enseigne

ment Mat,h. 34 ( 1 988) , 233-246. 

[5J W. Klingenberg, Rieman11ia11 mani[olds with geodesic flow oE A110SOV type, An

nals of Math. 99 ( 1974) , 1 - 13 .  

[6J J .  Mi.lnor , Curvatures oE leEt i11varia11t metrics 011 Lie groups, Advances in Math. 

21 ( 1976) , 293-329. 

[7J M. Salvai , Spectra oE u11it ta11gent bundles oE hyperbolic Riemann surEaces, Ann. 

Global Anal. Geom. 16 ( 1998) , 357-370. 

[8J J. Wolf, Spaces oE constant curvature, Publish or Perish, 1977. 

Recibido en Diciembre 1998 


