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Free (n + 1)—valued C—algebras

Aldo V. Figallo

Abstract

A method to determine the number of elements of the (n + 1)—valued
C—algebra with a finite set of free generators is described. Applying this
method for n = 1 and n = 2, we find again the results obtained by L. Iturrioz
and A. Monteiro ([7]) and by L. Iturrioz and O. Rueda ([8]) respectively.

1 Preliminaries

C—algebras (9] represent the algebraic countpart of the implicational fragment of
the infinite-valued Lukasiewicz logic and they have been studied by several authors
under different names.

Recall that a C'—algebra is an algebra (A, —,1) of type (2,0) fulfilling the fol-
lowing identities:

(Cl) 1 5 a =z,

(C2) z— (y— =) =1,

(C3) z—-y) = (y—2) - (z—2) =1,
(C4) (z—y)—y=(@y—-z)—>r,

(C5) (z—y)—=(y—2) > (y—x)=1

It is well known that the variety of the algebras (A, —,1) of type (2,0) verifying
(C1),..., (C4) are the dual of commutative BC’K—algebm.s (15, 18] in the sense that
Y*T and 0 are replaced by > y and 1 respectively.

It is simple to see that the relation < defined by 2 <y iff z — y = 1 is a partial
order on A and = < 1 for all :r € A. Furthermore, (A4, <) is a join semilattice where

xVy=(r—y) — yis the supremum of the elements = and y.
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A CP-algebra is an algebra (A, —, 0, 1) of type (2,0,0) such that (A, —,1) is a
C—algebra and 0 is the first element for <.

We denote by C and C° the varieties of C—algebras and C%-algebras respec-
tively. In [13], it is shown that C° coincides with the variety W of Wasjberg algebras.
On the other hand, as is well known, the variety of Wasjberg algebras is equivalents
to Chang’s MV —algebras [2].

If K is one of the varieties C or C°, we are going to denote by Cong(A),
Homy (A, B) and Epik (A, B) the sets of K—congruences, K-homomorphisms from
A into B and K-epimorphisms from A onto B, respectively. Besides, if S C A is
a K-subalgebra of A we write S <x A. We denote by [G]k the K-subalgebra of A
generated by G. The subindex K will be omitted when there is no doubt about it.

Let A€ K. D C A is a deductive system of Aif 1 € D and if 2,2 — y € D,
then y € D. If D(A) is the set of all deductive system of A, then Conk(A) =
{R(D) : D € D(A)} where R(D) = {(z,y) € A2: z - y,y — x € D} ([3, 9, 13]).
If R = R(D), we denote by A/D the quotient algebra.

Let h € Homy (A, B). The set Ker(h) = {z € A: h(z:) = 1} is called the kernel
of h. It is easy to see that if h € Homy (A, B), then Ker(h) € D(A).

Let n be an integer, n > 1. A Cp41—algebra (or CSQ—algebra) is a C—algebra
(or C9 —algebra) which satisfies the identity:

(C6) (=" my)Va =1,

wherez! S y=z o yandz™! sy=z— (2" > y), forn=1,2,....

We denote by Cp41 and C2,, the varieties of Cni1-algebras and C2,—algebras
respectively.

Next, we summarize some properties of C;,,1—algebras and for their proofs we
refer the readers to the list of references.

(T1) Let Chyr = {0, %, %, el “—n—‘l, 1} be the set of therational fractions. If we define
z —y=min {1,1 =z +y} forall z,y € Cpy1, then (Cny1,—,1) € Cpia.

(T2) If $ 9 Cpyr and |S| > 1, then S ~co | Ciyy where t < n ([3]).
(T3) Let [a,b] = {z € A:a <z < b}, then 24, 1] QCpyy forall 2, 0 <t <

n. Besides, taking into account that over a finite chain the operation — is
- determined by the order, we can state that [2=£, 1] ~ Cyyq ([3, 13, 16]).
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(T4) If S < Cpy1 such that 1‘;—1 € S, then there is = € Cpyq such that S = [%,1]

(3)). i

(T5) If A € C,41 is non-trivial, then A is isomorphic to a subalgebra of P =

A/M where M(A) is the set of maximal deductive systems of A.
MeM(A)

Furthermore, if A € C?, is finite, then A ~ P ({3, 13]).

