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We shall give three
' 
criteria for the uniqueness of limit cycles of systems of Liellard type 

x '= a(y)-f3(y)F(x}, y '= -g(x}, examples are provided to illustrate our results. 

1. Preliminars. 

The main goal of this work is to study uniqueness of limit cycles of system: 

x '=  a(y) - j3(y)F(x), 
y ' =  -g(x), (1) 

where the functions in (1) are assumed to be continuous and such that uniqueness of 
solutions for initial value problems is guaranteed. 

. 
x y 

If we define as usual G(x)= f g(s)ds, A(y)= f a(r )dr ,  then we assume that the following 

conditions hold� 
u u 

i) a(O)=O, a(y) is strictly increasing and a(± oo)=±oo ; 

ii) xg(x» O when x;o<O and G(± oo)=oo ; 

iii) j3(y» O for yER, is a nonincreasiRg function; 

iv) there exist constant X I , X2 with Xl < 0 < X2 such that F(Xl)=F(O)=F(xz)=O and 
xF(x)<O for xE(xI ,X2)\{0} ; 
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v) there exist constants M>O, k, ko with k>ko, such that F(x» k for x�M and F(x)<ko for 

x:s;-M; 

vi) one of the following: 

1. G(XI)=G(X2), or 
2. G(-x)�G(x) for x>O. 

Furthermore, we assume (see [22]) that first equation of system (1) defines implicitly ,  a 
function y=h(x) such that, h:(-m,m)-R and 
• m>O, 
• h(O)=O, 
• a(h(x» -j3(h(x» F(x)=O, xE(-m,m), 
• sgn h(x)=sgn F(x) when x .. o. 
Also, in that paper, we proved the following result: 

Lemma A. If there exist some positive constants N and M such that: 

I F(x) I :s;N, V'xER and j3(y):s;M, V'yER, 

then hex) is bounded and m=+oo. 

h(x) 
Considering W(x)= f a(y)dy, where h is the above function, we have: 

o 

1 .  if X2:S; I XI I then max {G(x) + W(x)} � G (Xl )' O S X :S X 2  
2. if 0< I XI I <X2 then max {G(x) + W(x)} � G(X2) .  X I .s; x s() 

We remark that system (1) is the classical Lienard differential equation x"+f(x)x'+x=O 
when a(y)=y, j3(y)a1 ,  F'(x)=f(x) and g(x)=x. The following facts are know: 

a) Conditions i)-iv) imply that system (1) has a unique singularity, which will be an 
unstable focus or node (see [23]). 

b) If v) holds then there exists a closed curve r such that every trajectory intersecting it 
crosses it in the exterior - to - interior direction, hence implying the existence of at 
least one stable limit cycle, by the Poincare-Bendixon theorem, see for instance [4] . 

c) Condition vi) assures that all closed trajectories of system (1) have intersect both 
X=Xl and X=X2 (use [11]  and a comparison result, see for example of [25]). 

d) In [14] we proved that under conditions i)-iv) all solutions of (1) are continuable· to 
the future. 
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Some attempts [ 1 -3,5-13 ,18,20,21 ,23,25-28] have been made to  find sufficient 
conditions for existence and uniqueness of limit cycles of some particular cases of 
system (1), under the conLition F(±oo)=±oo. In this paper we obtain sufficient conditions 
for uniqueness of limit cycles of (1) without make use of above condition. These criteria 
are refinements of early results of the author (see [15-18,23]), so we consider that the 
following condition is added: 

F(x) is nondecreasing for xE(-oo,XJ)U(X2,oo). (2) 

If i)-vi) and (2) do hold we will give a short proof that system (1) has exactly one limit 
cycle, not by using a comparison method but by estimating the divergence of system (1)  
integrated along a limit cycle. By this we can show that the limit cycle is  llyperbolic. A 
limit cycle is hyperbolic, or simple, if for any arbitrarily small analytic perturbation of 
the system there is not other limit cycle in a sufficiently small neighborhood of the limit 
cycle. 
Let X be a vectorial field plane and y a closed trajectory of X with period T. The 
number 

T 
c(y) = fdivX(y (t» dt , 

o 

is called "characteristic exponent of y". 
The next proposition is a classical result; for a proof see [4] . 

Lemma B. Let y be a periodic orbit of a vector field X in R2. Then y is a stable limit 
cycle if c(y)<O and unstable if c(y» O. 

Next we will state an additional condition to guarantee the uniqueness of the limit cycle 
in case (2) is violated. If the functions in (1) are all odd then system (1) exhibits 
symmetric with respect to the origin and the conditions of our theorem can be 
weakened. 
Finally we provide some examples that illustrate our results. 

2. Tllre.e uniqueness criteria for system (1). 

We will first state a theorem in case both i)-vi) and (2) hold. 

