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Riesz and Bessel Potentials, the g* functions and
an Area Function for the Gaussian Measure vy

Liliana Forzani, Roberto Scotto and Wilfredo Urbina *

Abstract

We give proofs of results regarding the boundedness of Littlewood-Paley-Stein
functions and Riesz potentials with respect to the Gaussian measure y. These
results were first announced by one of the authors in 1998, [19].

Dedicated to the memory of Eugerie Fubes

1 Introduction

Gaussian Harmonic Analysis is the study of operaters related to the Ornstein-
Uhlenbeck differential operator

1
L= EAQ—(L"V;E.

It is self-adjoint with respect to the Gaussian measure dy = el dg becoming this

measure the natural one to study the boundedness of those operators. Gaussian

Harmonic Analysis has been under important development for the last twenty years.
Ifa=(a,...az) € N, the Hermite polynomial in R? of degree |a| = Zle a; is
' defined by :

H,(z) = H?:lHai (2:)

where Hy,(z:) = (—l)aiez?d#'if;;(e"?). These polynomials are eigenfunctions of L

with eigenvalue —|a|.
The semigroups associated to L used through out this paper are

i) The Ornstein-Uhlenbeck semigroup {T;}i>¢. T is defined forx-na,lly by Tt = ¢,
Because H, are eigenfunctions of L we have that

T,Ho = e,
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" and extended by linearity to all polynomials in R¢. By using Melher’s formula )

it.can be proved that Tt has integral representation whose kernel is
D e
1 et

MV et

E. Nelson in [13] proved that these operators are hypercontractlve i.e. for
1<p<+oo,t>0,q(t) =1+e¥(p— 1) and f € L?(dy) we have T}f € L9®(dy)
and

”th“q(t),’y < ||f”p,7-'

Moreover, he proved that for p > 1,

[T - [ e

< Ce—t| |f|v|m'

p!"/

Later, P. Sjogren proved in [16] that T* f(z) = sup,s, [Tif(z)| is weak type
(1,1) with respect to the Gaussian measure and since the L*°(d~y) boundedness -
is inmediate, the LP(dy) boundedness follows from Marcinkiewecz interpolation
theorem :

ii) The Poisson-Hermite semigroup {Pt}t>0 P, is written formally as P, = e‘( L)%‘

This semigroup can be obtained from the Ornstein-Uhlenbeck semigroup by a
subordination formilla (see [18]) as

1 [t e”u
N \/_

Then it has an integral representation whose kernel is

Pif(z) = (37)‘1“

2 - 2
/‘ temr el 4
o 2T (—logr): (1=r2)% 7

For every f € L'(dy), P.f(z) turns out to be a smooth function. Taking
into account the subordination formula for P, and that T*f(z) is strong type
(p,p), 1 < p < +00, and weak type (1,1), the same is true for P*f(z) =
Sup;sg |Ptf(37)|

In Section 2 we study the Riesz Potentials associated with . In [5] it.is proved that
they need not.be weak type (1,1). They are bounded on LP(dy) for 1 < p < oo.
" We show that although they do not improve integrability, they satisfy. an LPlog L
inequality. Also we will consider the Bessel Potentials for +.

The Littlewood-Paley-Stein théory for the Gaussian measure is a subJect still not
fully developed. One of the main reasons for studying these Littlewood-Paley func-
tions in the Gaussian context is that in classical Harmonic Analysis they turn out
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to be very useful in the proof of the L? boundedness of singular integral operators,
as well as in the characterization of Hardy spaces.

In 1994, C. Gutiérrez introduced in [9] the first order Littlewood-Paley-Stein g
function associated with the Gaussian measure as '

(1) , 9'(f)(=) = (/OthVPtf(w)lzdt) "

where V = (dt, V.). He proved the L?(dy)-boundedness of ¢' for 1 < p < oco. As
for p = 1, R. Scotto {15] proved later that it satisfies the weak type (1, 1) inequality
with respect to 4.

In 1996, C. Gutiérrez, C. Segovia, and J. Torrea introduced in [10] the higher
order Littlewood-Paley-Stein functions g*¥ with respect to a time variable ¢ and
with respect to a space variable z, and proved their L?(dvy)-boundedness, again for

1<p<ooas
2 dt
T

(2) ¢ () = < /

(3 géf(w)=</0 VERA( )|““)

ak

¢ P (@)

where V¥ = is the gradient operator of order k and the

a

(31/91 Oz, ) 1<8,<d,1<j<k
norm | - | appearing in the integral of g& corresponds to the Euclidean norm in R%".
They proved the LP(d7y) boundedness of these operators for polynomials and by
density on L*(dv), for 1 < p < oo. As it happens with the higher order Riesz
transforms associated with the Gaussian measure (see [3], [4]) the case p = 1 turns
out to be completely different. In Section 3 we prove that the higher order ¢*’s with
respect to t are weak type (1,1) for all £ but the ones with respect to z need not
be for k¥ > 2. After this Journal accepted the paper for publication we knew of an
independent proof of part of the results on this section by Sonsoles Pérez.

