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Abstract

.Variance upper bounds for discrete a-unimodal distributions defined on finite
support are established. These bounds depend on the support and the unimodality
index a. It is noted fhat the upper bounds increase as the unimodality index o
increases. More information about the underlying distributions yields tighter upper
bounds for the variance. A parameter-free Bernstein-type upper bound is derived for
the probability that the sum § of n independent and identically distributed discrete o-
unimodal random variables exceeds its mean (.5 by the positive value »/. The bound
for P{S - nu > nt} depends on the range of the summands, the sample size 7, the
unimodality index o and the positive number 7.

1 Introduction

‘ Unimodalilty concept of distributions are well known for continuous case. Olshen
and Savage (1970) generalized this concept to o.-unimodality. They defined continuous
random variable (r.v.) X as o-unimodal (about the origin), o > 0, if and only if (iff),

1o

d .
there exists some r.v. Y such that X=U"".Y, where U is a uniform r.v. on (0,1)

independent of Y.

a-unimodal distributions have been further studied by many authors, see, Aboummoh
and Mashhour (1983), Alamatsaz (1985), Dharmadhikari and Jogdco (1986) and
references therem

Upper bounds on variance represent an important target, since they have
applications in many areas of statistics such as variance estimation and stochastic
process, see Dharamadhikari and Joag-Dev (1989) and references therein. They proved
that if X is a continuous r.v. having a.-unimodal distribution about, M, 0 < X < 1, and
p = E(X), then

(@+2)Var(X) < p(a+1+2M) - (o +2)pu> =M. (L.1)

’ Key words: Discrete Unimodality; Variance; Upper and Lower Bounds; Probability Incquality.
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Among other results they show that the upper bound for the variance of an a-unimodal
distribution on [0,1] is (a+1)%/4(0+2)* which yield Jacobson’s bound of 1/9 when o =
1, see Jocobson (1969).

For continuous independent and identically distributed (i.i.d.) unimodal r.v.’s

X1,X5,....,X, with bounded support, Young et al. (1988) have derived a parameter-free
Berstein upper bound for P{S - nu 2nt}, where S =21 X;.

Abouammoh et al. (1994) have defined the discrete ai-unimodality concept for o >
0as '

Definition (1.1): A discrete r.v. X is called a-unimodal about a,a € [, I is the set of
integer, ifits probability mass function (p.m.f) (p, )%, satisfies

(oa-n+a)p,2(l-n+ap,_,; n<a
(o+n-ap, 2 +n-a)p,; n=a
It is noted that if (p,)”, is a-unimodal about a, B --o then (p,,)=, is B-unimodal

about a. Consequently all o.-unimodal distributions with o < 1, are described by the
unimodal distributions. For o > 1, they introduced the characterization.

Theorem 1.1: The p.m.f (p,)Z,. with characteristic function (ch. fn.) p(?) is o-
unimodal about n = a, iff

9() = Lo +a(l=e")) p(t) +i(1- ") p'(D) /o (1.2)
and»
r(0) = [{o+ae™™ =Dy p(r) +i(e™ =) p'()]/ o (1.3)
" are ch. fns. |
Also, Abouammoh and Mashhour (1994), have probed that if the r.v. X has

discrete a-unimodal distribution about a, defined on support {0,1,2,....N}, with mean
w, then

(a+2)Var(X)<—(a+ Z)u2 +[(a+ DN +2alu— Na+aofmin{p, (N -w)}].  (1.4)
This is a discrete version of (1.1).

For any discrete r.v. defined on the support {0,1,2,....N} with mean p, Muilwijk
(1966) showed that Var(X) < (N - p)u. The right side becomes maximum for variations
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of u, when p = N/2. Hence, if the end points of the support of any discrete r.v. are
known, an upper bound for its variance may be found as

Var(X)< N/ | (1.5)

[t may be noted that the equality holds, when X assumes the values 0 or N each with
2

probability 1/2. Thus, the value v represents the least upper bound for the variance

of any discrete r.v. on the support {0,1,2,....N}.

The purpose of the present article is twofold. First, in section 2, we apply the result
(1.4) due to Abouammoh and Mashhour (1994), to establish upper bounds for the -
variance of discrete o.-unimodal r.v.’s; sharper than that given by (1.5). These upper
bounds are discrete versions for their continuous counterpart due to Dharmadhikari
and Joag-Dev (1989). The new results, with a = |, yield some interesting upper
bounds for the variance of discrete unimodal r.vs. on finite supports. The later case,
with a.= 1, corresponds to results due to Young et al. (1988) in the continuous case.
Next, in Section 3, our results of Section 2, are applied to get upper bound for /’{S -
nu 2 nt} when the X;’s are discrete i.i.d. o-unimodal r.vs.