(T6) If A€ Cy41 and S <A, then for any D € M(S) there is a unique M € M(A)
such that D = M NS ([3]).

(T7) If A € Cpy1, then the following conditions are equivalent ([3]):

(i) M e M(A),
(ii) there is h € Hom(A, Ch41) such that Ker(h) = M,
(iii) A/M =~ Cj;1 for some j,1 < j <n.

2 Free C,1—Algebras

Throughout this section L(c) € Cp41 denotes the C,,.1-algebra with a set G of {ree
generators, |G| = ¢, where c is a cardinal number. If we wish to emphasize that
L(c) € Cphy1, we write L(n, c). Estas algebras libres fueron descriptas por A. Rose
en [14]

Let X C A be an ordered set. We denote by ;.(X) the set of minimal clements
of X.

Lemma 2.1 Let A€ C and X C A. If [X]|c = A, then n(X) = u(A).

Proof. If |A| =1, the lemma holds. Assume now that |A| > 1. If z € yi(A), then
B = A\ {z} is a subalgebra of A. If z ¢ X, then X C B and [X]c # A which is a
contradiction. Hence p(A) C X and so pu(A) C p(X). Conversely, if t € (X)), then
S={r€A:x £t} is asubalgebraof Aand x £ for all x € X. Thus X C S and
so A = S. Therefore, t € j1(A) and p(X) C p(A). o

Corollary 2.1 If A € C and [X]c = A, then the following conditions are equiva-
lent:

(i) X = p(A),

(ii) X is an antichain.
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Lemma 2.2 If G is a set of free generators of L(c) such that |G| = ¢, then G =
1(&(c)).

Proof. If |G| =1, then G = u(G) and by Lemma 2.1 we have that G = p(L(1)).
Assume now that |G| > 1 and let g, ¢’ € G be such that g # ¢’. If g < ¢’ we consider
the application f : G — Cp4; defined by f(t) =11if t = g and f(#) = 0 otherwise.
Thercfore, there exists h € Hom(L(c), Cny1) which extends f. Then h(g) = 1 and
h(¢') = 0, which is a contradiction because h is isotone. If ¢’ < g the proof is similar.
Hence ¢ and ¢’ are incomparable and by Corollary 2.1 we get G = u(G) = p(A). O

From Lemma 2.2 we immediately have

Lemma 2.3 L(c) = U [g,1]
9€qG

The proof of Lemma 2.4 is a consequence of McNaugton’s representation the-
orem ?7?. An explicit proof of finiteness of finitely generated free {n 4+ 1)—valued

MV —algebra follows from resulis obtained by R. Grigolia in 1972 (sce [5]).

Lemma 2.4 L(n,m) is finite.

Method for the determination of |L(n,m)|

In what follows m is an integer, m > 1 and G = {91,92,... ,9m} is a set of free
generators of L(n, m). By Lemma 2.3 we can write

m

[L(n,m)| = (1) a. (1)
i=] :
where
k
a, = () gie, 1)1 (2)
1< << <m t=1
k
By the symmetry of the problem it is sufficient to compute | () [g:, 1]|.
) i=1

- k
Let Gr = {91,92,--- s 9k}, Gm—t = G\ Gy and g; = \/ ¢;. Hence, it is casy to
. 7=:1

k .
see that Br = () [g:, 1] = (9%, 1]. Then,
i=1
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(S, m)l = S(=1) (7)1l e

k=1

It is not difficult to show that By is a finite subalgebra of L(n,m) with first
element g;. Then by T5

H Bi/D. (4)

. DeM(B:)

Let M;(By) ={D € M(By): By/D ~Ci11},1<i<n, 1 <k<m, then

= [ Ma(Bi)l. G
By (4), (5) and T7 we have
|By| = ﬁ(i + 1), | (6)
From (3) and (6) _
[ (n,m)| = kil —1+1(7) H i+ 1), (7)

From T6 we have that for any D € M;(B;) there is a unique M € M(L(n, m))
such that D = M N Bj.. Then to compute G we must determine the number’ of
maximal deductive systems M of L(n,m) which satisfy