The definition of an Area function for the Gaussian measure is somewhat problem-
atic, due to the lack of a good definition of a cone region in this context. In 1994,

L. Forzani and E. Fabes, see [2], gave a definition by choosing a pencil type zone
as a possible Gaussian cone. We discuss this definition and its LP(dvy) continuity
in Section 4. We must point out that the possibility of finding more suitable cones
'should not be ruled out, and that further research is needed in this area.

2 Riesz and Bessel Potentials for ~
.Riesz Potentials for the Gaussian measure are defined similarly to the ones in Clasical

Harmonic Analysis as
n=(-L)™, a>0;
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which means that we define IJHg = lﬂl“H g for |ﬂ| > 0, and then extend it by

linearity to every polynomial f such that fRd fdy=0.1In [5] J. Garc1a-Cuerva G.
Mauceri, P. Sjogren, and J. Torrea [5] proved that for every o > 0, I] is defmul for
every polynomial, has integral representation whose kernel is

—rz|?

: —-d/2 pl — 2
(@ No(a) = Frgs [ (~1o8n) (e — <)
! , +oo e_hl_-Le:’I"JE 2
() =Coa - go-1 m_e—lyl dt,
thus
+00
(©) nn=Ca [ 1 (1= [ o) a

They also prove that they are not weak type (1,1) with respect to the Gaussian
measure. On the other hand the strong type (p,p) with respect to this measure, for
1 < p < o0, follows either by applying a Multiplier Theorem due to P.- A. Meyer
[12] or directly from the hypercontractivity of the Ornstein-Uhlenbeck semigroup.
Moreover we will show that although they do not improve integrability, they satisfy
an 7 log L inequality.

Let us prove first the LP(dvy) boundedness of the Ricsz Potentials IY. Using the
integral representation of I (4), the hypercontractivity of the semigroup {T;}:>0
and Minkowsky’s integral inequality we have i

~+o00
VDl = || [ e (5= [ 1) a
< Ol |

Py

Our next goal is to study if, as m the case of the the Classical Riesz Potentials, they
are strong type (p, q) w1th 2= ;— €. This is not longer true for the Gaussian Riesz
Potentials. To see this, for every a > 0 let us split kernel (4) into the sum of three
kernels

2

. . e—a . e l——rra:‘ . dr
No(z,y) = Ca,a /0 (—10gr)°‘ l(m — e

T

_ly=rz)?
L e 1= dr

1
—g®e—l¥? B PR ar
ae +/el_a( 1087') (1—'r2)d/2 T
= Na(@,y) + Ni(z,y) + Na(z,y).

Using Minkowski’s integral inequality and the hypercontractivity for {T% }iso0 we get
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that for¢ =1+ (p—1De*>p

115l = | [ e o

Y

+00
=cl||| tT, (f—/fd7> dt
9y
<c/+°o ( /fdfy) y Mdt
<c/+°° <f—/fd'y) mdt

<Ol [ teha
<Ol

since ¢(§) =1+ (p—1)e* > 1+ (p—1)e® = g for all t > a and the gaussian measure
is a finite measure.

Since [ Jra Na(z,y) f (y)dyl < C||fllpy and v is finite measure, we have that if f €
LP(dy) then I,f € LY(dv) for any q > 1.

On the other hand, by taking f = ehvi X{yeRé:y, >1) and applying steps similar to the
ones in [3], we have . -

rryi-yy 2 rz’ —y')2
[ et >C///1_a1£_/ Cc
‘ 3 YT T) l—rz)‘/z Rdl(l_’rz)d_z__y T

et dy1] dy(z)

L2

2 21, e Ell—ﬁry“—

2C ezl/ / (1= 21/2
{zeRd:z; >1} .’n+1/z:1 —r'w——‘LACL (1 =T )

e(h—l)yfdyl| dy(z)
(oo}
> C/ xfe(hq_l)mfdxl‘.
. 1

Therefore for p < ¢ if we take h € (é, %), f € LP(dy) and L3 f ¢ LY(dv).

