T1 theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type

Silvia I. Hartzstein*and Beatriz E. Viviani[†]

Presentado por Carlos Segovia Fernández

Abstract

In this paper we extend the definition of the Besov and the Triebel-Lizorkin spaces in the context of spaces of homogeneous-type given by Han and Sawyer in [HS]. We consider, as a control of the 'local regularity', functions $\psi(t)$ more general than the potentials t^{α} used in their case. We also state T1-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditions.

1 Introduction

In the context of spaces of homogeneous type, G. David, J.L. Journèe and S. Semmes, in [DJS], showed how to construct an appropriate family of operators $\{D_k\}_{k\in\mathbb{Z}}$ whose kernels satisfy certain size, smoothness and moment conditions and the nondegeneracy condition $\sum_{k\in\mathbb{Z}} D_k = I$ on L^2 . In [HS], Han and E. Sawyer introduced a class of distributions on spaces of homogeneous type and then established a Calderón-type reproducing formula associated to that family of operators for this class. This formula allowed them to define the Besov spaces $\dot{B}_p^{\alpha,q}$, $1 \leq p,q < \infty$ and the Triebel-Lizorkin spaces $\dot{F}_p^{\alpha,q}$, $1 < p,q < \infty$ and to show that those spaces are independent of the family of operators $\{D_k\}_{k\in\mathbb{Z}}$ involved in their definition and, in this way, to develop Littlewood-Paley characterizations of them.

By considering more general functions $\psi(t)$ than the potential functions t^{α} as a measure of the local regularity, in this paper we define the Besov spaces $\dot{B}_{p}^{\psi,q}$, $1 \leq p, q < \infty$ and Triebel-Lizorkin spaces $\dot{F}_{p}^{\psi,q}$, $1 < p, q < \infty$ on spaces of homogeneoustype. We also state T1-theorems of boundedness of generalized Calderón-Zygmund operators on these spaces for kernels satisfying integral conditions of size and smoothness .

In the context of \mathbb{R}^n , Y. Han and S. Hofmann in [HH] prove T1- theorems on the Besov spaces $\dot{B}_p^{\alpha,q}$, $1 \leq p, q \leq \infty$ and the Triebel-Lizorkin spaces $\dot{F}_p^{\alpha,q}(w)$, $1 < p, q < \infty$

^{*}Supported by UNL and IMAL-CONICET

[†]Supported by UNL and IMAL-CONICET

∞. In the case of the Besov spaces they consider the following smoothness conditions

(L'1)
$$\sup_{\substack{R>0\\|u|+|v|\leq R}} \left(\int_{2^{j}R\leq |x-y|} |K(x+u,y+v) - K(x,y)| dx + \int_{2^{j}R\leq |x-y|} |K(x+u,y+v) - K(x,y)| dy \right) \equiv \gamma_{1}(2^{-j}),$$

where the 'modulus of continuity' γ_1 satisfies $\sum_{j=1}^{\infty} \gamma_1((2A)^{-j}) < \infty$, for $\alpha = 0$ and $\gamma_1(t) = t^{\epsilon}$ for $0 < \alpha < \epsilon$.

In the case of the Triebel-Lizorkin spaces they consider the conditions

(Lr2)
$$\sup_{\substack{l > 0 \\ |u| + |v| \le R}} (2^{k}R)^{n/r'} \left(\left(\int_{2^{k}R \le |x-y| \le 2^{k+1}R} |K(x+u,y+v) - K(x,y)|^{r} dx \right)^{1/r} + \left(\int_{2^{k}R \le |x-y| \le 2^{k+1}R} |K(x+u,y+v) - K(x,y)|^{r} dy \right)^{1/r} \right) \equiv \delta_{r}(2^{-k}),$$

where $\int_0^1 \delta_r(t) \log \frac{1}{t} \frac{dt}{t} < \infty$ for $\alpha = 0$ and $\delta_r(t) = t^{\epsilon}$ for $0 < \alpha < \epsilon$.

