DAMEK-RICCI SPACES SATISFYING THE OSSERMAN-P CONDITION

ISABEL G. DOTTI AND MARIA J. DRUETTA

ABSTRACT. We show that the only Damek-Ricci space S satisfying the Ossermanp condition, for some 1 , is the real hyperbolic space.

FaMAF- Universidad Nacional de Córdoba

Let M^n be a riemannian manifold, R its curvature tensor and R_X the Jacobi operator, defined by $R_X Y = R(Y, X)X$, X a unit tangent vector. We say that M satisfies the Osserman-p condition, (Oss-p, for short), p a natural number, if for any set of p orthonormal vectors $E = \{X_1, X_2, ..., X_p\}$ in the tangent bundle, the symmetric operator

$$J_E = R_{X_1} + R_{X_2} + \dots + R_{X_p}$$

has constant eigenvalues, counting multiplicities. Note that this definition does not depend on the orthonormal basis chosen on the space spanned by E.

This notion, introduced in [SV] or [SP], generalizes the Osserman condition (p = 1). It is immediate to see that if p = n then M^n has constant scalar curvature. Moreover, if p satisfies $1 \leq p < n$ then the riemannian manifold is Einstein and there exist a duality between p and n - p, that is, M^n satisfies the Osserman-p condition if and only if it satisfies the Osserman-(n - p) condition (See [G]).

We note that spaces of constant sectional curvature satisfy the Oss-p condition for all $p \ge 1$. The curvature formula for spaces of constant curvature c,

$$R(X,Y)Z = c\left(\langle Y, Z \rangle X - \langle Z, X \rangle Y\right),$$

gives $R_X Y = cY$ for orthogonal tangent vectors X and Y. Hence, if $E = \{X_1, ..., X_p\}$ is an orthonormal set, we have that

$$J_E \mid_E = c(p-1) \text{ Id}, \ J_E \mid_{E^{\perp}} = cp \text{ Id},$$

P. Gilkey raised the question whether a nonpositively curved homogeneous manifold M^n satisfying the Oss-p condition, for some 1 must have constantcurvature. We note that in [DD1] we have proved that a homogeneous space of nonpositive curvature satisfying the Osserman condition is a rank one-symmetric spaceof noncompact type. Moreover, in [DD2] we study the class of riemannian manifoldscoming from solvable Lie groups <math>S of Iwasawa type and two-step nilpotent radical, with a left invariant metric satisfying the Oss-p condition (without the assumption of nonpositive curvature). In [DD2] we prove that under these conditions, S must be a Damek-Ricci space.

Partially supported by grants from CONICOR, SECYTUNC (Argentina).

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C30.

Key words and phrases. Iwasawa type, Osserman-p condition.

The purpose of the present paper is to give an affirmative answer to P. Gilkey's question above, in a subclass of the class of homogeneous manifolds of nonpositive curvature. More precisely we shall prove:

Theorem. If M is a Damek-Ricci space of dimension n satisfying the Osserman-p condition for some 1 , then <math>M is the real hyperbolic n-space.

Using the main result in [DD2] together with the above theorem we obtain:

Corollary. If S is solvable Lie group of Iwasawa type and dimension n, with [S, S] two step nilpotent, satisfying the Osserman-p condition for some 1 , then S is a space of constant negative sectional curvature.

While the paper was submitted the authors learnt that P. Gilkey proved, using methods from vector bundle theory, that a riemannian manifold satisfying the Ossp condition has constant sectional curvature. The proof presented here, although restricted to our class of spaces, is more elementary.

1. CURVATURE FORMULAS ON DAMEK-RICCI SPACES

We start by recalling the definition of Damek-Ricci spaces (*D-R* spaces). Let n be a two-step real nilpotent Lie algebra endowed with an inner product \langle , \rangle . Assume n has an orthogonal decomposition $n = \mathfrak{z} \oplus \mathfrak{v}$, where \mathfrak{z} is the center of n and $[\mathfrak{v}, \mathfrak{v}] \subset \mathfrak{z}$. Define a linear mapping $j : \mathfrak{z} \to \text{End } \mathfrak{v}$ by

(1)
$$\langle j_Z X, Y \rangle = \langle Z, [X, Y] \rangle$$

(note that j_Z is skew-symmetric). Now n is said to be an *H*-type algebra if for any $Z \in \mathfrak{z}$

(2)
$$j_Z^2 = -\langle Z, Z \rangle \mathrm{Id}.$$

The corresponding *H*-type group is the simply connected Lie group *N* with Lie algebra \mathfrak{n} endowed with the left invariant metric induced by the inner product \langle , \rangle in \mathfrak{n} . It is easily seen that if \mathfrak{n} is *H*-type and non abelian then $[\mathfrak{n}, \mathfrak{n}] = \mathfrak{z}$.