Though the Gaussian Riesz Potentials do not improve integrability, an L? log L(d")
inequality can still be obtained.
As E. Fabes suggested, the inequality

0 [ er@piost i@l ar<c ([ @ o g ost 17l )
follows from Lemma 3.8 on page 63 proved by L. Gross in (7], [8] which states

Lemma 2.1 Let (S, 1) be a probability measure.spa(:e. Suppose 1 < p < 00, € > 0
and g > p. Let s(t) be a real continuously differentiable function on [0, €) into (1, 00)
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such that $(0) = p and let F (t) be a continuously differentiable function on [0, e) into
LI(u) with F(0) = v # 0. Then ||F||sq) is differentiable at t = 0 and

d
—||E(¢)]|s
ZIF Ol

=l [p ) { [ 1wt ol ol lognvu,,}
+Re(F'(0), |F(0)["'sgnF(0))] .

Before proving inequality (7) let us introduce the generalized Poisson-Hermite semi-
group Q¢ = e~ for @ > 0, which is defined on the Hermite polynomials as
Q*Hp = e PI"tH and then extended to all polynomials by linearity. Let u be the
probability measure defined on [0, +00) such that its Laplace transform satisfies

/ e—As a(db) —e -\t
0

for 0 < x < 1, see [20]. Therefore Q¢ f(z) = [° Tof (z)uf(ds). From Minkowski’s
integral inequality together with the hypercontractlwty of the Ornstein-Uhlenbeck
semigroup {T;} = {Q}}, we get the hypercontractivity of the generalized Poisson-
Hermite semigroup for 0 < @ < 1. In order to use Lemma 2.1 to prove inequality (7),
let usset Q = RY, u = ‘%}’5. Let f be a non-zero polynomial, such that f}md fdv=0.
Set s(t) =1+ (p— 1)e§r‘, and F(t) = Q¥(I1f), then $(0) =p and F(0) = I f # 0.

‘From the hypercontractivity of QfF for 0 < o <1

HE@lls@yg = 1FO)lpy 1
; <

-1
1112 llpy =0

for every ¢ > 0. From this inequality and Lemma 2.1 as ¢t — 0%, we get

02> —|[F()lswn

— A 2= 1) [ 1R og iz )
~ 2B 108 117211p) + Be(E(0), s (L)L)
But F'(0) = —(—L)*I]f = —f. Thus,

t=0

/ P 08 1I3£@)| 1 < CAMLAIE, 08 12 + (71 1R

By applying Holder’s inequality to the second ‘term of the sum appearing on the

right hand side of the above inequality and using the LP(d7y) continuity of 17,

get inequality (7) for 0 < & < 1. In order to get inequality (7) for a > 1, we

write I f(z) = I7(I]_, f)(z), and apply inequality (7) to I] followed by the L”(d'y)

boundedness of I7_; together with the fact that z logt z is a non-decreasing function
n (0, +00).

AlbO as in the classical case, Bessel Potentials can be defined formally by

J=I-L)* a>0,
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and thercfore J)Hz = (1+|ﬂ|)°
A. Meyer’s multiplier theorem [12] we have that J? are bounded on LP(dy) for
1< p<oo.

On the other hand, again by P. A. Meyer’s multiplier theoremn,

(L) g =L
a—oF ™ o

Hg. Clearly J) is a positive operator. By the P.

are’bounded operators on every L?(dv), 1 < p < co. These give the relation between
the Riesz and Bessel Potentials, compare with Stein [17] (Lemna 2, page 133).
'Finally, Bessel Potentials can be used to define Sobolev spaces with respect to the
Gaussian measure, see [20].

3 The higher order ¢g* functions for
The main result of this section is the following

Theorem 3.1 There eists a constant C, dependmg on d and k, such that for-every
f € L'(dv) and every A >0,

(9) vz €RY: g f(2) > A} < Sl

where g% is the higher order g function (see (2)) and ||f||i4 = [ |f] dv. Fork =1
or k=2, g% (sec (8)) also satisfies this inequality. If k > 2, g% need not satisfy (9).