On the other hand, in the context of homogeneous-type spaces, Han and Sawyer in [HS] prove T1- theorems on the Besov and Triebel-Lizorkin spaces for kernels satisfying standard conditions of size and smoothness. These are

(P1)
$$|K(x,y)| \le A\delta(x,y)^{-1}$$

$$(P2) \qquad |K(x,y) - K(x',y)| + |K(y,x) - K(y,x')| \le \left(\frac{\delta(x,x')}{\delta(x,y)}\right)^{\epsilon} \delta(x,y)^{-1},$$

for $\delta(x,y) \geq 2\delta(x,x')$.

In the same context, we consider integral kernel estimates, slightly stronger than the ones established in [HH], when they are compared in \mathbb{R}^n for convolution kernels, although our assumptions concerning to the 'modulus of continuity' and on the local regularity control of the spaces are weaker than theirs. Our results are a refinement of those obtained in [HS] since we recover these last ones for standard kernels and local regularity controlled by $\psi(t) = t^{\alpha}$.

In the next we establish the general settings of this work.

Given a set X we shall say that a real valued function $\delta(x,y)$ defined on $X \times X$ is a quasi-distance on X if there exists a constant A > 0 such that for all $x, y, z \in X$ it verifies:

a)
$$\delta(x,y) \ge 0$$
 and $\delta(x,y) = 0$ if and only if $x = y$

b)
$$\delta(x,y) = \delta(y,x)$$

c)
$$\delta(x,y) \le A[\delta(x,z) + \delta(z,y)].$$

In a set X endowed with a quasi-distance $\delta(x,y)$, the balls $B_{\delta}(x,r) = \{y : \delta(x,y) < r\}$ form a basis of neighborhoods of x for the topology induced by the uniform structure on X. Let μ be a positive measure on a σ - algebra of subsets of X which contains the

open set and the balls B(x,r). We say that $X := (X, \delta, \mu)$ is a space of homogeneous type if there exists a finite constant A' such that

$$\mu(B_{\delta}(x,2r)) \le A'\mu(B_{\delta}(x,r)) \tag{1.1}$$

holds for all $x \in X$ and r > 0. Macías and Segovia ([MS]) showed that it is always possible to find a quasi-distance d(x, y) equivalent to $\delta(x, y)$ and $0 < \theta \le 1$, such that

$$|d(x,y) - d(x',y)| \le Cr^{1-\theta}d(x,x')^{\theta}$$
 (1.2)

holds whenever d(x, y) < r and d(x', y) < r.

We also say that (X, δ, μ) is of order θ if δ satisfies (1.2). (X, δ, μ) is a normal space if there exist constants A_1 y A_2 such that

$$A_1 r \le \mu(B_\delta(x, r)) \le A_2 r \tag{1.3}$$

hols for every $x \in X$ and r > 0.

In this paper $X := (X, \delta, \mu)$ will mean a normal space of homogeneous type of order θ .

Given a ball B in X and a number η , $0 < \eta \le \theta$, we denote by $\Lambda^{\eta}(B)$ the set of all the complex-valued functions f with support in B such that

$$|f(x) - f(y)| \le C\delta(x, y)^{\eta}, \quad x, y \in X.$$

We denote $|f|_{\eta}$ the infimum of the constants appearing in (1.4) and $||f||_{\eta} = ||f||_{\infty} + |f|_{\eta}$. We say that a function f belongs to Λ_0^{η} if $f \in \Lambda^{\eta}(B)$ for some ball B. The space Λ_0^{η} is the inductive limit of the Banach spaces $\Lambda^{\eta}(B)$. The space of all continous linear functionals on Λ_0^{η} will be denoted $(\Lambda_0^{\eta})'$.

A nonegative real function ϕ defined on the positive numbers is said to be of lower type $\alpha \geq 0$ if there exists a constant $C_1 > 0$ such that

$$\phi(st) \le C_1 s^{\alpha} \phi(t)$$
 for $0 < s \le 1$ and $t > 0$.