(Ml) Bk g M1
(M2) If D = M N By, then By/D ~ C;y.
Let M}, = {MeM(L(n,m)) : M verifies M1 and M2}. Then,

Lemma 2.5 For any h € Hom(L(n,m), Cay1) such that |h(L(n,m)| > 1 there is
h € Hom(L(n,m), Cpy1) which verifies:

(i) Ker(h) = Ker(h),
(i) B(L(n, m)) = [252,1] & h(L(n,m))
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Proof. Since h(L(n,m)) = § is a subalgebra of Cp;1, by T2 and T3 there
are isomorphisms h; : S — Ciyy, 1 <t < n, and h2 - Cry1 — [%4,1]. Then
h = hy o hy o h satisfies (i) and (ii). ; s

- By T6, T7 and Lemma 2.5 we have that for any M € M}, there is a unique
h € Hom(L(n, m), Ci;1) which satisfies ’

(H0) M = Ker(h),
(H1) B, € Ker(h),
(H2) h(By) = [*7,1)-
As h.(Bk) is a subalgebra of L(n,m)), from H2 and T4 it follows:
(H3) h(L(n,m)) = [254,1) 2 [24,1]. -

- Let H}, = {he Hom(L(n,m), Ciy1) : h verifies H1 and H2}, then

Bir = M- (8)
For each h € H}y, the restriction f = h|G, verifies

(F1) f(G) € [0,%7],

(F2) there exists g € Gy such that flg) = 2=,
(F3) [f(G)]c 2 [" 51
Indeed

(F1): By H2 we have f(g;) = == Smce 9 < g; for all g € Gy and h i is isotone, we
have h(g) < h(gg). Then f(g) < 2= for all g € Gy.

(F2): If f(g) < 2= for all g€ Gy, then we have h(g}) < 2= which contradicts H2.

(F3): From Bi <« L(n m) it results h(By) < h(L(n m)) Moreoirer h(L(n,m)) =
h([G)c) = [f(G)le: By H2 [%2,1] 9 [f(G)lc and by T4 we have [f(G)]c =
["—'l 1] 2 [2%, 1], where 2= = min f(G).

n ?

Let C,? +1 be the set of the functlons from G into Cp4; and

Fr={feCl,: : f satisfies Fl F2 and F3}.
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. Let f € FJ} and h € Hom(L(n,m),Ciy1) be the unique extension of f. Then
h € H}. Indeed:

(H1): h(g}) = h(91V g2V ...V gr) = f(g1) V f(92) V...V fg) = %* < i, hence
By € Ker(h). ,

(H2): Let z € h(By) and = € By be such that h(z) = z. From g} < x and h isotone,
we obtain h(gy) < h(zx). Hence 2% < z and therefore h(B) C [2%,1]. On
the other hand if 2’ € [23%,1], then by F3 we have 2’ € [%,1] = [f(G)lc =
h(L(n,m)) and so there is a € L(n,m) such that h(a) = z’. Hence g;Va. € By,
and h(g; Va) =2

(H3): It is a consequence from the fact that h extends f.

The application f + h is a bijection. Then by (8)

Bi = 1734l (9)

In order to determine |L(n + 1,m)] in function of n and m in some particular
cases, we compute |,83k| for some integers ¢,k.

Let Up = {uy,u, ... ,u} be aset of free generetors of CY, ,-algebra LO(n.+1,t).
In [13, pp. 135] it is proved that

wln+1) = |Bpico (Lo + 1L,8), Cost)] = (n+1) = 37 w(i+1).  (10)
. iln, j#n

Lemma 2.6 1B k| = Vm-k(n +1).

