Counterexample to a conjecture of Mujica

Christopher Boyd

Abstract

Let U be an open subset of a Banach space E. In [2] Mujica shows there is a unique Banach space $G^{\infty}(U)$ and a bounded holomorphic mapping δ_U from U into $G^{\infty}(U)$ with the property that given any Banach space F every bounded holomorphic function from U into F factors through $G^{\infty}(U)$ as a continuous linear mappings. The properties the Banach space $G^{\infty}(U)$ are similar to those of E. In [4] Mujica asks if $G^{\infty}(U)$ is weakly sequentially complete when E is weakly sequentially complete. In this paper we provide a counterexample to this conjecture.

In [2] Mujica proves the following result:

Theorem 1. (Mujica) Let U be an open subset of a Banach space E then there is a Banach space $G^{\infty}(U)$ and $\delta_U \in \mathcal{H}^{\infty}(U; G^{\infty}(U))$ such that the following universal property holds: Given any Banach space F and any $f \in \mathcal{H}^{\infty}(U; F)$ there is a unique continuous linear operator $T_f: G^{\infty}(U) \to F$ such that $f = T_f \circ \delta_U$.

The pair $G^{\infty}(U)$ and δ_U are characterized up to isometric isomorphism by this property. The Banach space $G^{\infty}(U)$ can be realised as the space of all linear functionals on $\mathcal{H}^{\infty}(U)$ whose restriction to each multiple of the unit ball of $\mathcal{H}^{\infty}(U)$ is continuous for the compact open topology. The holomorphic function δ_U is then defined by $\delta_U(x) = \delta_x$ where $\delta_x(f) = f(x)$. Furthermore $\mathcal{H}^{\infty}(U)$ is isometrically isomorphic to $G^{\infty}(U)'_b$, the strong dual of $G^{\infty}(U)$.

The vector space properties of $G^{\infty}(U)$ are closely related to those of E. Indeed in [2], Mujica shows that if U is balanced open in E then $G^{\infty}(U)$ has the approximation property if and only if E has the approximation property, while if B_E is the open unit ball of E then $G^{\infty}(B_E)$ has the metric approximation property if and only if E has the metric approximation property.

Continuing the study of $G^{\infty}(U)$ in [4] Mujica poses the following question:

Problem. Let U be a bounded open subset of a weakly sequentially complete Banach space E. Is $G^{\infty}(U)$ weakly sequentially complete?

We will give an example to show that the answer to this question is no. We begin with the observation that $L^1(\partial \Delta)/H_0^1(\Delta)$ is the unique isometric predual of $\mathcal{H}^{\infty}(\Delta)$ (see [1]) and that this space is weakly sequentially complete and has cotype 2. We shall need the following result of Pisier [5].

Theorem 2. (Pisier) There is a weakly sequentially complete Banach space Z with cotype 2 such that $(L^1(\partial \Delta)/H_0^1(\Delta)) \bigotimes_{\pi} Z$ contains a copy of c_0 .

In particular this will mean that $(L^1(\partial \Delta)/H_0^1(\Delta)) \bigotimes_{\pi} Z$ is not weakly sequentially complete and does not have cotype 2.

Clearly we have that $\mathbf{C} \bigoplus_{\infty} Z$ is weakly sequentially complete.

By Proposition 2.3 of [2] we see that Z is isomorphic to a complemented subspace of $G^{\infty}(B_Z)$. By Theorem 6.1 of [3]

$$G^{\infty}(\Delta \times B_Z) \simeq G^{\infty}(\Delta) \widehat{\bigotimes}_{\pi} G^{\infty}(B_Z)$$
$$\simeq \left(L^1(\partial \Delta) / H^1_0(\Delta) \right) \widehat{\bigotimes}_{\pi} G^{\infty}(B_Z)$$

which contains $(L^1(\partial \Delta)/H_0^1(\Delta)) \otimes_{\pi} Z$ as a complemented subspace. Therefore we see that $G^{\infty}(\Delta \times B_Z)$ cannot be weakly sequentially complete. The space $C \bigoplus_{\infty} Z$ is also an example of a Banach space with cotype 2 with open unit ball $\Delta \times B_Z$ such that $G^{\infty}(\Delta \times B_Z)$ does not have cotype 2.

- [1] ANDO T., On the predual of H^{∞} , Commentationes Mathmenaticae, I, Warsaw, (1978).
- [2] MUJICA J., Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc., 324, (1991), 867–887.
- [3] MUJICA J., Linearization of holomorphic mappings of bounded type, Progress in Functional Analysis, North-Holland, Amsterdam, 170, 149– 162.
- [4] MUJICA J., Linearization of holomorphic mappings on infinite dimensional spaces, Revista de la Unión Matemática Argentina, 37, (1991), 127–134.
- [5] PISIER G., Counterexamples to a conjecture of Grothendieck, Acta. Math., 151, (1983), 181-208.

Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland

Recibido : 11 de Febrero de 2000 Aceptado : 22 de Marzo de 2000