Similarly, ϕ is said to be of upper type β if there exists a constant $C_2 > 0$ such that

$$\phi(st) \ge C_2 s^{\beta} \phi(t)$$
 for $0 < s \le 1$ and $t > 0$.

In the next we state the properties of an approximation to the identity as defined in [HS]. In [DJS], it is shown how to build such approximation to the identity. Let A be the constant of the triangular inequality associated to δ

DEFINITION 1.1 A sequence $(S_k)_{k\in \mathbb{Z}}$ of integral operators is called an approximation to the identity, if the kernels $S_k(x,y)$ associated to S_k are functions from $X\times X$ in \mathbb{C} and there exist $0<\epsilon\leq\theta$ and a finite constant C such that for all $k\in \mathbb{Z}$ and $x,x',y,y'\in X$ they satisfy

$$S_k(x,y) = 0 \quad \text{if} \quad \delta(x,y) \ge (2A)^{-k} \quad \text{and} \ ||S_k||_{\infty} \le C(2A)^k,$$
 (1.4)

$$|S_k(x,y) - S_k(x',y)| \le C(2A)^{k(1+\epsilon)} \delta(x,x')^{\epsilon}, \tag{1.5}$$

$$|S_{k}(x,y) - S_{k}(x,y')| \leq C(2A)^{k(1+\epsilon)}\delta(y,y')^{\epsilon},$$

$$|[S_{k}(x,y) - S_{k}(x,y')] - [S_{k}(x',y) - S_{k}(x',y')]|$$

$$< C(2A)^{k(1+2\epsilon)}\delta(x,x')^{\epsilon}\delta(y,y')^{\epsilon}.$$
(1.6)

$$\int_{X} S_{k}(x,y)d\mu(y) = \int_{X} S_{k}(x,y)d\mu(x) = 1.$$
 (1.8)

In all this paper the constant ϵ , $0 < \epsilon \le \theta$, will denote that associated to an approximation to the identity satisfying (1.5), (1.6) and (1.7) of Definition (1.1).

The operators $D_k = S_k - S_{k-1}$ satisfy $\sum_{k \in \mathbb{Z}} D_k = I$ in L^2 since $\lim_{k \to \infty} S_k f = f$ and $\lim_{k \to -\infty} S_k f = 0$ in L^2 . Moreover, their associated kernels $D_k(x, y)$ satisfy properties (1.4) to (1.7) of Definition (1.1) and

$$\int_{X} D_{k}(x,y) d\mu(y) = \int_{X} D_{k}(x,y) d\mu(x) = 0.$$
 (1.9)

In [HS] was introduced a suitable class of test functions defined on X, the set $M^{(\beta,\gamma)}$ and its dual space $(M^{(\beta,\gamma)})'$.

DEFINITION 1.2 Given $0 < \beta \le 1$, $\gamma > 0$ and $x_0 \in X$ fix. A function f defined on X is a smooth molecule of type (β, γ) of width d centered in x_0 , if there exists a constant C > 0 such that

$$|f(x)| \le C \frac{d}{(d+\delta(x,x_0))^{1+\gamma}},$$

$$|f(x) - f(x')| \le C\delta(x,x')^{\beta} \left(\frac{d}{(d+\delta(x,x_0))^{1+\gamma}} + \frac{d}{(d+\delta(x',x_0))^{1+\gamma}} \right),$$

$$\int f(x)d\mu(x) = 0,$$

hold for every $x \in X$.

We denote by $||f||_{(\beta,\gamma)}$, the infimum of the constants appearing in (1.10) and (1.10). With this norm $M^{(\beta,\gamma)}$ is a Banach space and the space $(M^{(\beta,\gamma)})'$ is the set of all continous and linear functional on $M^{(\beta,\gamma)}$. We denote by < h, f > the natural application of $h \in (M^{(\beta,\gamma)})'$ to $f \in M^{(\beta,\gamma)}$.