The class of solvable extensions of *H*-type groups which we will consider in this section are constructed as follows. Let \mathfrak{n} be an *H*-type algebra with corresponding simply connected Lie group *N*. If $A = \mathbb{R}^+$ acts on *N* by the dilations $(z, x) \to (tz, t^{\frac{1}{2}}x)$, we let *S* be the semidirect product *AN*. Let \mathfrak{s} be the Lie algebra of *S*. If *D* is the derivation of \mathfrak{n} given by $D|_{\mathfrak{v}} = \frac{1}{2} \operatorname{Id}$ and $D|_{\mathfrak{z}} = \operatorname{Id}$ and $\mathfrak{a} = \mathbb{R}H$, then \mathfrak{s} is the semi-direct product $\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{n}$ where \mathfrak{a} acts on \mathfrak{n} via $\operatorname{ad}_H|_{\mathfrak{n}} = D$. We endow \mathfrak{s} with the only inner product extending the given one in \mathfrak{n} such that |H| = 1, $\langle H, \mathfrak{n} \rangle = 0$. Finally, we give to *S* the left invariant metric associated to the inner product on \mathfrak{s} . The riemannian manifold obtained will be called a *Damek-Ricci space*.

The Levi Civita connection and the curvature tensor associated to the metric can be computed by,

$$2 \langle \nabla_X Y, Z \rangle = \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle$$

$$R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$$

for any X, Y, Z in \mathfrak{s} .

Let $n = \dim \mathfrak{s}$ and $1 \leq p < n$. We will say that the metric Lie algebra \mathfrak{s} satisfies the Oss-p condition, if the corresponding Lie group S satisfies it.

In the next proposition we express the curvature operators of the Lie group S and we summarize the basic curvature formulas that will be used throughout the article.

Damek-Ricci spaces satisfying the Osserman-p condition

These formulas can be deduced easily using the expression of the connection and curvature tensor appearing, for example in [DD2] or [BTV].

Proposition 1.1. If \mathfrak{s} is the Lie algebra of a D-R space S then the following formulas hold.

- (i) $R_H = -\operatorname{ad}_H^2$.
- (ii) If either $Z \in \mathfrak{z}$, |Z| = 1 or $X \in \mathfrak{v}$, |X| = 1 then

$$R_Z H = -H , \quad R_X H = -\frac{1}{4}H.$$

(iii) If $Z \in \mathfrak{z}$, |Z| = 1 and $Z^* \in \mathfrak{z}$, then

$$R_Z Z^* = \langle Z, Z^* \rangle Z - Z^*.$$

(iv) If $Z \in \mathfrak{z}$, |Z| = 1, and $X \in \mathfrak{v}$, then

$$R_Z X = -\frac{1}{4}X.$$

(iv) If $X \in \mathfrak{v}$, |X| = 1, and $Z \in \mathfrak{z}$, $Y \in \mathfrak{v}$, then

$$R_X Z = -\frac{1}{4} Z$$

$$R_X Y = -\frac{3}{4} j_{[X,Y]} X + \frac{1}{4} \langle X, Y \rangle X - \frac{1}{4} Y.$$

2. PROOF OF THE MAIN RESULT

Let S be a Damek-Ricci space and let N be its nilpotent radical; let \mathfrak{s} and \mathfrak{n} be the corresponding Lie algebras. Then \mathfrak{n} is an H-type Lie algebra. If \mathfrak{n} is not abelian, given $X \in \mathfrak{v}$ let $j_{\mathfrak{z}}X = \{j_{\mathfrak{z}}X : \mathbb{Z} \in \mathfrak{z}\}$. Clearly (1) gives $(j_{\mathfrak{z}}X)^{\perp} = \ker ad_X|_{\mathfrak{v}}$, thus we may consider, for every $X \in \mathfrak{v}$, the orthogonal decomposition

 ${}^{\flat} \mathfrak{v} = j_{\mathfrak{z}} X \oplus \ker ad_X|_{\mathfrak{v}}.$

Furthermore (2) gives

$$[X, j_Z X] = \operatorname{ad}_X(j_Z X) = |X|^2 Z,$$

showing in particular that the dimensions of \mathfrak{z} and $j_{\mathfrak{z}}X$ coincide if $X \neq 0$ in \mathfrak{v} .