Before proving this Theorem let us make the following remarks:

1. The operator g& can be viewed as a vector-valued singular integral operator, see
[17). Let A; = R be the set of real numbers and A, = L*((0, +00), dt/t) the set
of R-valued square integrable functions on (0, +00) with respect to the measure
dt/t. For h € A,, = (J;7 |n(t)|%dt/t)' /2. B(A), Az, the set of bounded
linear transformations from A; to Ay, can be identified with A,. Thus

ny = |p.v. / K'r Z, y ) ’
where
x O
K& (t,zy) =t e Pt z,y)
_ 1 e—mlr—;rg}_ dr
=/, (1_7).190::( )r

_lezmy? s |
=/01(e31__i_27%_%(/()¢k.(t,)1>(1r,

k ¢ 2
; ”*'H(W) eThogr
k=1 3 .
(—logr) T - (—logr)?2

with tpk(t,’l‘) =Cy
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After an integration by parts,

1o e—l_rlt—;fyJz
/0 or (1-r2)2
_/1 [2(r:1:—y)~(x—ry)_ rd re—y|?

0

~|e” T, trclr,
1-m%F  1-r)% He)

WA (tw,y) = — Tk (t, )dr

v ds
where Tk (t,7) jo ex(t, )%
12

2. i) Clearly, |gk(t,7)| < Ct(—%%—/—z—, fort >0and 0 <7 < 1.

] d
ii) / <pk(tr)r =0, Vt>0, andforallk>1
Jo

This follows from the substitution u = 3 \/——I(Tg_r and k£ — 1 integrations by
parts. Indeed,

1 dr +00 )
/ x(t, 7‘) = Ck/ uF T Hy g (uw)e™ du
0
: +00 k+1
= Ck(—l)k“/ uk! d (e—"g) du
0

duk+1

+00 dz a2
: =Ck(k—1)!/0 T 2( Ydu = 0.

- 3. Tk(.,r) € Ay and |7%(.,7)|2 is bounded by a constant independent of r. Indeed

‘oo /T ds\° dt
mni= [ ([ et )
0 S t
(—logr)!/2 T ds dt
= t —
/0 (/0 SOk( 8)— s ) "
N e ! Cods\C dt
+/ ( / or(t,8)— ) -
(= logr)V/2 T 5 t

() + (1)

where inthe inner integral of(II) we use ii) from remark 2 toreplace j“ i (t, b)db/b

by —] @k (t,5)ds/s. Then we use remark 2 1) to bound |@g(¢,s)| in the in-
ner integrals of (I) and (II). Once this is done we make the change of variables
—logs = t* and (I)+(II) turns out to be bounded by

/(--logr)l/.2 /+oo 2 g 2 it_ . /+oo /_1:07 - o 2 dt .
Joo =g t Jiciogme \Jo t|’

which is a constant independent of r.



Riesz and Bessel Potentials and the Littlewood-Paley functions 25

4. Since for f € L'(dy), P,.f(x) turns out to be a smooth function we have

ok :
k Y12 — - (e
VEPf (@) = ‘; d o @)
1< <k
=C ) |D*Pf(z)]"
|lal=k

where D® =

ok g m
0x]"(-)-~azdd for a = (ay,...,aq) € N Thus

-

qu‘ / Z |tkDapj 2 (l,

lal=k

5. The operator g& can also be viewed as a vector-valued singular integral op-

k+d—1> o
copies of

erator with A; = R and A, be the direct sum of ( d—1

L?((0, +00), dt/t).

Let |h]y = (J;™° 3 ai=k [ha(D)?dt/t)! 2, for h = (ha) € Ay. Here B(Aj, A,) can
also be identified with A,. Thus '

pﬂl/dﬁﬁﬁﬂHWfWﬁw
R

2

gsf(z) =

where K&(t,z,y) = (1\'§a(t,x,y))|a|=k,

2

1 | b=
K% (t,2,y) = D°P(t,z,y) = C / tr 'Ha("" ‘”) ¢ dr
5,( y) (t,z,y) d.k ; (2, 7) wi(r) N (1_, )% !

2

TR tht1e Tlogr _ k-1 (=logr\*F
with I[k(t,’f') m_{:,wk(T)—T (T:rg}I) 7

6. By direct computation , one can easily see that [1(.,7)|1.2((0,400),att) 15 bounded
by a constant independent of r. Besides w;(r) is a bounded function on (0, 1),
and for k > 2, wi(r) < Cr on the same interval.

7. Let N = {(-’lfa'y) €R' xR*: |$—y|5d(1/\ﬁ’[)} and N, = {y € R? : (x,y) €
N}

Theorem 3.2 Let (A),| |i) and (As,| |2) be two separable Banach spaces. Let
T be a bounded linear transformation from LZ;(R" ,AL) to LK;(R“, Ay) for some p,
1< p < oo defined as

T7(e) = po. [ K(w0) o)y

where K defined on the set {(z,y) € R¢xRY : z # y} takes its values in B(A,, 4y)
and satisfies that for every constant Cy > 0 there ewists another constant Cy > 0
.I‘—ylSCl (1/\ l)

[

s0 that whenever
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i) |l (x,y)|s < ——;7,
ii) .liz—$|_>_2|z—y| |K(z: -7:) - K(za y)lB dz < Cs.

