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- ANEW SEQUENCE OF LINEAR POSITIVE OPERATORS
- FOR HIGHER ORDER L, -APPROXIMATION

~ P.N. Agrawal and Kareem J. Thamer.

ABSTRACT. The purpose of this paper is to develop some direct results in the L .

approximation by a linear combination of a new sequence of linear positive operators.
We estimate the error in the approximation in terms of the higher order integral modulus
of smoothness using the properties of another sequence of linear approximating functions
e.g. Steklov means.

1 INTRODUCTION

For fel p[0,0) (p21), Agrawal and Thamer [1] introduced a new sequence of linear
positive operators defined as: '

(LD M, (f:0)=(=DF pps(®) [Pupar () SG@) dut(+2)7" f(0),x €[0,09),
. k=l 0
where

k-1 ,

Alternatively, (1.1) may be written as

M, (@)= [Wa(x,u) £ (u)du,
0
where

W (e, ) =(n=1) 3" P, (X) Py () + (1 + %) " 8(u1),
: o k=1
J(u) being the Dirac-delta function.

We observe that, howsoever smooth the function may be, the order of approximation by

these operators is, at its best, O(n™"). To improve this order of approximation, we apply
the technique of linear combination due to May [5] and Rathore [6] to (1.1). The linear
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combination is described as follows:

1dgt e gt Map i) dgt e dg

V 4l . gk -k
12 M, (fkx=|' @ d Md,n(fx) d;’! ar)
Uodit o di¥| M, (hx) dit e agt

where d,,d, ,...,d; are (k +1) arbitrary, fixed and distinct positive integers.
On a simplification of (1.2), we are led to

_ | ) | |
(1.3) - My (/. kx)=3 CULE) My, (f33)
j=0
where ’
CU, k) ]‘[ ,for k0 and €(0,0)=1.
=0 J i
i#)

The aim of this paper is to show that the linear combinations of the operators (1.1)
converge faster to the function provided the function is sufficiently smooth . The estimate
of error in L, -approximation is obtained in terms of the (2k +2)th order integral

modulus of smoothness of the function.

2 HIGHERORDER L, -APPROXYMATION

Throughout this paper, let 0 <a; < a3 '<a2 <by <by <b <, I; =[a;,b;],1=1,2,3 and
4] denote the integral part of S. Furthermore, C denotes ‘a positive constant not

necessarily the same at each occurrence.
For fe L,[a,b], 1< p <, the integral modulus of smoothness of order m is defined

as:

®, (/57 p.[a,B]) = suppess, |A5 /(1)

Lylab-ms]

We prove the following main result:
THEOREM. Let f e L,[0,), p21. Then for all n sufficiently large

"M"(f’k")_f”L,,(lg) < Mg, (m2k+2("f’n~1/2’}?']1)+n—(k+1)||f||1,l,[o,w))’

where M , is a constant that depends on k¥ and p but is independent of /" and n.

We require the following results. :
Let AC ( [a,b] ) denote the class of absolutely continuous function on [a,b].

Let 1<p <o, feLpy[0,0). Then, for sufficiently small 7 >0; the Steklov mean f,
of m th order correspondingto f* is defined as :
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o2z g2 |
Som@=n0"" [ [ S+ YA, @) |y,
-nl2  -pl2 | . Z U

i=1

‘where u e 1 1 and AZ’ f(u) is the mth order forward difference of the function f with

step length A.
Lemma 2.1. For the function f; , (4) as defined above , we have

(a) Sym has derivatives up to order m over I, £, D e 4C.(1;) and S G exists
a.e. and belongsto L,(1;); ’

O ( S Mo, (f,n,p,1) , r—I(J)m :
L (]2) .
( llf—f”""“Lp(jz) < Mpaon(fin,p.0) ;

@ Al gy Mol

R, S M W

where,M ;'s are certain constants that depend on 7 but are independent of / and 7 .

By a repeated application of [4,Theorem 18.17], Jensen’s inequality and Fubini’s
theorem, the proof of this lemma easily follows and hence is omitted.