We set $k = \dim \mathfrak{z}$. If $\mathfrak{v} \neq 0$ let $d = \dim \mathfrak{v} - k$ (= dim(ker $ad_X|_{\mathfrak{v}}), X \neq 0$), $2k + d = \dim \mathfrak{n}$.

Assume S satisfies the Osserman-p condition, 1 . As we recalled in the introduction we may (and will) assume <math>1 since conditions Oss-p and Oss-<math>(n-p) are equivalent.

The following lemma was proved in [DD2, Lemma 4.1]. We include its proof here for the sake of completeness.

Lemma 2.1. If S is a Damek-Ricci space of dimension n satisfying the Oss-p condition, with 1 , then S has constant sectional curvature <math>-1.

Proof. Let $E = \{H, Z_1, ..., Z_{p-1}\}$ be an orthonormal set of *p*-vectors with $Z_i \in \mathfrak{z}$. We compute the eigenvalues of $j_E = -ad_H^2 + \sum_{i=1}^{p-1} R_{Z_i}$ obtaining

$$j_E H = -(p-1)H, \quad j_E Z_i = -(p-1)Z_i, \ i = 1, ..., p.$$

Hence $j_E|_{\mathfrak{z}+\mathbf{R}H} = -(p-1)$ Id and $j_E|_{\mathfrak{v}} = -\frac{1}{4}p$ Id, since $R_{Z_i}|_{\mathfrak{v}} = -\frac{1}{4}$ Id.

Assume there exists a non zero $X \in \mathfrak{v}$ and consider the orthonormal set $E' = \{X, Z_1, ..., Z_{p-1}\}$. Then $j_E H = -(p-\frac{3}{4})H$, which shows that the eigenvalue $-(p-\frac{3}{4})$ is not attained by j_E , giving a contradiction.

Lemma 2.2. Let S be a Damek-Ricci space of dimension n satisfying the Oss-p condition. If $k + 1 , then <math>2k + 1 \leq p \leq d$.

Proof. Note that $v \neq 0$ (k+1 < p). Since $\frac{1}{2}n = \frac{1}{2}(2k+d+1) \le k+d$ we will set p = k+r with $1 < r \le d$.

Let X_1 be a non zero element of v and let E and E' be the following p-basis,

 $E = \{H, Z_1, ..., Z_k, X_1, ..., X_{r-1}\}, E' = \{Z_1, ..., Z_k, X_1, ..., X_r\},\$

where $Z_1, ..., Z_k$ is an orthonormal basis of \mathfrak{z} and $X_1, ..., X_r$ is an orthonormal set of vectors in kerad_{X1}|_v. Using the curvature formulas given in Proposition 1.1, applied to

$$J_E = -\operatorname{ad}_H^2 + \sum_{i=1}^k R_{Z_i} + \sum_{i=1}^{r-1} R_{X_i} \text{ and } J_E = \sum_{i=1}^r R_{Z_i} + \sum_{i=1}^{r-1} R_{X_i},$$

respectively, a straightforward computation shows that

$$J_E H = -\frac{1}{4}(4k+r-1)H, \ J_E Z_i = -\frac{1}{4}(4k+r-1)Z_i, \ J_E X_1 = -\frac{1}{4}(k+r-1)X_1$$

and if $Y \in v$, |Y| = 1 and $\langle Y, X_1 \rangle = 0$ then

$$\langle J_E Y, Y \rangle = -\frac{1}{4}(k+r) - \frac{3}{4} \sum_{i=1}^{r-1} |[X_i, Y]|^2 + \frac{1}{4} \sum_{i=1}^{r-1} \langle X_i, Y \rangle^2$$