Let Tiearf () = T(xn, f)(2), then for every f € LL(R¢ A\) and every A > 0,
there caists C >0 such that

1o € R @ > 2 < 5 [ 170 (0)
Rd

Proof Let {B;}32, be a sequence of hyperbolic balls B ={zeR: |z—uz4 <
d(l A 1/|z;|)} such that R¢ = yBj and 3532 1 x; ( ) < C VY z € R¢, where
= (2d + 1) B; is such that UzEB] N; C B;. Then

400
o € R Toatf ()2 > A} €D v{z € By : [T(xn, f)(2)]2 > A}

j 1

<Z'7{I € By : [T(xu; [)(0)l2 > M2} +

+ Zv(wj)l{-'v € Bj : |T(xp\n.f)(@)|2 > A2}

= (I) + (IT)

The proof that (1) is bounded by £ [L |f(y)|i d¥(y) was done in [14], on pages
65-67, for the scalar case. The vector case follows the same steps with minor
changes: at the beginning of the Calderén-Zygmund decomposition one has to
replace f > 0 by |f]; in order to get the sequence of cubes {Qx}72, such that
(@) [f(@)i £ X ae z ¢ UQ,

() 1UQul < &y f @) da,

(©) A< @ fo, 1/@)] do < 292,
and after that one defines

g(z) = { IQ Ifi:(x) )dy g izLéQk , and b(z) = f(z) — g(z),

follows the steps written there, and whenever one finds an absolute value this
must be changed by | - |; or | - |2, whichever corresponds. The condition on the
gradient of the kernel is replaced by the Horménder conditien 33).

In order to prove that (II) is also bounded by £ [, |f(y)h dy(y), let us observe
that for 2 € B, :
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T @k < [ 1K@ w)le Wl dy
*\Ne
' W,
<G /B;\N, |z — '.Uld W
< CM (x| 1) (@),

where M is the Hardy-Littlewood Maximal Function. The second inequality
comes from condition i) and the last one by taking into account .that for y €
B} \ N;, we have d(1 A 1/|z]) < |z —y| < (2d + 1)d(1 A 1/|z;|), and |z| ~ |z;].
From the fact that M is weak type (1,1) with respect to Lebesgue measure, we
have :

(<S> ) [ 16l dy
=1 i

<5 [ wlaw.

where the last inequality was obtained from the fact that the Gaussian density is
of constant order of magnitude over each B} and that the sequence {B;}52, has
bounded overlap.

8. The following Theorém proved by S. Pérez in [14] will be used in the proof of
Theorem 3.1. '

Theorem 3.3 The operators

(10) T"f(z) = /Rd K*(z,y) f(y)dy,
where |
. el if -y <0
K*(xz,y) = (;]_.i.%})ze_uj%llﬁ_l.r—y!zlr+u| i soy>0
and .
(i T35@) = [ Kitws) f)dy
where |

o K*(z,y) if ©-y<0
WwWir,y)= L |x|]y ¥ ;
2(29) ((|:c +yllz —y|)2 Ix:"ﬂﬁ;l’ + 1) K*(x,y) of 2-y>0

are weak type (1,1) with respect to the Gaussian measure.
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Proof of Theorem 3.1. In order to prove this Theorem we are going to bound
each function g& f(z), g&f(z), and g4f(x) by the sum of two which are weak type
(1, 1) with respect to . In the end we will give a counterexample showing that gk
need not be weak type (1,1) for k£ > 2.

Clearly for L=T,S

gif(z) < ga lomlf( z) + g JC,globutf(x)

where

p-v-/N KE(2,9)f (y)dy|

2

gﬁ,local f (:I") =

and

08 st (&) = / K52,y ()] dy,
]Rd\Nw .

The functions g§ 15, f () and g§ gop, f(2) can be bounded by T*|f|(x). Indeed, by
applying Minkowski’s integral inequality to I\T and remark 3, we get

_lra—yl? .
e 1-7r

. < e 1 -

IA (,z,y)2 < C/ 5 (1_7‘2)% dr

and this last term is bounded by K*(z, l/) as it was done in [14], pages 47-49, after
the change of variables t = 1 — r2. By applying Minkowski’s integral quuallty to
K& and remark 6, we get

lrr—y|?
|Ks(., xylg<C/ T—‘)—Ziﬁe =% dr.
_7' 2

The right hand side of this inequality is also bounded by K*(x,y), see [14], page 39.
In the same way, g3 g0 f (%) turns out to be bounded by Ty|f|(x); in fact using
Minkowski’s integral inequality and remark 6

lra— 2
Ty — e 1
U\s( z,y)|2 < oz rdr,
lal=2 1- I‘Z (l — ) 2

and the 11;,11( hand side of this mequalilv is bounded by N3 (z,y), sce [14], page 52.
Therefore g5 global> gk globat» and g% Jglobat tUITL OUE t0 be weak type (1,1) with wapcct
to v via Theorem 3.3.