In [HS], the authors prove Calderón-type reproduction formulas for both spaces. These formulas are stated in the following theorems:

THEOREM 1.1 Let $(S_k)_{k\in \mathbb{Z}}$ be an approximation to the identity and set $D_k = S_k - S_{k-1}$. There exist families of operators $(\tilde{D}_k)_{k\in \mathbb{Z}}$ and $(\hat{D}_k)_{k\in \mathbb{Z}}$ such that for all $f\in M^{(\beta,\gamma)}$

$$f = \sum_{k=-\infty}^{\infty} \tilde{D}_k D_k f = \sum_{k=-\infty}^{\infty} D_k \hat{D}_k f,$$

where the series converges in $M^{(\beta',\gamma')}$, for $\beta' < \beta$ and $\gamma' < \gamma$.

If $(\tilde{D}_k)_{k\in\mathbb{Z}}$ y $(\hat{D}_k)_{k\in\mathbb{Z}}$ are like in Theorem (1.1) then their associated kernels $\tilde{D}_k(x,y)$ and $\hat{D}_k(x,y)$ are (ϵ',ϵ') -smooth molecules of width $(2A)^{-k}$, as functions of the first and second variable respectively. Therefore, \tilde{D}_k^*f and $\hat{D}_k^*f \in M^{(\beta,\gamma)}$, whenever $f \in M^{(\beta,\gamma)}$, $0 < \beta, \gamma < \epsilon$. This allows to define $\tilde{D}_k h$ and $\hat{D}_k h$ as elements of $(M^{(\beta,\gamma)})'$ for $h \in (M^{(\beta,\gamma)})'$, by $(\Delta_k h, f) = (A, D_k^* f)$ and $(\Delta_k h, f) = (A, D_k^* f)$. It is then proved in [HS] that the formulas in Theorem (1.1) are also valid in the sense of distributions. More precisely

THEOREM 1.2 Let $(D_k)_{k\in\mathbb{Z}}$, $(\tilde{D}_k)_{k\in\mathbb{Z}}$ and $(\hat{D}_k)_{k\in\mathbb{Z}}$ be like in Theorem (1.1). Then for all $f\in(M^{(\beta,\gamma)})'$, we have that

$$f = \sum_{k=-\infty}^{\infty} \tilde{D}_k D_k f = \sum_{k=-\infty}^{\infty} D_k \hat{D}_k f,$$

in the sense of

$$\langle f,g\rangle = \lim_{M\to\infty} \langle \sum_{|k| < M} \tilde{D}_k D_k f,g\rangle = \lim_{M\to\infty} \langle \sum_{|k| < M} D_k \hat{D}_k f,g\rangle$$

for all $g \in M^{(\beta',\gamma')}$, with $\beta' > \beta$ and $\gamma' > \gamma$.

2 Generalized Besov and Triebel-Lizorkin spaces

In the context of spaces of homogeneous type, Han and Sawyer ([HS]) define the Besov spaces $\dot{B}_{p}^{\alpha,q}$ and Triebel-Lizorkin spaces $\dot{F}_{p}^{\alpha,q}$, of distributions whose 'local regularity' is controlled by the function t^{α} , with $-\epsilon < \alpha < \epsilon$, and its integrability by p and q. Replacing the potentials t^{α} by more general functions $\psi(t)$, we define the spaces $\dot{B}_{p}^{\psi,q}$ and $\dot{F}_{p}^{\psi,q}$.

In the sequel we denote by ψ the function $\psi = \phi_1/\phi_2$, where $\phi_1(t)$ and $\phi_2(t)$ are quasi increasing functions of upper type $s_1 < \epsilon$ and $s_2 < \epsilon$, respectively and $\{D_k\}_{k \in \mathbb{Z}}$ the family of operators defined in Theorem (1.1).