Theorem 1. If conditions i)-vi) and (2) hold, then system (1) has exactly one closed 
orbit, a hyperbolic stable limit. 

This theorem will be proved by showing that if y is a closed orbit then its characteristic 
exponent c(y) = -f �(y)f(x)dt satisfies c(y)<O, where f(x)=F' (x). This shows that y is 

y 
hyperbolic and stable. Because two adjacent limit cycles cannot both be stable, the 
uniqueness of y follows. In order to estimate the characteristic exponent the following 
lemma will appear to be useful . 
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Lemma 1. Let Y be an arc of an orbit of the system (1), described by y(x), asxsb. Then 

-fj3(y)f (x)dt = sgn(a(y(a» - j3(y(a» F(a» In lj3(Y(b» F(b) ,... a(y(a»

.
1 + 

j3(y(a» F(a) - a(y(a» 
y 

da 
b (j3(y(b» F(b) - j3(y(x)F(x» g(x) -
f 

dy . + . � .  
a (j3(y(b» F(b) - a(y(x» (j3(y(x)F(x) - a(y(x» )2 

The proof of this lemma is based on ideas of proof presented in [26] . In that paper is 
considered the system: 

. 

x '= hey) - F(x), 
y '= -g(x) . (3) 

To prove Lemma 1 we consider, instead of the above system, the system (1). Modifying 
ideas of [26] we obtain the expected result. 
Proof of Theorem 1. It was shown in [18] that it follows from the conditiOJ.).s i)-vi) that 
system (1) has at least one limit cycle r and it intersects both X=Xl and X=X2. 
Denote the intersection point of r with the positive y-axis by A. Let B and C be the 
intersection points of r with X=Xz In the first and fourth quadrant, respectively.  If we 
denote the arc of r between A and B by Yh !hen applying Lemma 1 with a=O and b=x2, 
yields: 

da 
x , j3(y(x» F(x)g(x) dy 

-! j3(y)f(x)dt = t a(y(x» (j3(y(x» F(x) _ a(y(x» )2 
dx. 

This integral is negative because the integrand is negative by virtue of i)-iv). Thus have 
we proved: 

- fj3(y)f(x)dt < O. 
Y1 

For Yz, the arc of r between B and C, we obtain by (2) and f(x)=F'(x) :  

- fj3(y)f(x)dt < O. 
Y2 



Uniqueness of limit cycles 43 

In an analogous way, the inequality -f�(y)f(x)dt < 0 is obtained. This completes the 
r 

proof. 

If the monotonicity of F(x) is only assumed on the intervals (XP XI ) and (X 2 , x 2 ) then 
we can obtain the following: 

Corollary 1. If conditions" i)-vi) hold and F(x) is nondecreasing on (X I , X I ) and (X 2 , x2 ) 
then in the strip � :;; x :;; x 2  system (1) has at most one closed orbit, a hyperbolic stable 
limit cycle. 

Proof. If system (1) has a closed orbit then its uniqueness can be proved as in Theorem 
1. However, in the strip X l :;; X :;; x2 the existence of a closed orbits is no longer 
guaranteed. 

Next we present the Lienard equation of degree five on the plane, stud ied by BiI leke, 
Burgos and Wallace (see l2-3 J) which shows that if th<,: condilions i)-vi) hold but (2) 
does not, then system (1) can have more than one limit cycle. 
Consider the following system: 

X ' = y - E(a x + a  X 2 + a  X 3 + a  X4 + a  XS ) 1 2 3 4 S '  
y ' =  -X, 

with O:;;E« 1 .  For E=O all trajectories of (1) are closed and satisfy 
(linear center). 
To find the closed orbits for O:;;E« l we have to study : 

2Jr 
f dH = -2e fr cos tF(r cost)dt + O(e2 ), 

x 2 + y 2 . r 2  0 

(4) 

whose zeros correspond with limit cycles for system (2), see [2,3 ] .  An elementary 
calculation reveals that: 

. f
2it 

. 2 ( 3a3 2 15as 4 ) I(r) = r cos tF(r cost)dt = nr a1 + - r + --r . 
o 4 24 

(5) 

Thus we have that system (4) has two limit cycles if aI , a3 , as have alternated signs, 
0< I al l « I a3 1 « I as I and I az l ,  I a4 1 are sufficiently small (see[2,3]). 
It is easy to check that the conditions i)-vi) hold but (2) is not satisfied, as can be seen 
by studying the graph of F(x). 
If (2) is violated then we need an additional conditiori to guarantee the uniqueness of the 
limit cycle. In order to formulate this condition we will use the following lemma, which 
is easily obtained from Theorem 7.9, Chapter 4 of [28]. 
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Lemma 2. Let FJ (x)=F(x) and F2(x)=F(-x), both for Osxsd, where either d� or 
d=+oo. Suppose the · conditions i)-iv) hold and in addition, assume the following 
assumptions are fulfilled: 