Since $J_{E'}H = -\frac{1}{4}(4k+r)H$ it follows from the Oss-*p* condition that $-\frac{1}{4}(4k+r)$ is also an eigenvalue of J_E . Then there exists an eigenvector *Y* in \mathfrak{v} of J_E satisfying $\langle Y, X_1 \rangle = 0$ with eigenvalue $\langle J_E Y, Y \rangle = -\frac{1}{4}(4k+r)$. Hence

$$-\frac{1}{4}(4k+r) = -\frac{1}{4}(k+r) - \frac{3}{4}\sum_{i=1}^{r-1} |[X_i, Y]|^2 + \frac{1}{4}\sum_{i=1}^{r-1} \langle X_i, Y \rangle^2$$

or equivalently,

$$3(k - \sum_{i=1}^{r-1} |[X_i, Y]|^2) = -\sum_{i=1}^{r-1} \langle X_i, Y \rangle^2$$

Hence

$$k \le \sum_{i=1}^{r-1} |[X_i, Y]|^2 \le r-1$$

since in a D-R space one has that $|[U,V]| \leq 1$ for any unit vectors U and V in v. Thus $k+1 \leq r = p-k$, or equivalently $2k+1 \leq p$. Since by hypothesis $2p \leq 2k+1+d$ it must hold $p \leq d$ as claimed.

Damek-Ricci spaces satisfying the Osserman-p condition

Proposition 2.3. Let S be a Damek-Ricci space of dimension n satisfying the Ossp condition with $2k+1 \le p \le d$. Then, for any $X \in v$, $X \ne 0$, the subspace kerad_X|_v is abelian.

Proof. Let $E = \{X_1, ..., X_p\}$ be an orthonormal set of p vectors in kerad $_{X_1}|_{v}$. If $E = \{H, X_1, ..., X_{p-1}\}$ then one easily computes

$$J_E H = -\frac{p}{4}H, \ J_E Z = -\frac{p}{4}Z, \ Z \in \mathfrak{z}, \ J_E X_1 = -\frac{p-1}{4}X_1$$

and

$$J_{E'}H = -\frac{p-1}{4}H, \ J_{E'}Z = -\frac{p+3}{4}Z, Z \in \mathfrak{z}, \ J_{E'}X_1 = -\frac{p-1}{4}X_1.$$

Note that the eigenvalue $-\frac{1}{4}(p-1)$ has multiplicity at least two in J_E . The Oss-p condition implies there exists a unit vector $Y \perp X_1$ in v, eigenvector of J_E , satisfying $\langle J_E Y, Y \rangle = -\frac{1}{4}(p-1)$. Since $J_E = \sum_{i=1}^p R_{X_i}$, we have

$$\frac{p-1}{4} = \langle J_E Y, Y \rangle = -\frac{p}{4} - \frac{3}{4} \sum_{i=1}^p |[X_i, Y]|^2 + \frac{1}{4} \sum_{i=1}^p \langle X_i, Y \rangle^2.$$

It then follows that

$$0 \le 1 - \sum_{i=1}^{p} \langle X_i, Y \rangle^2 = -3 \sum_{i=1}^{p} |[X_i, Y]|^2$$

and consequently

$$\sum_{i=1}^{p} \langle X_i, Y \rangle^2 = 1 \text{ and } \sum_{i=1}^{p} |[X_i, Y]|^2 = 0.$$

In particular, we obtain that $Y = \sum_{i=1}^{p} \langle Y, X_i \rangle X_i$ and $[Y, X_i] = 0$ for i = 1, ..., p. Thus we may take $\{X_1, ..., X_p\}$ an orthonormal basis of E satisfying $[X_1, X_i] = [X_2, X_i] = 0$ for all i = 1, ..., p. If we repeat the previous argument with E and E as above, computing

$$J_E H = -\frac{p}{4}H, \ J_E Z \stackrel{i}{=} -\frac{p}{4}Z, Z \in \mathfrak{z}, \ J_E X_i = -\frac{p-1}{4}X_i, \ i = 1, 2$$
$$J_{E'} H = -\frac{p-1}{4}H, \ J_{E'} Z = -\frac{p+3}{4}Z, Z \in \mathfrak{z}, \ J_{E'} X_i = -\frac{p-1}{4}X_i, \ i = 1, 2$$

we have that the eigenvalue $-\frac{1}{4}(p-1)$ is attained with multiplicity at least three for J_E . Hence there exists $Y \in \mathfrak{v}$, |Y| = 1, such that $\langle Y, X_i \rangle = 0$, i = 1, 2 satisfying $\langle J_E Y, Y \rangle = -\frac{1}{4}(p-1)$. Using the expression for $J_E Y$ as before, we have