[t remains to prove that the local parts of these operators are also weak type (1, 1)
with respect to . Since these operators are bounded on LP(dvy), 1 < p < o0, see
(10], the hypothesis on boundedness of Theorem 3.2 is satisfied. Therefore the result
will follow once we check that the kernels of these operators satisfy conditions (1) &
(i) of Theorem 3.2. Before doing this, let us observe that for Yy € Ny,

2) |o- (x—u)l < |o| |z — 9] < C and Jz] ~ [y.
rT— ‘2 lz— !2 —r)le)? a- (& — ] —m)lr|?
b) ForO<r <1, e S = e_C_U-l")e'u‘c)l-L = < Ce” e P
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c)

lrz —yl |z —ryl =z —y =K1 = r)z| |z —y + (1 = r)y| |
< lz =yl + (1 =)l + lyhle =yl + (1 = r)*|] [yl
<Cllz -yl + Q-1+ (1 -1

Condition (i) of Theorem 3.2:
By applying Minkowski’s integral inequality to kernel KX and remark 3, we have

1 ;

g — - 1 e

w o <o sz =y
|I\T("I"’y)|2—c 0 9(1_7,2)4_;_4 + (1—7‘2)‘& e 2 dr,

which by (c), (b) and the fact that |t|"‘e“2 < C, the right hand side of this inequality
can be bounded by

1-7)
1 z—y|? l—-r):'z
e -ne” 2 dr
(1—r>£‘%-“}
S
<C/1 e 4111" d
< T
o (1-n%
S_C_d.
ke -yl

By applying Minkowski’s integral inequality'to kernél K%, remark 6, the fact that
H, is a polynomial and that |t|"‘e‘°‘2 < C, we get that

(rz )'(e

dr
1-— 7‘2 1 7‘2)%'

K .L‘y|2<C'Z/

|lal=k

:‘(tl:r
<c/ e T

1—7' @4
Iw—yl“

for all k. _
Condition (ii) of Theorem 3.2:

In order to verify Hérmander’s condition ii) of Theorem 3.2, it will be enough to
check that ‘%%(.,x,y)‘z and

%ny;’{(., x,'y)‘ are bounded by . To this end we
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use the definition of K% from remark 1 in order te calculate

e ! (rz T=r rd |rz—y
VK510 =2 {F( e Tl gﬁ}l_ﬂ

-5 (1-)%
_fz —Z‘ly)—ﬂ;;‘)(; - y)} e -'L_,”z‘-fk(t r) dr,

and the definition of K% 5o from remark 5 together with VH (205 Hoe;) 71 where
ej = (0ij)i=,, in order to get ‘

-k

OKs ' ! ' [ a; TT— Y
- t,z,y)= C/ mk(t, T '——*—]——Ha_e. (-—-—————-———-)
%, !( z,y) | M (t, T)w(r) e tlame; | 7=
T =Yg (TP ¢ i
1=r2 7 \Vi=7r2) ] (1- )%

+

forall j=1,...,d.
Thus, by applying Minkowski’s integral inequality, remark.3, (b), |z — ry| < clrz —

y| + c(1 — 7)|z|, (c), and the fact that lt]“"ef“2 < C we have -
0K} ‘ /1 |z = ryllz — ry 1 rz—y| (=1l
: <C s = +
‘ 5 )2— Jo: (1-r2)% Q1=-r)F| 1-72  (1-r)% |

"z"ﬂz 1-1)|z)? z-y|?

e— 4(1-r e— Y = e_ 4(1-r) dr
2 - — 2 —r)|z|?
<C/[w A =r)tQ—rfief 1 }_L%L

1-r2)% 1 -r2)%
e 4(1—1-) dr
|2
1 e_ls_(l_}%
< ey
o 1-n%F
c
Tz =yt
and 'similarly
. w
. C

0Kk
~(.,,
l B (+7,9)

<C < .

, o (1- r)ﬂ |z — ylé+!