Proof. Let §: Gt — Um—i be the mapping defined by B(gr+;) = u;,
1 <j < m=k, and for each h € Epico(L%(n + 1,m — k),C\41) we consider
h=hy,_., fo= fioB and fr: G — Cy41 defined by

B 0, if g€ Gy,
fu(g) —{ fa(9), otherwise

Then, the mapping 4 : Epico(L%n + 1,m — k),C\yy) — Foir defined by
Ww(h) = f; is a bijection. We only check that f, € F",. It is clear that f;, verifies
( j ¥ e

F1 and F2, on the other hand [f4(G)lc = [fi(Um=k)lc C [fi(Um-k)lco = Cni1.
Since fr(Gr) = {0} we have that 0 € [fi(G)]c, then [f1(Um-k)lc = Cn41 and
s0 [fa(G)lc = Cny1 and it verifies F3. Then, from (10) we have that |F,| =

| Epico (L%(n 4+ 1,m — k), Cnt1)| = Um—k(n + 1). o
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Lemma 2.7 |6, _y),l = (2 = 1) - (n + 1)™* —n™* vy i ((n - 1) + 1).
Proof. Let
= {f € CC,,: f(Gr) ={0,1}},
= {f €CS1: F(Gr) = {2}, 0 € f(Cm-1)},
C={feCC:f(Gr)={:},f(Gmi) C(:1[f(D)c=I[3.1]}
It is éasy to see that {A, B,C} is a partition of R and it holds:
(i) [A] = (2 =2)- (n + 1),
(i) |Bl = (n -+ )ymk — k.

If 5 G’m_k — U is defined as in Lemma 2.6, o : C,, — C,,1 is defined by
a(;4) = &2, and for each h € Epice(L%(n-+1,m—k), C,) we consider f; = hyy,_
th=ao fl o ,B and f : G —> Cpy; defined by

= 1 if g € Gy,
PO ={ ), aeis

tn(g), otherwise

then, the mapping 9 : Epi(Lo(n +1,m —k),Cpny1) — C, 9(h) = f is a bijection.
We only check that f), € F m—1)k- 1t is easy to see that fr verifies F1 and F2. Since

[fn(G)]c C [3,1] and [fh m—k)lc| = [@(fr(Un-k)lc = a(Cy), we get [fu(G)lc =
11]. Then

(iii) |C| = vm=k(n).
From (i), (ii) and (iii) it follows Lemma 2.7. a

Lemma 2.8 1B2| = (n* — (n = 1)F) - (n 4 1)+,

Proof. Let
A={feCC : f(Gy) C 0,21, ==X € £(GK)},
B=Cr m-*.

We define ¢ : Fip(k) — A x B by %(f) = (fa, f5) where fa = fia,, f5 = fic,--
It is easy to see that 1 is injective. Let (f1,f2) € A x B and f € C%,, be defined
by f(g) = fi(g9) if g € Gr and f(9) = fa(9) if g € Gyn—i. Then, f € F7,. Indeed,
it is clear that f verifies F1 and F2. Smce 2=l € f(G), then by T4 [f(G)] = [%,1]
and so f verifies F3. Furthermore 9(f) = ( fl, fa), then 1 is onto.

It holds:



Free (n + 1)-valued C-algebras 41

(i) |4 =™ — (n - 1)™F,
(ii) |B| = (n+1)™*.
From (i) and (ii) it follows the Lemma 2.8. o

Examples 2.1 Now, we apply the above results to those values of n for which no
additional calculus must be done.
From (10) it follows:

Un—k(l+1) = 2m7F (11)
Um—k(2+1) = 3™k _gmk (12)
Unk(3+1). = 4mF —om=k, ' (13)

"Taking into account (11), (12) and (13), we obtain

(El) n=1:

Bl = (F-(1-1%- -Q+1)"*=2m""
IL(2’m)| = Z(—l)k"'l(:‘) . 22'""‘. (14)

k=1

The formula 14 has been obtained by A. Monteiro and L. Iturrioz in (7).

(E2) n=2:
lﬂf'kl = (2k - (2 - l)k) : (2 + l)m_k = (Qk - 1) ° 3171—’3’
B3k = vm-k(2+1)=3""F 27,
Bl = Sara(g) ot gy
k=1

The formula 15 has been obtained by L. Iturrioz and O. Rueda in [8].
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B3] = (3F—2F)4m*,
lﬂg'kl = (2k -1)- gm—k _gm=k 4 gm—k _ om—k _ (2’c -1) . 4m—k _ 2m-’°7
|ﬁg,k| = Um—k(3 + 1) = 4"1—k _ Qm—k’ _
m
[La,m)l =y (-D (km) (8 =28)qm=k  g(gk_1)am=k qmk_gm-k
k=1
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