DEFINITION 2.1 For $f \in (M^{(\beta,\gamma)})'$, with $0 < \beta, \gamma < \epsilon$, we define

$$||f||_{\dot{B}_{p}^{\psi,q}} = \left(\sum_{k \in \mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} ||D_{k}f||_{p}\right)^{q}\right)^{\frac{1}{q}} \quad \text{if } 1 \leq p \leq \infty, 1 \leq q \leq \infty,$$

with the obvious change for the case $q=\infty$ Interchanging the order of the norms in L^p and l^q we have

$$||f||_{\dot{F}_{p}^{\psi,q}} = ||\int_{k \in \mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} |D_{k}f|\right)^{q} ||_{L^{p}}, \text{ if } 1 < p, q < \infty.$$

Also, if w is a nonnegative locally integrable function, we denote

$$||f||_{\dot{F}_{p}^{\psi,q}(w)} = ||\left(\sum_{k\in\mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} |D_{k}f|\right)^{q}\right)^{\frac{1}{q}}||_{L^{p}(w)}, \text{ if } 1 < p, q < \infty.$$

In a similar way to the case $\psi(t) = t^{\alpha}$, (see [HS]), it can be proved that if $(P_k)_{k \in Z}$ is another approximation to the identity of order ϵ and $E_k = P_k - P_{k-1}$ then the norms obtained replacing D_k by E_k are equivalent to the defined in (2.1), (2.1) and (2.1). The same result is true replacing the operators D_k by \tilde{D}_k^* or \hat{D}_k .

The Besov space $\dot{B}_p^{\psi,q}$, $1 \leq p,q \leq \infty$, is the set of all $f \in (M^{(\beta,\gamma)})'$, with $\beta > s_1$ and $\gamma > s_2$, such that

$$||f||_{\dot{B}^{\psi,q}_{n}} < \infty \text{ and } |\langle f, h \rangle| \le C ||f||_{\dot{B}^{\psi,q}_{n}} ||h||_{(\beta,\gamma)},$$

for all $h \in M^{(\beta,\gamma)}$.

Analogously, The Triebel-Lizorkin space $\dot{F}_{p}^{\psi,q}(w)$, with $1 < p, q < \infty$, is the set of all $f \in (M^{(\beta,\gamma)})'$, with $\beta > s_1$ and $\gamma > s_2$, such that

$$\|f\|_{\dot{F}_p^{\psi,q}(\boldsymbol{w})} < \infty, \text{ and } |\langle f,h\rangle| \leq \|f\|_{\dot{F}_p^{\psi,q}(\boldsymbol{w})} \|h\|_{(\beta,\gamma)},$$

for all $h \in M^{(\beta,\gamma)}$.

When $\psi(t) = t^{\alpha}$ we have the usual Besov space $\dot{B}_{p}^{\alpha,q}$ and the Triebel-Lizorkin space $\dot{F}_{p}^{\alpha,q}(w)$.

In the following, we state the main properties of the generalized Besov and Triebel-Lizorkin spaces, $\dot{B}_{p}^{\psi,q}$, $1 \leq p,q < \infty$ and $\dot{F}_{p}^{\psi,q}(w)$, $1 < p,q < \infty$, without including their proof in order of not extending this work. Both classes are Banach spaces and the corresponding dual spaces are $\dot{B}_{p'}^{1/\psi,q'}$ and $\dot{F}_{p'}^{1/\psi,q'}(w^{-p'/p})$ respectively, with 1/p + 1/p' = 1 and 1/q + 1/q' = 1. The molecular space $M^{(\beta,\gamma)}$ is continously embbeded in both of them if $s_1 < \beta$ and $s_2 < \gamma$. Moreover, $M^{(\epsilon',\epsilon')}$ is dense in $\dot{B}_{p}^{\psi,q}$, $1 \leq p,q < \infty$ and $\dot{F}_{p}^{\psi,q}$, $1 < p,q < \infty$, for all ϵ' , such that $\max(s_1,s_2) < \epsilon' < \epsilon$.