2. VARIANCE UPPER BOUNDS

Let X be a discrete r.v. on the support {0,1,2,...,N}. The case when N = 1, implies
that X is strongly unimodal r.v. . Furthermore, it assumes only the values 0 or 1 with
probabilities ¢ and p respectively, p + ¢ = 1. One may easily deduce that Var(X) = pq
< 1/4, where the equality holds when p = ¢ = 1/2. Therefore, our results henceforth
will be devoted mainly for N > 2. Assume that X has an o-unimodal, o > 1,
distribution about the modal value a. By virtue of Theorem 1.1, let X; and X, be the
discrete r.v.’s whose ch. fns. are ¢(¢) and (/) respectively. One can easily show that X
and X> are defined on the supports S = {0,1,2,....N + 1} and & = {-1,0,...,V}
respectively. Put p; = L(.X)) and o = £2(X3). Then the ch. fns. ¢(f) and (¢) given by
(1.2) and (1.3) yield '

Hp=Hy =[(c+Du-al/a’ 2.1

In view of the fact that S; is non-negative and the support {-N-1,-N, -N + 1,...,0} of
X>-N is non-positive, one may deduce that p; > 0 and p <M.

Hence the expectation p = [5(X) must satisfy
allo+ 1) <p < (a+ No(o+1). (2.2)
On the o.ther hand (1.4) implies
(o + 2) Var(X) < (o + 2)u° + [(o + 1N + 2a]p -Na + oN/2, (2.3)

since min{p, (N - p)} < N/2.
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The right side of (2.3) attains its maximum when
p=[(o+ DN+ 2a}/2(a + 2). 2.4

Tt is noted that the value of it given by (2.4) satisfies the restriction (2.2), iff o + 20 >
|2a/N - 1] . Thus, obviously the later condition is satisfied for all o0 > 1.

By the above discussion, the best upper bound given by the right hand side of (2.3)
is obtained substituting the value of 1 from (2.4) into (2.3) to get

Theorem 2.1: If X is discrete a-unimodal r.v. about a on the support {0,1,2,...,N},
then :

N2@+D2-4a(N-a) oN

Var(X) < + .
) o 2)? 20+2)

(2.5)

Theorem 2.2: Let X be a discrete a-unimodal r.v. about a on the support

{0,1,2,...N}.

a) Ifa=0o0ra=N, then

N2(a+1)?  oN

Var(X) < + : 2.6)
4a+2)r  20+2) 2.6
b) IfNiseven and a = N2, then
Var(xy< W+ @.7)
4(o+2)
c) IfNisoddand a=(Nx1)/2, then
aN(N +2
Var(X) < (V+2) : (2.8)

+ ‘
4@+2)  4@+2)?

Proof: Part (a) is immediate from Theorem 2.1, when it is recalled that bound (2.5)
becomes maximum when « = 0 or N. Part (b) and part (c) follow by setting a = N/2
and a = N(x1)/2 respectively in (2.5).

Also setting 1 = N/2 in (2.3) yield the same upper bound (2.7), whatever the
corresponding model value a.

Theorem 2.3: Let X be a discrete a-unimodal r.v. about some mode on the support
{0,1,2,....N}. If p.= [5(X) = N/2, then ' -
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_aN(N+2)

Var(X) 7 = (2.9)

For oo =1, the p.m.f. (p,) is unimodal on the support {0,1,2,.... N}, and one get

Corollary 2.4: Let the p.m.f. (p,) hasmode a and variance o’ then

a) o> <N?/9+N/6, (2.10)

ifa=0ora=N.

b) 023(1/9)[N2—a(N—a)]+N/6, (2.11)
foranya, 1< a <N-1.

c). > < N?/12+N/6=Var(U), (2.12)

if N is even and a = N/2, where U-is the discrete r.v. uniformly distributed on
the same support. '

d) o> <(N+1D*/12, - (2.13)
if Nisodd and a= (N +1)/2:

Note that (2.10) represent the discrete version of Jacobson Theorem (1969).

