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INVERSE THEOREM FOR A NEW SEQUENCE OF LINEAR
POSITIVE OPERATORS ON L, -SPACES .

P.N.AGRA WAL AND XAREEM J. THAMER

ABSTRACT :

The present paper is a continuation of our work in [2] wherein we had developed a direct
theorem in terms of the higher order integral modulus of smoothness for a linear
combination of a new sequence of linear positive operators in the L p —norm. The aim of

the present paper is to discuss the corresponding inverse theorem.

1 INTRODUCTION
Following [2], for f e L,[0,), p'>1, the new sequence of linear positive operators
M, is defined as

(L1 - M, (fW);x) = [Wa(x,u) f(u)du
0
where

W) = (1=1) Y. Pk (%) Py (@) + (14 %) " Sw),
k=1 .

k-1
n+k J uk (l+u)—(n+k).

. The linear combination, due to May [5] and Rathore [7], of the operators M, is given by

6(u) being the Dirac-delta function and p,, ; (u) = (

k
(12) M, (f k%) = 3 CULK) My, (f33)
J=0
where
ko d .
C(j.k)=]] =L, for k=0 and C(0,0)=1.

i#)
Throughout this paper, let 0<a; <a3 <a; <b, <by<b <o, [;=[a;,b;],1=1,2,3.
Also, letg(.) denote the characteristic function of /;.

Agrawal and Thamer [2] established that for smoother functions, the rate of convergence
by the linear combinatiorni (1.2) of the operators M, is faster in the L, —norm. In view of

[Theorem, 2], it follows that if 1< p <o, feL,[0,00), 0<a$2kf2 and

(02k+2(f’1’p311) = O(Ta) ast — 0,
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then,
M, (f.k.)- 11, (,3)—0( “’2) as n— o,

Here, first we obtain a correspondmg inverse result, i.e., characterlzatlon of the class of
functions for which

"M"(f’l_c")_f"L,,(ll) =0(n"*'?) as n—> o,

where 0 <o <2k +2.
The aim of the present paper is to prove the inverse theorem in L, —norm.

2 PRELIMINARY RESULTS
In order to prove our main result we shall require the followmg results.
Without any loss of generality we can assume f to have compact support in [0,0). To

illustrate this, let \ be the characteristic function of [a; —§,b; + 6],6 > 0. We can write
”Mn(fy/ak’)_fy/“L (II) < II M"(fw;f’k")||Lp(l|) +"M"(f’k")—f”Lp(l|)' '
Applying Jensen's inequality, we get

|, (fly =1

‘The presence of y-1 1mp11es that |u x| > ¢.For sufficiently large » there exist posmve

1 5Co _[ ﬂf(u 1” lw @) =1° W, (x,u)du dx.

. 2k+2
constants Cl and M such that (_T)'_>C1 foralluZMo and for u <M, we
: ' w2 41

2k+2

have (u=x) > §2*2 We break the integration in u in two parts as u < M, and

u 2 M, and proceeding as in the estimate of J, in [Proposition,2] we get .-
o, (f(w - 1)k, Ny SC2n7 M, o »

where 1 > 0 is arbitrary but fixed.
LEMMA 2.1. Let e L;[0,0) have a compact support. Then, for r e N

© k r _
jW,,(x,u)(;—x] h(u)du <Cyn~ 2| Lowo) *
0 L[0,) |
where Cj is a constant independent of » and 4.

PROOF. On an application of Fubini's theorem and H 6 lder's inequality, we obtain

2.1 (n- 1)] j(zp,,k(x)p,,k_ (u)+(1+x)'"5(u)]

0 0\k=l

——x|

|h(u)| du dx

r

Ax ¢ Py -1 ()| () | du

o

= [ 4 [r-Dpns) -
0 0 C h

k=1
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Mes.

IA

© © . 2r 172
[ { [(n=1)p 4 (%) dx} p,,,k_,(u)j h(u)|du
0 0

— — X
n

x>~
[}

1

8

k=1

1/2
2r 2r-j ® ‘ y
{ ( )(—) (-1)/ J'(n_l)pn,k(x)xfdx} Prgt ()| h(w) | du
0 -

k
sy e

P ()] h(u) |du.

]

TMs

n n
. b . k Jj J=1 1
Making use of the identities H(E +'L) =(—) +(£) - P{))
o \n n n n) n
AR 1
+&) ?%UHW?F—“—‘H Qm+ %UH -, where P (/);0, (J)

i)

i=2 h

®© o k 2r 1 1k 2r-1
SHOESD
0 k=1 n n\n

1 1 1/2
x r_]+..-+n—27} p,,,k_l(u)|h(u)|du.

n
H6 Ider's inequality for sum and compactness of 4 imply the result.