In the case of $X = \mathbb{R}^n$, we give some examples of classical distributions spaces that can be characterized as special cases of the Besov and Triebel-Lizorkin spaces.

For $1 , <math>\dot{F}_{p}^{0,2} = L^{p}$. (See [Tr2] and [FJW]).

If ϕ is of positive lower type and upper type lower than 1, $\dot{B}_{p}^{\phi,q} = \dot{\Lambda}_{\phi}^{p,q}$, (see [Tr2], [S], [J], [B], [I]) where $\dot{\Lambda}_{\phi}^{p,q}$ is the set of all the functions (modulus constants) such that

$$\left[\int_{\rm IR^n} \left(\frac{\|f(x+y)-f(x)\|_p}{\phi(|y|)}\right)^q \frac{dy}{|y|^n}\right]^{1/q} < \infty, \quad \text{for} \quad , 1 \le p < _ \infty 1 \le \underline{q} < \infty$$

and

$$\sup_{y\in {\rm I\!R}^n, y\neq 0} \frac{\|f(x+y)-f(x)\|_p}{\phi(|y|)} < \infty, \ \ {\rm for} \quad , 1\leq p\leq \infty \ \ {\rm and} \ \ q=\infty.$$

The homogeneous Sobolev space \dot{L}_p^k , with $1 \leq p \leq \infty$ and k a nonegative integer, consists of all tempered distributions f such that $D^{\gamma}f \in L^p(\mathbb{R}^n)$ for $\gamma = (\gamma_1, \ldots, \gamma_n)$ and $|\gamma| = k$. Endowed with the norm $||f||_{\dot{L}_p^k} = \sum_{|\gamma|=k} ||D^{\gamma}f||_p$ we have that, $\dot{L}_p^k \simeq \dot{F}_p^{k,2}$. (See [Tr2] and [FJW]).

Let consider the fractional derivative operator D_{α} defined by $\widehat{D_{\alpha}h}(\xi) = |\xi|^{\alpha}\widehat{h}(\xi)$, $0 < \alpha < n$, for $h \in S_o = \{f \in S : sop\widehat{f} \subset \mathbb{R}^n - 0\}$. Given $f \in S'_o$, $D_{\alpha}f$ is defined

by $< D_{\alpha}f, h> = < f, D_{\alpha}h>$, for $h \in S_o$. The homogeneous fractional Sobolev space \dot{L}^{α}_{p} , $\alpha > 0$, $1 , is the set of all <math>f \in S'_{o}$ such that $D_{\alpha}f \in L^{p}$ endowed with the norm $||f||_{\dot{L}^{p}_{\alpha}} = ||D_{\alpha}f||_{L^{p}}$. Then that $\dot{L}^{p}_{\alpha} = \dot{F}^{\alpha,2}_{p}$ with equivalences of norms. In the setting of homogeneous-type spaces this result is obtained by Gatto and Vàgi in [GV]

3 Definition of the Calderón-Zygmund generalized operators and main theorems

Let be $\Delta = \{(x,x)/x \in X\}$ and consider the continous linear mapping $T: \Lambda_o^\beta \to (\Lambda_o^\beta)'$ for every $0 < \beta \le \theta$, associated to a kernel K(x,y), defined on $X \times X - \Delta$ and locally integrable outside Δ such that

$$\langle Tf, g \rangle = \int \int g(x) K(x, y) f(y) d\mu(x) d\mu(y)$$
 (3.10)

for all $f, g \in \Lambda_a^{\beta}$ with disjoint supports.

We say that T has the weak boundary property of order β , $0 < \beta \le \theta$, if T verifies

(WBP)
$$|\langle Tf, g \rangle| \le C\mu(B)^{1+2\beta} ||f||_{\beta} ||g||_{\beta},$$

for f and g in $\Lambda^{\beta}(B)$ and every ball $B \subset X$. Note that (WBP) is also true for every $\epsilon \geq \beta$.

