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ABSTRACT

We study the general semilinear second order ordinary differential equation (1)
with a nonlinear boundary condition (H). By Schauder’s Theorem we obtain
solutions of the problem (1-H) under growth conditions on f and h. Moreover,

we show that a solution may be constructed using an iterative procedure.
INTRODUCTION

‘We consider the general second order semilinear equation

) w(t) = fltu)

with nonlinear boundary conditions
(8) u(0) = ho(u(0),w'(0)),  u(T) = he(u(T),v'(T))

where f : [0,T] x R? - IR and h = (ho,hr) : R? —» IR? are continuous
functions.

In a . previous paper [AMS], we have studied the particular case of the two-
point boundary value problem (i.e. the Dirichlet problem), which corresponds
to constant h, proving that at least one solutioh exists if f grows linearly on

(u,u'), namely
|f(t,u,2)| <c|(u,z)| + d for any u,z € R and ¢t € [0,T)

with slope ¢ small enough. Furthermore, we have shown that a solution of (1-

Dir) can be obtained constructively by a continuation-type method. Related
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cases and also periodic type and Sturm-Liouville conditions .are studied in [AS],
(B], [Br], [FM], [M], among other authors. Topological methods have been
applied from the pioneering work of Severini [S].

Nonlinear boundary conditions are not so widely treated in the literature, al-

though they appear frequently in different mo&els. For example, in 1995 Rebelo
and Sanchez considered the problem

Vgt W =0, u(0)= A(-u(0), um)=AEE)

with fi' € C(R,IR) continuous and strictly increasing, which may be re-
garded as a mathematical model for the axial deformation of a nonlinear elastic

beam [RS].

" In this work, we show that some topologlcal techniques may be applied also
in this case. More precisely, we extend the results of [AMS] for the nonlinear
case, showing that (1-H) can be solved under linear growth conditions for f

and h. Moreover, we find solutions by a recursive method.
1. A FIXED POINT OPERATOR AND SOLVABILITY OF (1-H)

In order to find solutions of (1-H) we will define a fixed point operator on

C'[0,T]: recalling the Green function G associated to the second derivative

9%, ie. o D) ‘
G(ts)={ T ifs21

g—)—t_fs ifs<t

we define K : C*[0,T] — C*[0,T] by

T .
Ku(t) = pu(t) + /0 G(t,3)f(s,u,u’)ds

where

ho(u(T),u'(T)) - ho(u(O), u

{ON ,
- t + ho(u(0), u'(0))

Sou(t) =

It is immediate to see that K is compact, and that any solutlon of (1-H) may
be regarded as a fixed pomt of . Moreover,

1K ulloo < [lulloo + sup {IIG(t,')Ilp}llf(',u,u')llp'
0<t<T .
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and

’ i aG ]
I(Ku)lloo < llpaulloo + sup {II-—& (& e HIFCouy u)ll e
_ ‘ 0<t<T
with }1—’+#=1. As
(T.—2)p
G, )P = ~—2T,
i1 = (7 ) et

we conclude that

1/p
2 (G )y} = T(pf1>

In the same way,

1/p
sup n{aaf% M= ()

We-will state an existence result for (1-H), assuming that f and h satisfy the

linear-growth conditions

]h(m,y)| < kh'(l‘,y)l + lha |f(t,a:,y)| < kfl(xvy)l + lf

for séme positive constants ky, ks, ln, ly. In this case, we will also see that
p =1 is the best choice for the previous apriori bounds for G.

THEOREM 1

(1-H) admits a solution in any of the following cases:

i) T>4 and kn+ Loks < 1.

i) T<2 and &ky+ Thy<1.

iii) 2 < T < 4 and (kg k) € C°, where C C IR? is the convex hull of the
points (0, 0) (O 1), (%,0), (4(T 2), 4= T)

Proof

From the growth conditions we obtain:

£t u, u)lp < TP (kgllulls,e0 + 1)

and

loulleo = max{|ho(u(0),u'(0)), Iz (w(T), v’
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and

”3914“00 — |hT(u(T)7“"(T))T— hO(u(O)’u,(O))l < %(kh”ulll,oo + lh)

Then, using the previous éomputations, we have:
T
[ Kulloo < (K + kfw)““lll,oo +ec

and

2 T
o~ ! =
(B ) lloo < (kn + kf—‘—_(p gt 1)1/,,)IIUII1,oo +ec
- for some constant c¢. Let us suppose that

() bt kb <1, Zhk L <1
» Py T T T i

holds. Then, for large R ‘we conclude that K (Br(0)) C Bg(0) and by
Schauder Theorem K has a fixed point. As (p + 1)!/? is nonincreasing, its
maximum value is achieved for p = 1. Hence, it will suffice to prove that (*,)

holds for p = 1, namely

T? 2 T
(*1) kn+kp—o <1, ket kg <1

If T>4 and kh-FZS?-kf(l,then kh+TTzkf<1+TT2kf<2—k‘h < %,and
(*1) holds. S

If T<2 and kw+ Zk; < T, then kn+ Loks < T <1 and (#;) holds.
Finally, if 2 < T < 4 we have that ( *; ) holds if and only if (kg,kn) lies in
the first quadrant below the lines

T? T? T
kh+kf'—8—=1,- kh+kf—4—=§'