Lemma 2.2 [1]. Let the function 7, ,(x), me N ? ( the set of nonnegative integers) be
defined as

~—

(e

~—

L)

nm(x) (n 1) an k(x) IPn k—l(t) (t x) dt + ('—x) (1+x)—"

k=1
Then,

and

2x
T,o(x)=1,T,1(x)=

(n-m=2)T, amr () =x(1+x)T, (x)+[(2x+1)m+2x] ,,,(x)+2mx(1+x) m=1(X)

me N,
Hence,
O 7, ,,,(x) is a rational function in n and a polynomial in x of degree m,

(ii) For every x €[0,) , T, ,,(x) = O(n “ltm+ny42]y |
Lemma 2.3. Let the function 7, ,,(#)(m € N) be defined as

Vym(®) = jW,,(x,t) (x=0)" dx , 1 € (0,9).
; .

Then, we have
2(1+1)

Voo(t)=1, Vua (==
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and there holds the following recurrence relation

(n=m=2)V, () =t(1+0) V(1) +[(2f+1)(m+1)+1] m @) 2mtI+1) V,, ().
Consequently,

) Y, m (¢) is a rational function in » and a polynomial in ¢ of degree m .

(ii) For every 1 € (0,) , ¥, ,,(1)= O (n{m*D/ 2y

The proof of this lemma follows easily on proceedmg along the lines of the proof of
Lemma 2.2 and hence is omitted.

Lemma 2.4. For pe N and n sufficiently large there holds

M, (4= %7 k. x) = ED{O(p, b, x) + oD},
where O (p, k,x) is a certain polynomial in x of degree p and x €[0,) is arbitrary but
fixed. Further, we have :

(-1 k+1)
k

K] ]4;
Jj=0

OQk+Lk,x) = {(+D(1+2x) = {x(1+x)}*

and*
(~DF Qk+2)!{x(1 +x)} ¥+
— .
CE+D)! T4,
Jj=0"

The proof of this lemma follows from [2,Theorem 1] .
Let BJV.(a,b]) denote the class of functions of bounded variation on [a,b].The

is defined by the total variation of f on [a,b].
Lemma 2.5. Let f € BV.(1,) . Then,

M, ( [~ W) ar(w) Ca), xJ

OQRk+2,k,x)=

‘ —(k+1)

<Cn™* ”f"B.V.(I,)'
. L(l)
where ¢(u) is the characteristic function of 1. -

Proof. Following the proof of Proposition 2.2.5 [7, p. 50-52 ], for each n there exists a
-1/2 1/2

nonnegative integerr =r(n) such thatrn
Then, we have

< mak(bl —ay,by —a)<(r+hn”

K=

M, ("I(u - wl df (w) () .‘x]

L(L)

» by [xrgennl2 (™2

<SS e, eew |u A foow|dron)tdu

1=0 4, x+In7V2
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X_In-llz

. x
2k+1
o) W awu = foow)|df ()] du |dx
x—(I+)n~V2 x—(1+1)n712
-Let @, .4 (W) denote the characteristic function of the interval [x—cnV2 x+an™V?]
where c¢,d are nonnegative integers. Then, we have '
- b, x+(l+1)n'”2 2kes b v
- 2k+
K<Y |17 | [ @ W el=o"" o, 0000|drw)| | du
I=1- a, x+ln'_” 2 A - :
X_I”-llz
2k+5
] s Wl j¢>,,,,+m<w)|df<w>|
,\r—(l+l)n'”2 a

@ -n" a

b, ay+nV2
+ j YW (x, w)|u - 52! (jcpx,l(w)ldf (W)|]dudx :

By using Lemma 2.2 and Fubini’s theorem we obtam

] b by
K<Cn°‘2"‘“‘)’2 21'4 f[ _[¢xo,1+1(w)dx]]df(W)| f(,[‘i’xm,o(W)dx

1=1 a \22 a

b by
x |dfow) |} + !{ [®20109) dx}ldf(w)l

—(k+1) |
<Cn ¥ "B.V.(I,)
This completes the proof of the Lemma.

For 1< p <o, let [Z¥*2(1)) = {f € L,[0,00): f***V e 4C.(I))and fP**PD e L, (1))},
For fel p[a, 0], 1< p <o, the Hardy-Littlewood majorant [8, p.244] of f is defined
as: .-

: 3
hf(x)=sup§$x §+x'[f(t)dt’ (aSéSb).