To obtain the continuity of T on the generalized Besov spaces we require the following size and smoothness conditions on K:

$$(S0) \quad \sup_{R>0} \int_{R\leq \delta(x,y)\leq 2AR} (|K(x,y)|+|K(y,x)|) d\mu(x) \leq C, \text{ for every } y\in X;$$

(S1)
$$\int_{\delta(x,y) \geq (2A)(2A)^{j}R} \left(\sup_{0 < s \leq R} \frac{1}{s} \int_{\delta(z,x) < s} |K(w,z) - K(y,x)| d\mu(z) \right) d\mu(x) \leq \gamma_1((2A)^{-j}),$$

(S1')
$$\int_{\delta(x,y)\geq (2A)(2A)^{j}R} \left(\sup_{0< s\leq R} \frac{1}{s} \int_{\delta(z,x)< s} |K(z,w) - K(x,y)| d\mu(z) \right) d\mu(x) \leq \gamma_{1}((2A)^{-j}),$$

for every $w, y \in X$ and R > 0 such that $\delta(w, y) < R$, for j = 1, 2, 3, ... and where the modulus of continuity γ_1 is a quasi-increasing function defined in t > 0 such that $\lim_{t\to 0} \gamma_1(t) = 0$ and which satisfies

$$\sum_{i=1}^{\infty} (2A)^{j\alpha} \gamma_1((2A)^{-j}) < \infty \tag{3.11}$$

for some $\alpha \geq 0$, (or the equivalent condition $\int_0^1 \gamma_1(t) \frac{1}{t^{\alpha+1}} dt < \infty$). If K satisfies the punctual smoothness condition

$$(P) |K(x,y) - K(x',y)| + |K(y,x) - K(y,x')| \le \omega_{\infty} \left(\frac{\delta(x,x')}{\delta(x,y)}\right) \delta(x,y)^{-1}$$

for $\delta(x,y) \geq 2A\delta(x,x')$, where ω_{∞} is a quasi-increasing function such that $\sum_{l=1}^{\infty} l\omega_{\infty}((2A)^{-l}) < \infty$, then K verifies (S1) and (S1') and γ_1 verifies $\sum_{l=0}^{\infty} \gamma_1((2A)^{-l}) < \infty$.

If K verifies (S1) then it satisfies the following Hörmander-type condition:

(H1)
$$\int_{\delta(x,y)>(2A)^{j}R} |K(w,x)-K(y,x)| d\mu(x) \leq \gamma_{1}((2A)^{-j})$$

for every $w, y \in X$ and R > 0 such that $\delta(w, y) < R$, $j \in \mathbb{N}$, where γ_1 is as in (S_1) . Similarly, (S1') implies

$$(H1') \qquad \int_{\delta(x,y) > (2A)^{j}R} |K(x,w) - K(x,y)| d\mu(x) \le \gamma_1((2A)^{-j})$$

for every $w, y \in X$ and R > 0 such that $\delta(w, y) < R, j \in \mathbb{N}$.

In order to establish continuity results on the generalized weighted Triebel-Lizorkin spaces we need the following conditions on the kernel K(x, y) associated to the operator T:

Let $1 < r < \infty$ and r' such that 1/r + 1/r' = 1, then we set

$$(S^{r}0) \sup_{R>0} R^{1/r'} \left(\int_{R \le \delta(x,y) \le 2AR} (|K(x,y)|^{r} + |K(y,x)|^{r}) d\mu(x) \right)^{1/r} \le C,$$
 for every $y \in X$;

$$(S^{r}1) \quad \left[\int_{\substack{(2A)^{j} R \leq \delta(x,y) \\ \leq (2A)^{j+1} R}} \left(\sup_{0 < s \leq R} \frac{1}{s} \int_{\delta(z,x) < s} |K(w,z) - K(y,x)|^{r} d\mu(z) \right) d\mu(x) \right]^{1/r} \\ \leq ((2A)^{j} R)^{-1/r'} \gamma_{r} ((2A)^{-j}), \text{ and}$$