LEMMA 2.2. Let hel pl0,0), p21 have a compact support; i,/ € N O (the set of

nonnegatlve integers) and m >0 be fixed. Then for a constant Cs independent of
n and h there holds

2 .
are polynomials in j of degree 2k and Z[ 'rj(—l)f j*=0,if k<2r,in (2.1), we

have

7W” (x, u)(-lﬁ‘— xjr h(u)du
0 n

L] [0,00)

iu

IWn',(x,u)(;];— - x) j (u = w)! h(w)dwdu
0 x

L L A LA
Lp(h) :

PROOF. Let w(u) be the characteristic function of /;. By an application of Jensen's
inequality

0 i p
2.2) Z nk(x)(——x) [(n=Dp,- 1(u>J(u w)fh(w)dwdu
© ip o u
skzl.p,,,ux);—x [ =D ppscs @u=wl| [| hw) | dw|du, (s=jp+p-1)
= 0 x
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— —X|

ljﬂh(w)\f’ dw|du + ip,,,k (x) :
M ’ k=1 ~

© po :
=2 Pnx(¥) [(n =Dy @) ppsar @)u -9’
k=1 0 : :

u

th(w)lpd‘vl du.
X

In the - first  term we divide integration in "u" . over
[x +in7V2 x4+ (4 +1)}n'”2]~, l= O,il,ﬁ,---,:tr;where r= r(n) € N satisfies rn -2 .S max
(by —as,b; —a))<(r+1)n7"2. 1t is similar to [Proposition,2] and [Theorem3.2, 4].
A typical element of 1# term is now L, —bounded by ’

P | '
xg_x J(r =D~y ) p ot GO~ W’
a .

Jip x+(l+1)n7V2 i
e ,[ ank(x)_—x I (n ls)pnk l(u)|u W| du
. ! x+ln~M?
x+(l+hn7M2

x| [wonlaon)|® dw |dx

. We, now use Ho Ider's inequality for infinite sum coupled with moment estimates for a
new sequence .of linear positive operators [1] and [2] and finally Fubini's theorem to -
obtain estimate. The presence of factor (I-yf{u)) in second term in (2.2) implies
lu - |/ & > 1. This gives arbitrary order O(n"’” ) This completes the proof.

LEMMA 2.3. There exist the polynomials ¢; ; . (x) independent of n and & such that

jxr [ k(1+ )‘(n+k)] T—r Zn (k nx) b1 i ()% (1+x) (n+k)

2i+j<r
iJj20

where T =1(1+¢); and 21+j$r i,jeN°.
LEMMA 24.Let he L (0 ©),p21 and supp hc I5. Then

k+1
(2.3) [ "L iy SCom Al -
Moreover, if h(3**D ¢ A.C.(13) and KD ¢ | »([3) , then
24 (2k+2)
@4 o Ly = [ HL o)’

where C¢ and C are constants 1ndependenf of nand A.

PROOF.Since ¢, J2k+2(x)and T7 (2r+2) are bounded on 13, it follows from Lemmas 2.1
‘and 2.3 that f || ag 2k+2) k+

an atfor he L[0,0), | M (h")“qu;) sCyn* Il -

If he L,[0,),then by Lemma 2.3 and moment estimates [1], we get'

' (2k+2) k+i
."M,, : (h,-)"u,a) <Con™ "h",lu,uar
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Now, ﬁsing Riesz-Thorin interpolation theorem [6], we obtain (2.3).
To prove (2.4), the differentiability properties of h imply that

(u x) (r)
h(u)_,a r! T AT (2k 1

Since M, (.,t) preserves degree of polynomials, using Lemma 2.3, we have

I( )2k+| h(2k+2) (W)dw

) & o ©

I R e e-nx)Y g, on

( u)= (k + l)'T2"+2 len,k(x) 2i+zjsrn( nx) ¢,,j’2k+2(x)(!pn,k ()
ij20

y ,
X I(u — w2k p kD) (3 dwdu} .

X

Now, applying Lemma 2.2 in the above equallty we obtain (2 4).

3 MAIN RESULT

THEOREM. Let O<o <2k+2, feL,[0,),p21and "
: _a/2

(3.1) IMaCf o) = f, iy = O(n ),n - o,

then, .
’ Oosa(f7 P,13)=0( “), as T 0.

PROOF. We choose a function g e C3¥*? such that supp g < (f5,5,), g(x)=1 on
[t3,73] and a) <ty <t <t3<a3<b;<y; <y, <y, <b . Writing fg=f, for all
values of y <1, we have ]

| 432 7 s| a3 (7-m, (7 ’k’))"L,,[tz,yzl Lolan)

Y
where A";’“Q‘ denotes (24 +2)th order forward difference. Making use of Jensen's |
inequality repeatedly and finally Fubini's theorem in second term, we obtain

“ 2k+2 “L - ” A2k+2 f M, (f k) “

+| 4342 M, (7.,

” pllz 573

Lyle. }’2]
M ’(12k+2) (f, ’)“

Now, we wite 7 =(7= 7y a4 )+ Fpaiez in M2 (7,.)

