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ABSTRACT

We solve by topological methods a Dirichlet problem for the general semilinear second
order ODE .We also prove the uniqueness of the solutions. Moreover, we develop an
iterative method in order to find a solution in certain cases, for which the usual Picard

iteration is not appliable.
INTRODUCTION

We consider the unidimensional boundary value problem

( ){'!/” = f(z,y,y')  in(a,b)

1
ylo)=a, yb)=p4

Particular cases of this equation have been studied by sceveral authors. For f =

g(2)+h(y), with g € L*(a,b) and h: IR — IR continuous solutions may be obtained

under a growth condition on n, i.c.:
[h(y)] < clyl +d

for any y € IR and ¢ < Ay, the first eigenvalue for the homogencous Dirichlet problem
of the second order linear operator Lu := —u' . Some results for periodic type and

Sturm-Liouville conditions are also known (see e.g. [AM], [AS], [B], [Br], [FM], [M]).

For a general continuous function f : [¢,b] x R? — IR, we will state the existence

of solutions of (1) under a growth condition on (y,y'). Furthermore, uniqueness can
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be also proved if f satisfies a Lipschitz condition or if f is C' with respect to y,y'
with § > 0.

On the other hand, we will show that a solution of (1) can be obtained constructively
by a continuation-type method. Indeed, the problem can be included as a sub-family
of problems where there is a parameter ¢, and on starting at a solution for to it is
possible to find a solution for #y+¢ as the limit of a recursive sequence in the Sobolev

Space H?(a,b).
1. EXISTENCE BY FIXED POINT METHODS

Let ¢(t) = m(t — a) + o, where m = %E%, then for z = y — ¢ problem (1) is
equivalent to '
@) 2 =f(t,z+ ¢,z +m)
) 2(a) = 2(b)=0
A simple computation shows that the Green function for the associated linear problem
is .
—(t—a)(s—=0> ifs>t
Gy = [PRC =D
(s —a)(t-0) if s <t

Then we may define the operator T : C*([a,b]) — C*([a,l]) given by
b
Tz(t) = / G(t,8)f(s,2(s) + ¢(s),2'(s) + m)ds.

The continuity of T is immediate. Furthermore, by the Arzeli-Ascoli Theorem T is

compact, and on account of

(b=1t)(t —a) < (b—a)? ,

”G(t7')”] = 2 -_ S
oG t—al+(b-1t)?% _b—ua
g (4l - -2)(1)—(«.) - < 2
it is easy to conclude that
b—a)? b-—a . .
[ITzll1,00 = T zlloo + I(T2)'[loc < (( L ) sup |f(s. 2(s)+0(s), 2 (s) +m)]

8 2 T ags<h

Thus, we have the following



A boundary value problem for a semilinear second order ODE 63

THEOREM 1

Let us assume that |f(s,u,v)| < ¢(|u|+ |v])+d for any w,v € R and some constants
¢,d such that

(b=a)? b-a
o 5 + 3 )< 1.

Then T has a fixed point z € C*([a,b]) which corresponds to a solution of (2).
Furthermore, if f is Lipschitz in (y,y') with constant c, then (2) has a unique
solution.

Proof
Let ||z|l1,00 < R. As

|£(s,2(s) + ¢(s), 2 (s) + m)| < e(lz(s)] + |2 ()| + lep ()] + m) + d,
we conclude that

sup [£(s,2(s) + p(s), (s) + m)| < (R + max{|al, |8]} + m) + d

a<s<b

Hence, taking
c(max{lal, |8}} + m) +d
l-¢

R>

it follows that T(Br) C Br, and by Schauder’s theorem (see e.g. [L]) T has a fixed
point z € Bp. Clearly, z solves (2) and z € C?([a,b]).

Moreover, if f is Lipschitz,

b—a)? b-a .
”TZ_TZO”LOO S((, 8 ) +'T)Ilf('az+‘19’zl+"n)_f(':20 +¢ezl’)—§-_"’n)”°°

< ((b—sa)2 + b

—a
—5)ellz = zoll1,00 = 8llz — 20ll1.00

with § < 1. This proves that T is a contraction, and by the Banach fixed point

theorem (2) has a unique solution.

REMARKS

i) If f is Lipschitz with constant ¢, then

|f(s,u,0)] < e(fu] + |v]) +1£(s,0,0)]

for any u,v € R.
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i1) The value of the constant ¢ may be improved by considering the fixed point
operator T defined in H'(a,b). The growth condition on f implies that T is well
defined, since |f(t,z + ¢, 2 +m)| < c(Jz + |+ |2' + m|) + d € L? forany z € H'.

The following theorem proves uniqueness if f is nondecreasing with respect to y:

TIEOREM 2

Let f be continuously differentiable with respect to y, ', and assume that % >0.

Then problem (1) admits at most one solution.

Proof
Let y1, y2 be solutions of (1), then y1,y2 € C%([e,b]) . Hence,

" , oD ., Of
(y1 —w2)" = f(t,y1,0n) — f(t,y2,43) = -&f(t,ﬁ,;v)(yl —y2) + a—y@(t,ﬁ,,\')(yl —1y2)

for some mean values €, xy € L. Thus, if w =y — y2, we have that

{ Lw=0 in (a,b)
w(a) = w(d) =0

with Lw :=w" — ‘%L,(t,f,x)w' - %(t,ﬁ,x)w .