According to Theorem 3.2, the operators JT tocar 21 JS local tUT 0UL t0 be wcal\
type (1,1) w1th respect to «y for all k. .

To see that .‘!.s for k > 2 need. not satisfy the weak type (1,1) 1nequahty, we refer to
(4] where it is shown that the higher order Riesz transforms need not be weak type
(1,1) with respect to + if their order is greater than 2. There they take y € R? such

that |y| is large and y; > M, i=1,.. d and ¢ > 0 so that ‘H, (%) > cly|el.
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Then they define J = {Fr;ﬁ +v: Lyl <&<iyl,oly, v < 1}. For |a| = k and
zed

rz—y|?

-k e [ e i
Kbaltan) 2 clult [ mt ot dr
1/4 (1-72)"
3/4 |lz—7 2 .‘
>c t’°+‘e"‘2|yl"/ e~ 12 e WPl gp
1/4

3/4
>c t"“e_“zlylkefzf'y'z/ e~EThD? g
, 1/4

2 1 £2_ 1,12
2 Ctk+le Clllylk lef |y| .

Now, if we take f = 5ye|y|2 (by 6, we mean the delta measure at a mass point y) we
get forx € J

k(s lyl? Tkl ety b1 g2 20t i
9s(6,e”")(z) 2 le e yI" e P
0

> c |y|Fef’

2
> c ly|te()

Let us assume that g& is weak type (1,1) with respect to 7. Then

W) < 9{z e R : (@) > ¢ lye#)')
<Ol re ()

but y(J) ~ e () ly|~"; therefore k < 2.

4 An Area Function for v

We define an Area Function S, f as

(12) 82 () = /

Py

IVEf(y)Pt (¢4 V |2tV 1) dy dt,
z) )

where r,(z)= {(y,t) ERFL: |y—z|<tA ﬁ A 1} is a Gaussian cone.

. (z Ay = min{z, y} and = Vy = max{z,y}).
vThe main result of this section is

Theorem 4.1 Suppose that f is a smooth function. Then
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i) There exists a constant C such that for every z € R¢,
(13) 92 () < C 8, f(x).
i) If 1 < p < oo, then there ezists a constant A, such that

(14) 1525 lpey < Ap 1S llpirs

where || f|lpy = (fya |f1Pd7)"".

To prove the above Theorem we basically follow the steps given by E. Stein in
~ [17], pages 86-94. In order to apply those steps we need to use some results about
boundedness of an associated maximal operator, certain mean value inequalities
 which are interesting by themselves, and some inequalities proved by C. Gutiérrez
in [9].

In 1994 L. Forzani and E. Fabes [2] defined the non-tangential maximal function for
the Poisson-Hermite semigroup as

(15) - Pf@= sw [Rf@),

(y:t)€ly ()

and proved

Theorem 4.2 i) There ezists a constant C, depending only on d, such that for
every f € L'(dy) and every A > 0, the following inequality holds

1y €R: P > A < Slflhy

ii) There exists a constant C, dependmg only on d and p, such that if f € LP(dv)
for1<p<oo then

- (16) 1P* flloy < Clifllps-

Lemma 4.1 Let us consider the operators
o*u
(17) L1u = 5;"?

If u satisfies Lyu = 0 or Lyu =0 then

+ Lu, and Lyu = Liu — 2u.

i) (Mean Value inequality)

c

(18) lulz,t)| < [B((z,8),7)] J sanr)

lu(y, s)|dy ds,

L A1

forr <tA o]
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@) Ifu>0in B((x,1t),2r) then
1
W B((z,t),r)
Jor any (z,1) € B((x,t),7), withr <t A IITI AL
i) (Harnack inequality) There exists a constant C > 0 such that if u > 0 on

(19) u(z,l) = u(y, s)dy ds,

B((x,t),2r)

(20) sup u<C inf w
| B(@t).r) B((z.0)7)

Jorv SUA AL

Suppose we have proved these propositions. Then we lhave

Proof of Theorem 4.1.

i) The components of Vu(y,t) = VP, f(y) (for f smooth enough) are solutions of
Lyu = 0. Then, applying the Mean Value Inequality (Lemma 4.1, (18)) in the
definition of g§(f) we get, after using Schwarz inequality,

(9sf)*(@) < C / t(t=4t v [z v ) / IVu(y, s) Pdydsdt.
0 B((z,t),t/\l_—;[/\l)

Since B((x, t), t/\m/\l) C I'y(z), and if (y, s) € B((x, ), t/\| Al), |s—t| < t/\l AL
we have