I) g is odd and nondecreasing function; 

II) y=F1(x) intersects y=F2(X) at two points, (0,0) and (a,b) with O<a-:::d; 

Ill) F2(X)�Fl(X) for xE(O,a) ;  

IV) For j=1,2 there exist "tj , Ej E[a,d] with "tj s Ej such that: 

a) (-lY Pj (x)sO for xE["tj ,r]C[a,d], where r = I?Jax{"tj + Ej}, )-1,2 
b) (-lY Fj (x)+(-1i-j F3-j (X+Ej}SO, not identically zero, for xE[O,"tj] ; 

c) F1(x» 0 and F2(x)<0 for xE[r,d] . 

Then for all xoE[r,d] "the backward and forward orbits passing through (xo,h(xo» cross 
the y-axis in A and B, respectively. Similarly, the forward and backward orbits passing 
through (-xo,h(-xo» cross the y-axis in C and D, respectively, where YA>YC and yB>yO. 

As an application of this theorem we obtain the next result. 

Corollary 2. Under conditions of above lemma, for all xoE[r,d] system (1) has no 
closed orbits in the strip I x I sd which cross X=Xo or X=-Xo. 

. 

Proof. Suppose that there exists a closed orbit r1 intersecting y=h(x) in S(xs,h(xs» and 
T(xT,h(xT» , with Xs>Xo and XT<-XO. 
First consider XS>-XT. Let R denote the intersection of r1 with the positive y-axis. Then 
by Lemma 2 the forward orbit y passing through (-xs,h(-xs» will cross the positive y
axis, say in U, such that YU<YR . This is impossible because obviously y cannot intersect 
r1 • The case XSS-XT can be proved in a similar way. 
An oscillatory orbit intersecting x=-xo but not X=Xo has to cross the y-axis from A to C. 
But then, because YB>YD, this trajectory cannot intersect x=-xo again so it cannot be 
closed. The same argument holds for trajectories crossing x=xo but not x=-xo. This 
exclude the possibility of a closed orbit intersecting only X=-XQ or x=xo. This completes 
the proof. 

. 

Remark 1. When g(x) does not satisfy condition I) of Lemma 2, we can define 
functions P*(u) and <j>(x) on R by expressions: 
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PO (u) = 

x 

, G�l( �J)' u � 0, 

, O�l( -� )), U < 0, 
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with G1 (x) = Jlg(s)l ds, and the mapping <I>:(x,y)-(u,v) by <I>(x,y)=(cJ>(x),y) . Then pO (u), 
o 

�(x) and <I>(x,y) are continuous. Consider the system (see [16]): 

u '= a(v) - (3(v)PO (u), (6) 
v '= -u. 

Now (6) satisfies condition I) of Lemma 2, because g(u)=u, but in general it will be 
quite cumbersome to check the other conditions. 

Theorem 2. Suppose that system (1) satisfies the conditions i)-�v), I)-IV) and in 
addition assume that: 

P'(x)�O for xE(-r,xl)U(x2,r). (7) 

Then in the strip I x I sd system (1) has exactly one closed orbit, a hyperbolic stable 
limit cycle. 

-
Proof. Consider the backward and forward trajectories passing through Bo (r,h(r» and 
suppose they cross the y-axis in Ao and Co, respectively. Similarly,  suppose the forward 
and backward trajectories passing through Eo (-r,h(-r» cross the y-axis in Po and Do, 
respectively. Then by Lemma 2 all trajectory of (1) intersecting the curve 
A;;jj�CjjoE�F;�; crosses is in the exterior-to-interior direction, because YA > ye and . " TU 
Ye. _ > YD. · 
Because 0(0,0) is an unstable antisaddle it follows from Poincare-Bendixon theorem 
that system (1) has al least one limit cycle in the strip I x I <r. By condition vi) follows 
from Corollary 1 that the limit cycle is hyperbolic and stable and hence unique. It 
follows from applying Corollary 2 with xo=r, that there are no limit cycles in the strip 
I x I sd that cross x=-r or x=r. This completes the proof. 

If the functions a, g and P are odd and (3 is even then system (1)  is symmetric with 
respect to the origin. This means that the conditions of Theorem 2 can be weakened. For 
- this cas� we will not use Lemma 2 but -the following: 
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Lemma 3. Under conditions i)-iii) suppose in addition that the following assumptions 
are fulfilled: 

a) a(-y)=a(y), g(-x)=g(x), f3(-y)= f3(y) and F(-x)=F(x); 
b) there exists X2>O such that F(O)=F(X2)=O and F(x)<O for XE(O,X2); 
c) let I=[O,x2] and J=[x2,d] with x2<d, cp:I-J is weakly increasing, continuous and 

g(cp(x» cp'(x);,:g(x) for xEI; 
d) with cp as above we have F(cp(x» ;,:-F(x) for xEI; 
e) F(x» O for all xoE[x2,d] . 