2k+2
S P

L[ty pp+(2k+2)y]

where

]L,,[tz,yz+(2k+2)71~ ‘
Su24+2 is the Steklov mean [2,4,8] of (2k +2)th order corresponding to f and then
recall Lemma 2.4. It follows from properties of Steklov means [2] that for sufficiently

small >0, .
“ a1 _||Lp[’2xJ’2] S“Az’m (F-2,(7.) ”L plt2.72]
+C Yzm( “lin (2k+2))w2k+2(f n,p.lt2,,))

Now, following Berens and Lorentz [3] we can complete the proof, once it is established
that
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—O(n"‘"‘/z),.n - od.

(.2) a2+ (f M (f ks ))H
Thus,

p[‘z 2l

: ‘0)2_‘k+2 (f,T,,P,[fz;J’z 1)= O(Ta )," T —) 0.
Therefore, as f(x) = f(x) for x €[ts,y;] Y
v 0os2(fo1, 2, 13) = O(Ta ) , T—0,as required.
We prove (3.2) by induction on a. First, assume a <1.

1M, (. k.)- e g 51 M,,(g(x)(f(u)-ﬂx)) 63,

Mg - g k)], -

Now, gu)-gx)=w- x) g '(é) for some § lying between u and x. Using moment
estimates and the compactness of f to estlmatc the second term and statement (3.1) for
the first term we have

M, (fe.k,)- f2 |= O(n""/2 )+ 0(n'”2 )-—-. O(n'a/z) .
Now, we assume (3.2) to hold true for all values of o satisfying » —1 <a < r and prove
that the samelholds true for r <a <r+1. Thus, we have

' w2k+2(f,z',p,[c,d])=O(r’THﬂ»), 1=>0,0<p<l,

for any [c,d]c (al,,b,). Let @(u) denote the characteristic function of '[t,, »n). The
assumed smoothness of f implies [9] that :

: r=2 ] . .
| M, ()= 22 gy 1 gillf“’(an ( —x)‘ (2@ -g@)ok. )

' Lylta.y2]

M,,[«u)(g(u)—g(x) [ [ —wy- 2(f‘""(w) f"'”(x))dwj ]

41
(r-2)!

X

‘ Lp[‘nyZ]
+| My (PG, (1 - 60)) @) - 8K g
= Jl + J2 + J3 N . '
Where F (u x) f(u)- Z(u zX) f (')(x) uelo0, ), xe[tz, y2]. The direct theorem
. i=0" :

and moment estimates [1],[2] imply that J;,J; —0( (k“)) n— . Using Jensen's
inequality, mean value theorem on g: and breaking [x,u] as in Lemma 2.2, we have

) \|?
| J‘ o wr Z(f(r-l)(w) f(r—l)(x)) ] )

dx

fH x

(¢<u) (gw)- g(x))[
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u

»n .
| <Cj J'J‘Wn(x,u)lu—x|ré— I¢(w)

R

FED ) - £ (x)l" dwdu dx

-1/2

¥y | x+(+yn™ V2 x+({+)n
sc,,if{ [ .W,,(x,u)(n21'4)"|u-x|”’+“”" [ o

-1/2

£ - £ )

A=l | x+in x
aot 2,-4 rp+4p-l i (r-1) (=1 [P
xdwdt+ [ W,(xu)(n? 1) Plu-A" [ .¢(w)]f w-f (X)l
x=(l+1)n7!? , x=(sna?
’ 2 BN ] '
xdwdtydc+ [ [ W,(xuwu-x"" | ¢(w)‘f("')(w)—f(’.‘)(x)ldwdudx
H lz—"f”2 ° x-n"1"2 :
r (+1yn712 ‘
- - — _ : P
<Ci Z(nzl 4)p" (r+p=72 ,[ (“’(f(’ l),w,p,[fx,ynl)) aw
I=1 ; 0

f

-1/2
+n‘(’P—')/2"I ((o(f(r_l)’w’lz?,[flsh ]) dw} .

0
on using the moment estimates [1],[2] and then interchanging integration in x and w.
Lastly, utilizing co(f(’_'\l) RS AR yl])= O(w"), we find |
T Jy=0m P2y oy s,
Combining the estimates of J;,J, and J3, we obtain(3.2).The proof of (3.2) shows that

(3:3) @or2 (foT 0, 13) = 0(1“), a<2k+2,a %23, 2k+1.

This statement implies that it is true for integer values 2,3,---,2k'+1 also. To prove this,
let «=r where r takes any value from 2,3,---,2k +1. Then, since (3.3) is true for
(r,r +1), it follows that ' :

©24+2 (f,T,pJ3)= 0(1”9) , 0<0<l
= 0(1:’ ) )
This completes the proof of the inverse theorem.
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