In order to prove our main result, we first discuss the approximation in the smooth
subspace L(lf’”z)(ll) of L, [0,%).

Proposition. Let /< p <o and f € L(2k+2) (11), then for all n sufficiently large

Q1) My (k)= Al gy G {“f(z"”) i IIfIIL,,[om)}
where Cy =C;(k, p).

If feL[0,0), f has 2k+1 derivatives in I; with f(Z") € AC.(1; ) and f(2k+l)
BYV.(1,), then for all n sufficiently large
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H f(2k+l)

@2 M ()= Ty < G {”f e L) +|f "quo,w)} ’
where.-,Cz = C2 (k) .

Proof. Let p > I. With the given assumptions on f*, for xel, and u € I we can write

2k+1
_ N (w=x) x) %)
) = Z RASANTY) J("

Hence, if ¢ (u) is the characteristic function of I;, we have

2k+1
)= Z(“ LIPTOTRN

BV (L))

- w)2k+] f(2k+2)(w)dw .

?(u —w)2* ) 'f(2k+2) (w)dw

@k+1)
- + F(u,x)(1-¢(u)),
) . 2k+1 (u x) Uy
where F(u,x)= f(u)- Z —— fY(x) ,forall ue[0,0) and xe]2
j=0

In view of M,(@Q;k,x)=1, we obtain

. 2k+1 ))
Mﬂ(f,k,x)—f(x)= Z L__(_-_x_z
J=1

M, ((u - x){, k, x)+ M, {c])(u)l].(u — )+

]
2k + 1)

% f(2k+2) (w)dw, k’x + Mn (F(u,x)(l - ¢(u)): k’ x)

=~El +22 +23, say. .
It follows from Lemma 2.2 and [3,p.5] that

"ZIHL,,(Iz) < Cn D [“f "Lp(h) +“f (22 !L,,(!z)J '

To estimate Z,, let &  be the Hardy-Littlewood majorant of f (2k+2) 4 I,. Making use
of Hé lder’s inequality and Lemma 2.2, we have

M ,,(Mu)'i[(u —w)2kH @D (3, x)

X

Ji =

IA

M{«b(u)lu - l]]f‘z"“) (w)]dw,xJ

M, (b -Gl x)

< o, = g00,5)) (0, (1 0 ¢<u>,x))”p

IA
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b \1l/p
< Cn~&*D [ AN du] .

a

Now, Fubini’s theorem, Lemma 2.3 and [8,p.244] imply that

b (b, ‘ 1/p
"J‘"Lp o) <Cn kD .[{ J’W,, (x,u)deIh f(u)lpdu

a
<Cn ) o]

-(k+1)‘

Ly(1y)

< C n f(2k+2)

|L,,u.) '
Consequently,

< C n—(k+l) f(2k+2)

" EZHLP(IZ) L) .

~ For u €[0,0)\[a;,b,] and x€ I, we can find a §>0 in such a way that |u—x|25.
Thus ' ‘

M, (F(u,x)(1-d(u)), x)| < 5D | M (/)| (u - x) 22, x
IM,, (P, )1~ $(), ) 760 - 0)%+2,%)

e oo

M, (|u ot j+2’x)
o

=J,+J3 ,say
It follows from H & lder’s inequality and Lemma 2.2 that
| | sen® D, (@) 1)
Again, applying Fubini’s theorem, we get
—(k+1
|7l ) S cn )“f"Lp[O,oo) '

'Moreovcr using Lemma 2.2 and (3,p.5]
Mol yy S CP 4 g+

).

lp (12)
Hence

| =(k+1) (2k+2) '
25k, 5 €7 P Wy o+ 2], 0
Combining the estimates of £, —Z3, (2.1) follows.

