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ABSTRACT. We discuss the self-similar solutions 0 (x, t) = 0 () = 0 (x / \/t) of the problem
E(0), =A@ =1B(1),n>0; 0(0,)=C>0,t>0; E(0(x,0))=0,x>0.

We assume that E and A are monotone increasing functions, A being continuous, with

E(0)=A(0)=0 and A=E(0H)>0. 'I.‘his equation can describe the conservation of thermal
energy in a heat conduction process for a semi-infinite material with a ”sell~similar” source or
sink term of the type B(x/\/;)/t. Moreover, E(f) represents energy per unit volume at level
(temperature) 6, A’(0) > 0 is the thermal conductivity and B (n)/t represents a singular source
or sink depending of the sign of the function B. We generalize results obtaiued in: _
(i) J.L. Menaldi — D.A. Tarzia, Comp. Appl. Math. 12 (1993), 123 — 142, for the particular one-
phase case E(0)=0+A (0>0), E(0)=0 and A(f) =0 is studied where necessary and
sufficient conditions were given in order to characterize the source termn B which provides a
unique solution (a generalized Lameé-Clapeyron solution).
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(ii) J.E. Bouillet, IMA Preprints # 230, Univ. Minnesota (March 198'6), for the particular case
B =0 for the two-phase Stefan problem, and we obtain some new results in connection to the

source term.

We obtain for the inverse function 5 = 7(#) an integral equation equivalent to the above
problem and we prove that for certain hypothese over data there exists at least a solution of the

corresponding integral equation.

1. INTRODUCTION
In this paper, we discuss the self-similar solutions 8 (x,t) = 8 () = 8 (x/ 1/t) of the equation

E(o)t_A(B)xx=%B(n)v n>0,
with the initial and boundary condition given by :

9(0,)=C>0, t>0 ; E(0(x,0))=0, x>0.

We assume that E and A are monotone increasing functions, A being continuous, with
E()=A(0)=0 and A=E(0%) > 0. This equation can describe the conservation of thermal
energy in a heat conduction process for a semi-infinite material with a ”self-similar” source or
sink term of the type B(x/\/f)/t. Moreover, E (8) represents energy per unit volume at level
(temperature) 6, A’(6) > 0 is the thermal conductivity and B (5)/t represenis a singular source
or sink depending of the sign of the function B. A study of sublimation-dehydration within a
porous medium as a ‘result of volumetric heating, such as that associated with microwave
heating, is presented in [4].

In [3] the particular one-phase case E(f) =6+ (8 >0), E(0)=0.and A(0) =0 is studied
where necessary and sufficient conditions are given in order to characterize the source term B
which provides a unique solution (a generalized Lamé-Clapeyron solution [2]).

In this paper we [ollow the analysis presented in [1] for the case B =0, and we obtain some new .

resulls in connection to the source terin.

II. SELF-SIMILAR SOLUTION
We consider the following problem for the function 6 =8 (n), where y = \{/\/F is the similarity

variable :

(1) -31(E(0)) - (A(6))" =B(n), n>0,

@) 8(0)=C>0, E(8(+00)) =0,
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where the prime denotes I’

If we define the function

) h(n)=(A(O(@)) +31E@ ™),

the differential equation (1) can be written as

(4). W (n)=1E(@0(n)-B (n).-

From a.distributional version of equation (1) it is easy to see that both A (f(n)) and h(n)
defined by (3) are absolutely continuous (AC) functions of § > 0, and equation (4) is satisfied
almost everywhere (recall that no asumptions on regularity are made on the monotone functions
E and A). We shall assume that side derivatives always exist at 7> 0 in order to avoid
technical details which are not essential and will obscure this exposition (cf. [1]).

Observe that if thermal energy is suplied to the medium x > 0 (initially at § = 0) by

(i) heat conduction from x =0, and

B(n)
t

(ii) the source >0fort>0,
therefore it is natural to expect that 6 (x,t) be zero for 0 < t < t(x) while the local energy per

unit volume at x > 0 grows from E (6 (x,0)) = 0 according to the law_

1
(5) E(()(x,O))::j‘B—(xs/s—i)ds=2 J B—,(;an,
0

x/ Vi

and remains less than A = E(0%).
The notation E (6 (x,t)) =E(6(n)) is inadequate in this case B >0, and we clearly have in
mind a multivalued graph for E, where E (0) = [0, A]. This fact is seen in the integral equation

(6)-(7) whose fixed point gives a solution to our problem.

Lemma 1. We obtain the following resull for the solution of the problem (1), (2) according to
the sign of the source/sink term B.

@Y IfB(n) < 0; V17 >0, then 8 = 0(n) is a non increasing function of 7.

(ii) If B(n) >0, V>0, and the solulion verifies the condition 0'(0F) <0, then 0=0(1) is a

non increasing function of 1.

Proof. Case (i). If this were not the case, there would exist 0 <17, <1, and D >0, such that



4 ‘ Julio E..Bouillet and Domingo A..Tarzia
0(n)=0(ny) =D, 0(n) >Din (n,,n,) and therefore
(Aob) (mh) >0, (Aob) (n,7) <O0.