2. AN ITERATIVE PROCEDURE FOR (1-H)

. In this section we will embed the problem (1-H) in a family of problems

(1) 5 {u (t)=)\f(t,u,u,) |
u(0) = ho(u(0),w'(0)), u(T)= hr(u(T),u'(T))
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The aim of the method is, starting at a solution uy for A, to define recursively
a sequence which will convergein C*([0,7]) to asolutionof (1-H) x,+¢ for some

step €. We recall the following result from the theory of linear operators (see
[AMS)):
LEMMA 2

Let L be the linear operator given by Lu = u" + r(t)u' + s(t)u, with r,s €
L*°(0,T), s £ 0. Then there exists a constant ¢ depending only on ||r||e
and ||s||eo such that

lellz,2 < el Lull

for any u € H? N H(0,T). Moreover, the problem

{ Lu=1

ulor =¢

is umquely solvable in H*(0,T) for any ¢ € L2(0 T) and any boundary
Dirichlet data ¢ .

Assuming that uo is a solution of (1-H) 5, we define the sequence {u,} c

H?(0,T) by the problems:

{ ;\%ﬁ = 6u‘ (t un’un)(uﬂ'i'l - un) + (t Un,U n)(u"'i'l —u ) + f.(t’unau’n)
Un+1(0) = ho(un(0),ur(0)), un41(T) = hr(un(T), uy(T))

As a basic assumption, we will suppose that f is C? with respect to u,u’,

and 3L(t,uo(t),up(t)) > 0.

We remark that if {u,} is well defined and u,, — u for the C! -norm, then u
is a solution of (1-H) x4 . Moreover, if %E(t,un(t),u'n(t)) > 0, from lemma
2 we conclude that un,4+; is well defined. In this case, for z, = up4+1 — un we

have:

Lozy i= 2" — (Mo + &)[ra(t)zl +'3n(t)2n] = (Ao + €)Ran

with r,(t) = ’_%L,(t,un,u;l) , sa(t) = gf(t,un,u'n) and R, the Taylor remain-
der ‘

118 f 0% f o f '
Rn(t) = 5 -a'ﬁ(tag) -1t 23 Su ,(t é)zn-lzn 1+ u,g (t)g)(zn—l )2
for some mean value ¢ € L*°([0,T],IR?). Writing

n(t) = mnt + ho(un(0),u5(0)) = ho(un-1(0), u; ;1 (0))
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where the slope m, is given by

(un(T),ur(T)) (2 (0),u5,(0))

- _
(nr (Tl _((T) N (un—1(0)0!,_,(0))
T

we obtain from lemma 2 and the imbedding H?(0,T) — C*([0,T)):

mqg, =

llzn — ealli,0 < callLn(2n — @a)llz < ca(Xo +€) (|| Rall2 + ”rn‘/’ln + snnll2)

- for some constant ¢, depending only on ||rn]eo and [[safleo-

Thus, if up—1,un € Br(ug) we have that

Izall1,00 < (1 +E)llnll1,e0 + ellzn-1llf 0

where the constants ¢, ¢ can be choosen depending only on R. Furthermore,
if h is Lipschitz with constant kp then |[l¢n|l1,00 < kxmax{1, Z}||2n-1]l1,00 -

Hence,

l2nll1,00 < Bllzn-1l1,00 + ellzn-1l1} 00

for b= (1+¢)kr max{1, 2} . Moreover,
) of of :
Z(l), - (’\0 + E) 'é"l—i(,tﬂ‘(h ub)‘d) + Eg(t,uo’ub)zo = €f(tauo,u6)
and as zo|ar = 0, we obtain:

l20]11,00 < €coll £(, %0, up)ll2
Thus we have:

THEOREM 3

With the previous notations, let us assume that uo is a solution of (1-H) ,,
and

) Z(t,2,9) >0 for (2,4) € Kr = Br(ua([0,T]) x w([0,T)))

ii) h is Lipschitz on Kpg with constant kj < %‘;—{_‘-{%-)%—}

Then the sequence {u,} is well defined and converges in Br(uo) C C*([0,T7])
for any step € such that

R(1-1)

(%) , ccoll G0 wo)ll < TRy
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Proof -

From the previous computations and (*), it follows that ||zo]l1,00 < R or,

equivalently, u; € Br(ug). This proves that uz is well defined. Moreover, as

eco| f(+, uo, ug)l|2 < R[L — (b + cecoll £(-, uo, up)l|2)]

we conclude that b+c||zo]]1,00 < 1 and ||21]|1,00 < (0+¢|20]1,00)]|20]l1,00 < R.

Inductively, we see that the sequence {un} is well defined, and

llzall1,00 < (04 cll20]l1,00)" 120100

Hence

= 2o |

0||1,c0
E z < . <R
2 lenllice < =03 ol =

which implies that {u,} is a Cauchy sequence with lim, oo un = u € Br(uo).
- .

Furthermore, if f and its first and second order derivatives with respect to
u, u' are bounded in [0,7] x R?, with -3—-5 > 0 the step € can be choosen
independently of uo. Hence we have:

COROLLARY 4

Let us assume that ug is a solution of (1-H) , , and

i) f, Of and 8%f are bounded, and %5 >0 in [O,T] x R2.

ii) h is Lipschitz with constant kj small enough.

Then there exists a sequence Ao < A1 < ... < A, =1 such that a solution of
(1-H) »; can be constructed recursively.

REMARK:

By Theorem 1, as |h(z,y)| < ki|(z,y)| + |h(0,0)] we conclude that (1-H) is
solvable for ki < min{1,Z}.
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