Then for all xoE[cp(x2),d] the backward and forward orbits passing through (xo,h(xo» 
cross the y-axis, in A and B respectively and YA>-YB. 
The method of proof of this lemma is exactly the same as in Alsholm [1] ,  Corollary 3 .  

Remark 2 .  lf the functions in system (1 )  are as  in Lemma 3, then Lemma 2 i s  a special 
case of this with cp(x)=x+£, and E=E1=E2 by symmetry. 

Theorem 3. Suppose system (1) satisfies the conditions i), ii), iii), a)-e). Furthermore 
assume that: 

F'(x);,:O for XE(X2, CP(X2» . (8) 

Then in the strip I x I sd system (1) has exactly one closed orbit, a hyperbolic stable 
limit cycle. 

The proof of Theorem 3 is basically the same as that Theorem 2 and we leave it to the 
reader. Note that we have dropped condition 'Vi) because all symmetric curve, respect to 
the origin, of a trajectory of system (1) is also a trajectory, i.e., if (x(t),y(t» is a 
trajectory of (1) then (-x(t),-y(t» is also a tt:ajectory. 

1. Examples and related results. 

We present here, some illustrative examples of our results. 

Example 1. In [1] the existence of limit cycle of the equation: 

is considered, and Guidorizzi (see [6]) proved that the origin is globally asymptotically 
stable and, for all nontrivia1 solution x=x(t) the trajectories y(t)=(x(t),x'(t» approaches 
the origin, in spiral, as t-+oo. Is easily check that condition iv) is not fulfilled. 
Lins, de Me10 and Pugh [13] proved that if F(x) is a polynomial and the condition: 

F(x);o<F(-x) for all x>O, 

Holds, then there exist no nontrivial periodic solutions of (3) with a(y)=y and g(x)=x 
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(see also [7]). This example show the necessity of condition iv) or any other on F(x). 

Example 2. Consider the ::.ystem: 

, 
(

3 2 ' ) X == Y - a3x + a2x + ajx , 

y' .. -x, 
(9) 
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this example was discussed by CoIl, Gasull and Llibre [5] ,  equation (2). They proved 
the following: 

Corollary 8. The polynomial Lienard equation (9) has at most one limit cycle which if 
it exists, is hyperbolic and stable, when I a2 1 is sufficiently small. 
Is clear that if ala3<0 the system (9) satisfies all conditions of Theorem 1 .  

. Example 3.  Consider again the system (4), and IER as in  (5), thus we have the 
following facts (see [2,3]): 

The system (4) has exactly one limit cycle if: 
i) alaS<O and a3�0 or < 

ii) ala5<0, a3<0 and -N<<4<M for N,M>O. 
iii) as=O and alaS<O. 

' 

iv) A1=0 and a3aS<0 and �N<a4<M for N,M>O. 
The conditions of Theorem 1 are fulfilled, this analysis is easy and we leave this as an 
exercise to the reader. 

Example 4. Consider the system: 

x' == a(y) - kF(x), 

y'= -g(x), 

with k>O, F(x)=x(x2-1)(x20-140x+247)/20 and where a(y) and g(x) satisfy i), ii), iii). 
This example was analyzed in [12] and they showed that it satisfies all conditions of 
Theorem 2. If we take F(x)=4x(x2-1)/(4+3x4), a(y) satisfies i) and a(-y)=- a(y) we can 
check that all conditions of Theorem 3 hold (see [12] and [20]). c 

Remark 3. Our results are consistent with those of [1 -3,5-8,10-1 1 , 1 3 , 18,20,26-27,29] 
related to existence, uniqueness and stability of limit cycle for Lienard equation: 

x" +f(x)x' +g(x)=O, (10) 

and with the nonexistence of periodic solutions (see [8,16,19,24]). 

Remark 4. The above remark still valid if we consider the results of [9, 12,21 ,25,28] 
refer to system (1). 
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Remark 5. Our results contains, in particular, those of [12] and [21], refer to the 
system (3). 
Remark 6. Consider the equation (10) with f(x)=(2x-l)exp(x2+99x*100) and g(x)=x . In 
[6] Guidorizzi proved that, in this case, the equation admits at least one non trivial 
periodic solution. 

Now the following question arises. 

i, Under which additional assumptions on F(x), we can obtain a similar uniqueness 
result for system (1), if F(x) has a unique root? 

This is not trivial question, its resolution implies to extend the results of [6,7,21,24] to 
system (1) (and consequently to (3» . 
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