As —g‘yL(t,f,,\/) < 0, a standard uniqueness result for linear second order ODE's

shows that w=0.
2. SOLUTIONS BY AN ITERATIVE METHOD

In this section we add a parameter ¢ € [0,1] to problem (1)

1) y' =tf(x,y,y") in (a,b)

. A
yla)=a yb)=48

and starting at a solution of (1;,) we will construct recursively a solution of (1(y4¢)

for some step €. Thus, we have solutions for 0 =t4 <t < ... <t, =1, obtaining a-

solution of problem (1).

Indeed, assuming that %‘5 > 0, if y is a solution of (1, ), we define yy41 as the

unique solution of the linear problem

) of
y:,’+1 = (tO + 5)[%(1ﬂ,yn,y:.)(yn+1 T yﬂ-) + Eﬁ(ra yﬂvy:’:) (y-:z-{-] - y;l) + f(Ta y?liy':'l)]
yn+l(a) =« yn+l(b) =8
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We will also assume that f and its derivatives with respect to y and y' of first and

second order are bounded, and for simplicity we write

H@flloo=maw{|| lloo,ll Hoo}

10l = e (15 o 2 s 15 L o)

REMARK:  Let r,s € C([a,b]), and L : H%(a,b) — L%(a,b) the linear operator
given by Lz = 2" +rz' + sz. For s <0, it is well known that L|pg2npi(as) 19

invertible and onto. Hence, the sequence {ya} is well defined, and in order to prove
its convergence we will show in the following lemma that the inferior bound for L
may be choosen depending only on ||r|lec and ||s]|co -

LEMMA 3

For any R > 0 there exists a constant ¢ such that if ||r]los, ||s]lec < R, with s <0,
then ||z|[2,2 < ¢||Lz||2 for any z € H> 0 H{(a,b).

Proof

Let us suppose that there exist rx,sx € Br(0) C C([a,d]), with sx <0, and z €
H? N H}(a,b) such that ||zkll2,2 =1, ||Lzk|l2 = 0. Taking

((II) — ef rr(s)ds

we have that pyLzy — 0 in L%(a,b). Then _/;:’pk(z};)2 j pr(2})? — prsiz} =
-—f:pksz.zk -0, and.being pr > e~ R we obtain that zi, — 0 in L%(a,b).
Furthermore, by Poincaré’s inequality zx — 0 in Hg(e,b), and as Lzx — 0 we
conclude that zx — 0 in H?(a,b), a contradiction.

THEOREM 4

There exists € = (|| f|loo, [|0flloos |02 flloo) such that {y,} converges for the norm
I - |l2,2 to a solution of (1i44e)-

Proof

Let z, = yn4+1 — Yn - Then

19} of .
Lz =z, — (to + s)[a—i(m,ymyi,)zn + aTJf,(:v,yn,yi._)ZL =

) of ,
(tO + E)[f(’l?, yn,y:;) - a_g(m,yn—lyy:z—l)zn—l - W(Tv yﬂ-l’y:l—l)z:l—ll =
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2 .
(to;-tf)[ (2,61, 62)2, 4 +2 aaa o (2,61,6) 201 2oy + ylfz(x,gl,gz)zg_l] |

for some mean value (£;,&;) € L°((a,b),IR?).

By lemma 3, there exists a constant ¢ depending only on ||f|lcc and [|0f]lec such

that
to + €

llznll2,2 < €l Lznll2 < coc 16 flleo llzn-1113,2

where ¢y 1s the constant of the imbedding H 2(a,b) < C'([a,]). Hence, by induc-
tion,

llznll2,2 < [coc ||32fl|oo|120|l2,2]2" Ylz0ll2,2

Moreover, as zj — (to +€)[3y (z, yo,yo)zo+ B (2, 90,96)z0] = €f(z,v0,v5) , we deduce
that

lzoll2,2 < cell f(z,y0, 90)ll2 < cellflloo(b — a)'7?

Let A = coct—‘lgis-||02f||°o||zo||2,2 . Then

n+k n+k _ gntk_y
vtk = vnllzz < D My —vj-1lle2 < llzolle >, A% 7' <llzollae Y, A7
) Jj=n+1 S J=n+l j=2nt+t1-1

Then, for A <1, {yn} is a Cauchy 'se.quence. Let y = lim, oo ¥n , then y, — y for
the C*!-norm, and

3] af _ ‘
a_i('7 ynvy:z)(yﬂ+1 yn) + ( ynlyn)(yn+l y:z) + f(mfy‘"’y;x) - f(, y7y,)

uniformly. As i, — ¢" in L*, we conclude that y is a solution of (11,4¢).

Thus, it suffices to choose € such that
(- a)”2 l|32f!|oo||f||oo~€ <1

EXAMPLE
Let us consider f(t,y) = karctg(y) + g(t) with g continuous. For § € L*(a,b), as
arctg(y) € L*(a,b) we may define y =T7 as the unique solution of the problem
{ y" = f(t,9) in (a,b)
yla)=a  y(b) =/
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For 4,z € L? we have that

|k1(b

_ b—a\?
175 - 7212 < (22) 42w - 72l = S parety ) - areto2

[k|(b—a)? 1 R
< B g lel =3l
for some mean value €. Hence, T is a contraction for |k| < (b 2.
For |k| large, T is not a contraction. However, theorem 4 is still applicable, and

being
k|x
17l < llglloo + 57

3Vv3
II Iloo < —Ikl

the step € can be established from

c?e k|r
(b= )2 S22 3Bkl lgllee + e < 1
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