(9s)*(x) < C’/ |Vu(y, .s)|2/ (V|| v 1) didyds
Fy(2) ls=tl<sApAl

< C/ IVuly,s)[?s(s™¢ V |z|* v 1)dsdy
7(1-‘)
= CS3(f)(=);

as we wanted to prove.

ii) To prove the L? inequality we consider two cases
1) p > 2 Let ¢ be a positive function in R®. Interchanging integrals in the definition

of the area function and tdl\mg into account that y(B(x,t A |1l| A1) ~ (A |24 A

1)e~l* | we have
[ s
R4

T Tl 2 1 [
SC./R‘IA tIVu(y, 1)] FBE A TAD) /“W M)l/)( v)dy(2)dtdy(y)

<C [ (8D Mriu)drta),
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where My is the truncated maximal function

‘ ) = 1 7 |
(21) My f(y) . (f)tl]ﬁpm] YBG sm |f (2)|dv(2),

which is known to be strong type (p,p) for p > 1 and weak type (1,1) with respect
to the Gaussian measure v (see [11]). If we apply the LP(dvy)-boundedness of gff
(see [9]) in the last inequality we get (14) for p > 2.

2) 1 < p < 2. If f is smooth enough and positive we can use that L,(P.f)? =
Cp(L.f)P%|Vul? to have

(22) S2f(2) < Cy(P*J (@) I* (a),

where P* f(x) is the non-tangential maximal function asociated with the Poisson-
Hermite semigroup (15), and

r@= [ (PI@PE Vel v s
Ly (x)
C. Gutidrrez proved in [9] that

[ [ pswraar < [ 1rper

therefore

{o ]
(23) I*(x)dy(z) < C’/ / t Ll(PLf)”/ (t=4V |x|¢V 1)dx didy
JRd (] Rd B(y,c(tAT‘—l/\l))

(24 <c [ i ar

Now, let us prove (14) for this case. From inequality (22), Holder’s inequality with
expouents 1 = £ and its conjugate, inequality (23), and Theorem 4.2 (ii), we get

/' 15,()(@)Pdr(z) < C / (P £(2)) “F2 1 (2) 3 (2)
R¢ Rd

=¢ </Rd(7yf("';))pd7(w)) N (/Rd 1*(2:)(1’7(;5))’,/2
<c [ 1fe@pna)

Proof of Theorem 4.2.

It is enough to prove the weak type (1,1) of P* since the L boundedness is im-
nmediate, and by applying Marcinkiewicz Interpolation Theorem we get (16) for
1 < p < oo To prove the weak type (1,1), it suffices to consider f > 0. Let us note
that for all (y,t) € [',(z), (y,t) € B((z,t),t A I—alt—l A 1); thus from (20) in Lemma 4.1
we have ’

u(y, t) < Cu(z,t).
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Therefore, P* f(x) < Cupysy Puf(z) = P* f(z), and this last maximal [uuction is
weak type (1,1) with respect to the Gaussian measure (see Section 1).

Proof of Lemma 4.1.

Let us prove it for u solution of Lyu = 0; the case for Lyu = 0 is analogous. For
each (zo,t0) € R, |xo| > 1, set B = B((mo’to)’LTl()l)' Let us define on B the
transformation

’

1 €
|0l ’

T =1+
t=to+ —
|CC0|

Then (2,t) € B if and only if (z',¢) € B((0,0),1). Now, let us define the function

v 1 1 . )
Uz ,t) = z0+| Ix t0+l |t on B((0,0),1).
To To
The function U satisfies the equation

BV =21 |(£0+|1| )leUzo.
Zo

Since (z',t') € B((0,0),1) then EIJ

the Classical Mean Value Inequality ([6] page 244) for elliptic differential operators
with bounded first order coeflicients, we have

(xg + Iw Q@ ') is bounded by a constant. From

U0 < o

Uz, t) |’ dt’
B((0,0),s)

for all s <1.
Now, by the definition of U, the last inequality can be rewritten as

C ! 1 ' ]_ ’ B ,
|u(wo, to)] < T / U (zo 4+ —x,tg+ —t ) de dt
5T T (0009 |zol lzo] /|
Clazad+!
= lbdo+|1 / |u(z, t)|dxdt.
5 B((z0,y0)s i 57)

Hence, in order to obtain inequality (18), if ¢p < |x D take s = |2o|to and if ¢ > Ix D
s = 1. If |ay| <1 we can apply to u the Classical Mean Value Inequality in the ball
B((zo, to),1). ’
To prove (19) and (20) we use, as before, the results known for classical positive
solutions, see (6] pages 244-250.
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