Employing (3), (4) and [A (D) +%1)E(D)]_’ = %E (D) we obtain by substraction

{00y +1n[E0)-E®)} =} [E@ () —ED)) -B()

integrating in (1), ,7) gives

L)
02 (A00) (1, 7) — (o0 (") 2} [[EO () ~E@Nan >0,
U :

a contradiction .
Case (u) Again by contradiction, if 6(7)) were not monotone there would be a D>0, D <C,

and 0 <y <ny, such that 0(n)=0(n) =D, 0(n) <D in (n,,n,) and thus, with an

argument similar to Case (i) we would have

L) L
0<(Ao0) (™)~ (A00) (") 2} [ (BO) ~EM)dn- [ Bndn<,
. nl 7)1

a contradiction.
In both cases we conclude that 6(n) is a decreasing function of 7 due to the fact that
lim 0(n)=0.
HUSLAC)
When the thesis of Lemma 1 is verified we can consider the inverse function 5 =n(f) for

0 < 0 < C, which satisfies the following property

Q0o

1BE) |
S

Theorem 2. Assume that J ds < +00. For the inverse function n = n(0) we have the

1
integral equation equivalent to (1) — (4):

(©) n@ =T,  0€(0,0),

where the operator T is defined by
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@ +(’OB(S)' ¢dA(r) -
™ cwenr=2[{1pm- [ Zas [S0} aw.
0 n(¥) 0.

Proof. We have

hence / Y ’
n(h%n)) - _@#@—B(n),
that’is

'(Mﬁ )'_ _(Ao0)(n) B(n)
= —_—,’T—— n .

(n)

Assummg for the moment that ——~ — 0 when 7 — + 00, we have:

00
(m _ _ (A 00) (s) B (s)
- = JI———-—sz ds — -,[Sds’
and hence
(Ao8) () OO(AOB)’() OOB()
S-S E0)= J . % ds+ J._sids
0] 9
/\ +00
d(Anoe)= (A°'07) (m) dn = —{%E(B)-— J P—g-)-ds+ J‘d.t((l;p)
7(0)
“whence
‘ C +ooB ) '.pdA ) »
ro=2] {few- | et [0} ano.
o n(¥) 0
Le. (6), (7).

+
We now prove that h(n)/n—0 when n—+oo (under the ]1ypothes1s I B(s) ds < + oo for
B > 0). From (4) it follows '

1
h(n)=h(0%)+1 J E(f(s))ds— | B(s)ds ,
: 0

O3
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1.e.
_ n n «
(Ao0) (n)+3nE0(n) = (Ao0) (07)+} I E(o(s))ds_J B(s) ds .
0 0
Ilence
n U]
o=(Aoo)'(n)=(Aoo)'(of)+%[[E(o(s))-m(o(y,))] ds—f B ds.
0 0

Therefore, if B<0 or if B> 0 and j B(s) ds < oo, we will have 0 > (A 08)’ (n) > constant.

The claim now follows due to n_l_lbnloo.l‘l (0(n))=0. More premsely 1['7’11"11_2_ f B(s)ds =0,

we have
hi _h(@ i [ T
1
,,’7 =—5—=+17 J E(o(s))ds-l J B(s) ds
0 0
and therefore lim hs_'l) =0, duc again to the fact that E(0(+o0)) =0.
11— + 00 [ .

Theorem 3. (i) If B(n) <0,V >0 then
. o [A(c 7

) TO) <22,

and T is a monotone operator in the following sense

(10) 1 (0) <ny(0) = T(ny(6)) <T(ny(0)).

(i) If B(y) <0, V7 >0, and

+
(11) - J B(S)ds—K< +oo,
0

then, there exists a function ny = 1y (0) which v'erifies the condition

(12) 10 < T (ng) -

Moreover, 1q is given by

10(0) = #[A(C)~A (6] >0 in(0,0),
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where y1 > 0 is a parameter 1o be chosen so that

1

1
(4 S X OK+IEO

(iii) Under the previous hypotheses there ezisis at least a solution 1 =n(6) of the 'integfal

equation
(6)-(7).

Proof. (i) It is clear that

: C C
2o, [AAMW) dA(Y) _ , A
(Tn () szl =4 [T < S0

The monotonicity is obvious.

(ii) By (11) and (13)

C .
@0 22 [ () + K+ 5 (g xdes ) AW
. 0

Select p so that 3 E(w) y (i.e. (14)). We find

W AC) A(C)

¢ .
(TP 222 [ (A(©)-AW) dAW) = (ao(0))*.
0

( A(C) :

2
Therefore 7y < Tng < T ny < E(0+)

) . It follows that there exists

>—0

the pointwise limit 7 (6) = hm (T™ 1) (6). Repeated application of the monotone convergence

theorem to the integrals in the definition of T gives n(8) =T (n(8)),0< 8 <C.

Theorem 4. There is af most one solution to (1) = (4) that is monotone decrcasing in (0, +20).

Proof. Assume 0, (n), 02 (n) are two such solutions. Two cases are posible:
(i) There are 0 < 7, < n, such that 0, (n,*) = 8, (")

01y ") =050 7). 0,(n) <By(n) in(ny,n,)
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(ii) for 0 <my <, Oy () =05 (n,) and 8, () < 0,(n) .

Case (i). By (4),

L)) 2
b ") ~bi(n )=} [ E@G@)an- [ B an, i=1,2.
U h

Substracting them we get
0 2(Aob) (n, ")~ (Aoby) (flz T)=((Aoby) (7)1+) —(Aot) (m™)+

+%nz(E(0z(h2"))—E(ﬂl(nz')))+%n1 (E(8,(m™1))-E@6, (m™1))) =
M2

b [ E@m)-E0,@mNa >0
™ )

Case (ii). With analogous considerations (1, = + 00)
(Ao 92)'(’71” —(Ao 01)' (711+) )+ %’h (E(0, ('I)+)) -E(8, (771+) )=

2

=3 BEO@)-2Em) M >0.
T ' -

Therefore, the assumptions 8, # 6, leads to contradiction.
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