$$-\frac{p-1}{4} = -\frac{p}{4} - \frac{3}{4} \sum_{i=1}^{p} |[X_i, Y]|^2 + \frac{1}{4} \sum_{i=1}^{p} \langle X_i, Y \rangle^2,$$

obtaining again that $Y = \sum_{i=1}^{p} \langle Y, X_i \rangle X_i$, $\langle Y, X_i \rangle = 0$, i = 1, 2, and $[Y, X_i] = 0$ for i = 1, ..., p. Consequently we get an orthonormal set of p vectors $\{X_1, X_2, ..., X_p\}$, basis of the space spanned by E, satisfying $[X_1, X_i] = [X_2, X_i] = [X_3, X_i] = 0$ for all i = 1, ..., p. By repeating this procedure we obtain $[X_i, X_j] = 0$ for all i, j = 1, ..., p. Since $X_1 = X$ and the orthonormal p-vectors $\{X_1, X_2, ..., X_p\}$ in ker ad_X |_v was arbitrarily chosen, it follows that [ker ad_X |_v, kerad_X |_v] = 0.

Isabel G. Dotti and María J. Druetta

Theorem 2.4. If S is a Damek-Ricci space of dimension n satisfying the Oss-p condition, 1 , then S is the real hyperbolic space of constant curvature <math>-1.

Proof. Let k denote the dimension of \mathfrak{z} , the center of the nilradical. If 1 it follows from Lemma 2.1 that S has constant sectional curvature <math>-1. Now, we assume that $k+1 , hence <math>\mathfrak{v} \ne 0$. Setting n = 2k + d + 1 with $d = \dim \mathfrak{v} - k$ we will show that the Oss-p assumption gives \mathfrak{v} abelian, hence a contradiction, since $\mathfrak{z} = [\mathfrak{v}, \mathfrak{v}]$.

If $k + 1 , it follows from Lemma 2.2 and Proposition 2.3 that <math>\operatorname{kerad}_X|_{\mathfrak{v}}$ is abelian for any non zero $X \in \mathfrak{v}$. Let X, Y be orthonormal vectors in \mathfrak{v} . Since $\operatorname{kerad}_X \cap \operatorname{kerad}_Y \neq 0$ has dimension greater than d - k and $d - k \geq 1$ (by Lemma 2.2) we can choose $U \neq 0$ in \mathfrak{v} so that [U, X] = 0 = [U, Y]. Hence X, $Y \in \operatorname{kerad}_U$, and since it is abelian, it follows that [X, Y] = 0 and \mathfrak{v} abelian.

Now as consequence of Theorem 5.2 of [DD2], we get

Corollary 2.5. If S is solvable Lie group of Iwasawa type and dimension n, with [S,S] two step nilpotent, satisfying the Osserman-p condition for some 1 , then S is a space of constant negative sectional curvature.

3. References

[BTV] Berndt J., Tricerri F., Vanhecke L., Generalized Heisenberg Groups and Damek-Ricci harmonic spaces. Lecture Notes in Mathematics 1598, Springer, 1995.

[DD1] Dotti I., Druetta M.J., Negatively curved homogeneous Osserman spaces. To appear in Differential Geometry and Applications.

[DD2] Dotti I., Druetta M.J., Osserman *p*-spaces of Iwasawa type. Proceedings of the 7th. International Conference on Differential Geometry and Applications, Brno, Masaryk University (1998), 61-72.

[G] Gilkey P., Generalized Osserman manifolds, Abh. Math. Sem. Univ. Hamburg, 68 (1998) 125-127.

[SV] Stanilov G., Videv V., Four dimensional pointwise Osserman manifolds, Abh. Math. Sem. Univ. Hamburg, 68 (1998) 1-6.

[SP]-Stanilov G., Petrova I., A generalized Jacobi operator in the 4-dimensional Riemannian Geometry, Annuarie de l'Université de Sofia St. Kliment Ohridski, Faculté de Mathematiques et Informatique, Livre 1-Mathematiques, 85 (1995).

FaMAF, Universidad Nacional de Córdoba Ciudad Universitaria, 5000 Córdoba, Argentina. E-mail: idotti@mate.uncor.edu druetta@mate.uncor.edu

Recibido	:	23	de	Agosto	de	1999
Versión Modificada	:	20	de	Octubre	de	1999
Aceptado	:	20	de	Diciembre	de	1999