Remark 1: For o = 1, it is noted that the upper bounds (2.10), (2.11), (2.12) and
(2.13) are at least as sharp as the bound N*/4 given by ( 15). Thus, the unimodality
property of X yield lower upper bounds for its variance. As o get larger than one, the
situation is quite different. Regarding that (2.6) is increasing in a, it is not expected
that the bound (2.6) will be less than N%/4 for all values of o. Investigation of the
bound (2.7) shows that it is less than N°/4 when o < N but this is not true for bounds
in (2.6) and (2.8). consequently, as N get larger our results assign for more o-unimodal
r.v.’s on the support {0,1,2,...,N) sharp upper bounds for their variances. Practically,
free-parameter upper bounds are established based on the known information about .X.
For instance, if the only known information about X is that, it is c.-unimodal about a
specified mode and o0 < N, our results yield sharper upper bounds than N*/4, as given
by (2.6), (2.7) and (2.8). Otherwise, when oo > N, the only available upper bounds is
N?/4 which describe the case of any discrete r.v. on the same support.

3. PROBABILITY INEQUALITY

Let X, X;,..., X, be i.i.d discrete a~unimodal r.v.’s where X; has the support
{0,1,2,..N} with (X)) = p and Var(X) = o> Let $ = X; + X + ... + X, and

X =8/ n. We derive a parameter-free upper bound for the probability
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P{)?—uz y=P{S-E(S)znt}, - 3.1
.wheret> 0.

One method employed to derive a new inequality is attributed to S. N. Bernstein (see
Young et al. (1989) and references therein). According to that method .

P{S -nu>nt} < E[exp{c(S —nu—nt)}],
for any positive constant c. Since the X;’s dre independent
Elexp{c(S —mu—nf)}] = exp(-cnt)mi Elexp{e(X; - w}],
where ¢ > 0. The new upper bound is derived by bounding |
Elexp{c(X; ~m}], B2
from above and then minimizing the resulting bound with respect to ¢. The following
lemma and theorem 3.2 can be proved as lemma 4.1 and theorem 4.1 in Young et

al.(1988), using our theorem 2.1 and theorem 2.3.

Lemma 3.1: Let .Y be a discrete oi-unimodal r.v. about a, with mean i and variance
02, on the support {0,1,...,N}. Let Z = X - 1, then

Llexp{c(Z)}] < exp[6{exp(cN) —cN - 1}],

where ¢ is an arbitrary positive constant and 8 = &o,a,N) represent an upper bound
for (c/ N)2. :

Now, we establish the main results for the case of i.i.d. discrete a-unimodal r.v.’s with
finite support. ' :

Theorem 3.2: Let X, X5,....X, be iid. discfete o-unimodal r.v.’s on the support
{0,1,2,...N}. Let £(Xj) = pand S = X, + Xo+ ... + X,. Then

! 1
P{S-np=>nt} Sexp{%—(%+n(3)ln(l+l/N9)} (3.3)
where

@+ D2 - (N -a)
N2

o
6=6(c,a,N) = , + . (34
) ey vy * Y
when X; is a.-unimodal about the specified mode a, and
N+2
o=p Ny=-2FD_ o N+ (3.5)

4o +2)2 26+2)N T 4(@+2)N
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when X; is a-unimodal about some mode such that p = N/2.

~ Corollary (3.3): Let X be a discrete a-unimodal r.v. on the support {0,1,2,..,N}, then
for any ¢> 0 '

P{X-p=1}<exp{t/N-(t/N+0)n(l+t/NO)} (3.6)
where 0 is given by (3.4) or (3.5). of Theorem 3.2.

~ Note that the upper bound in (3.6) does not depend on any parameter of .Y other
than the range N, the unimodality index a and the mode value a. This feature makes
(3.6) very applicable in real-data situation.

Remark (2): If X is a discrete r.v. on the support {0.,1,...,N} then it can be noted that
1
(3.3) holds withn=1and 8 = T That is

P{X—p=1}<exp{t/N-(t/N+ g)ln(]+4/ /N)}. (3.7)

Finally, inequality (2.2) seems to be interesting in the following sense

i) It provides lower and upper bounds for the mean of any discrete a-unimodal
r.v., o > 1, about a modal value a on the support {0,1,...,N}. Also, it represents
a discrete version for its most recent continuous counterpart due to
Dharmadhikari and Joag-Dev (1989).

ii) Asa consequence of (2.2), one can note that

a+ No

(X - >} implies {X-p>1}.

o+ /

a(N-a)

Hence an upper bound for P{X -a >+ } may be obtained by (3.6).
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