Now, let p=1.By the hypothesis, for almost all x € /5 and for u € I} , we can write
2k+1

_ (u-x) x) 0
() 20 —7 ()+(2k 1),1(

Hence, if ¢(u) is the characteristic function of /; then

2k+1 df(2k+l)(w) .
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ey =y G ") £O 00— o= @ D) )
=0 (2k 1)’
+ F(u,x)(1- ¢() ),
2k+1
where F(u,x)= f(u)- Z u=x) x) F®(x), for almost all xe]2 and for all u €[0,).
i=0

Operating on (2.3) by M, (., k, x) and breaking the right hand side into three parts J;,J,
and J3 , say, corresponding to the three terms on the right hand side of (2.3), we have
—(k+1) (2k+1)
Wiy s €77 Al + I ).

L(lp)
using Lemma 2.2 and [3,p.5] .
Next, using Lemma 2.5, we obtain

< Cn —(k+1)

' "J 2"L, ) = S/ mﬂ)

Br(y)
For all u €0, oo)\[al,bl] x €I, ,wecanchoose a §>0 such that |u x| 20. Then

I, (F Qa2 =G| ) S f J 7, (x u) |7 04)| (2 - g(a))ducx

241 bz°° ] i .
£ = ] jW () 7O ju—x (1= )
i=0 * :
=J, +J’5,say: ]
For sufficiently large u, we can find positive constants M and C’such that -
(u_x)2k+2> , - .
~—>C' foral u>M,xel, .
22 ~ 2
By Fubini’s theorem, ' ’

M b o b
[f [+1 ] ]W(x.u) o b

0 a M ay
=Je+Jq,s2y.
Now, using Lemma 2.3 we have

M b
Jg= 6D [ TW,,(x,u) |f )| (u—x)**** dv du

0 ay

. M »
< Cn'("“)( | f(u)ldu] , and
0

wbz
(u

7= — J'J'W (x )—-———zk+2 | /()| dx du
Ma2
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0
< Cn D j| OP
M
Combining the estimates of Jg4 and J; , we get

. J4 S‘C"—(kﬂ)"f "Ll[O,ao) :
Further, using Lemma 2.2 and [3,p.5] we obtain

. f’s < Cn~tk+D (" fl!L,(Iz) +“ f(2k+1)-

Ll(fz)) '

Hence,

L.uz))'

84,0700 - 06,2, < ’Cn“’?*”{ 0 2
Consequently, S

sl = C"—(kﬂ)( 0 +fr Lluz))'
TFinally, combining the-estimates of J; — J3, v&e obtain (2.2) .
This completes the proof of the Proposition .
Proof of Theorem. Let f; 5., be the Steklov mean of (2k+2)th order corresponding

to f(u) where n>0 is sufficiently small and f(x) is deﬁned as zero outside [0 ) .
Then we have ’

[Ma(fs k)= 11, p(2) = "M (- fn2k+2’k )|

+“Mn (fq’2:k+2’ k,.)— f,;,2k+2"LP(12)

+ ”f;;,2k+2 -/ "

Ly()

L, (1)
» . =Z;+Z,+Z;,88y.
Letting. ¢(u) to be the characteristic function of /3 , we get
M, ((f = Jp2k42)(@)s %) = M, (Q)(S = S, 20042 )10), X)
+M, (A= g)S = fr,2042)()s %)

=24 +2s,say.
Clearly, the following inequality holds for p = I, for p > 1 it follows from Ho lder’s
inequality

by by by _
[1ZaPa < [ [W,(00) | (f = frzpe2) @) duds .
a a; @

Using Fubini’s theorem and Lemma 2.3, we get -

" z:4"1, o) = "f fli»2"+2“1, p(1)
Proceeding in a similar manner, forall p21
||.Z5I|Lp(12) < C-”_(M) "f = Jn2ke2 "L,,[o.w)' )

-Consequently, by the property (c) of Steklov means, we get
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Iy <C (@2 (fsmop D) + ”_(kﬂ)"f "L,,[O.oo)) '
Since

(2k+1)
S pi2k+2

(2k+1) =
"f 2k+2llpy (1) H

By our Proposition, for'all p > I there follows
T, <C (kD) (" f(2k+2)

L)

n,2k+2

L (13)+“f,;;2k+2" L,,'{O.w))

< CrE ™ Doy, (A 1D, .0

in view of the property (b) of Steklov means.
Finally, by the property (c) of Steklov means

2:3 < Cw2k+2 (f’ 7, Ps 11) -
Chooéing n= nV?2 , the result follows .
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