$$(S^{r}1') \qquad \left[\int_{\substack{(2A)^{j}R \leq \delta(x,y) \\ \leq (2A)^{j+1}R}} \left(\sup_{0 < s \leq R} \frac{1}{s} \int_{\delta(x,x) < s} |K(z,w) - K(x,y)|^{r} d\mu(z) \right) d\mu(x) \right]^{1/r} \\ \leq ((2A)^{j}R)^{-1/r'} \gamma_{r}((2A)^{-j}).$$

for every $w, y \in X$ and R > 0 such that $\delta(w, y) < R$, j = 2, 3, ... and γ_r is a quasi-increasing function such that $\lim_{t\to 0} \gamma_r(t) = 0$ satisfying either $\sum_{l=1}^{\infty} l \gamma_r((2A)^{-l}) < \infty$ or (3.11).

If K satisfies the punctual estimate (P), then K also satisfies (S^r1) and (S^r1') and $\gamma_r = \omega_\infty$.

If K verifies (S^r1) then it also satisfies:

$$(H^{r}1) \quad \left(\int_{(2A)^{j}R \leq \delta(x,y) \leq (2A)^{j+1}R} |K(w,x) - K(y,x)|^{r} d\mu(x)\right)^{1/r} \\ \leq ((2A)^{j}R)^{-1/r'} \gamma_{r}((2A)^{-j})$$

for every $w, y \in X$ and R > 0 such that $\delta(w, y) < R$. Analogously, from (S^r1') we obtain

$$(H^{r}1') \quad \left(\int_{(2A)^{j}R \leq \delta(x,y) \leq (2A)^{j+1}R} |K(x,w) - K(x,y)|^{r} d\mu(x)\right)^{1/r} \leq ((2A)^{j}R)^{-1/r'} \gamma_{r}((2A)^{-j})$$

whenever $w, y \in X$ and R > 0 is such that $\delta(w, y) < R$. We now state the main theorems of this work: THEOREM 3.1 Let $T: \Lambda_o^{\beta} \to (\Lambda_o^{\beta})'$ be a linear continous operator, with $0 < \beta < \epsilon$, weakely bounded of order ϵ associated to a kernel K which verifies (S0), (S1) and (S1').

Let ϕ_1 and ϕ_2 be functions of lower types, i_1 e i_2 and of upper types $s_1 < \epsilon$ and s_2, ϵ , respectively. Suppose that γ_1 verifies $\sum_{j=0}^{\infty} (2A)^{j\alpha} \gamma_1((2A)^{-j}) < \infty$ for some α , such that $0 \le \alpha < \epsilon$.

If T1 = 0 then T is a bounded operator on $\dot{B}_{p}^{\phi_{1}/\phi_{2},q}$, for $0 < i_{1} - s_{2} \le s_{1} - i_{2} \le \alpha$ with $0 < \alpha < \epsilon$ and $1 \le p, q < \infty$.

If $T1 = T^*1 = 0$ then T is bounded on $\dot{B}_p^{\phi_1/\phi_2,q}$, for $-\alpha \leq i_1 - s_2 \leq s_1 - i_2 \leq \alpha$ and $1 \leq p, q < \infty$.

THEOREM 3.2 Let $1 , <math>1 < q < \infty$, $1 < r' < \min\{p,q\}$, r such that 1/r + 1/r' = 1 and $w \in A_{p/r'}$.

Let $T: \Lambda_o^{\beta} \to (\Lambda_o^{\beta})'$ be a linear continous operator with $0 < \beta < \epsilon$, weakely bounded of order ϵ , associated to a kernel K satisfying (S^r0) , (S^r1) and (H^r1') with modulus of continuity γ_r , a quasi-increasing function such that $\lim_{t\to 0} \gamma_r(t) = 0$.

- 1. Let suppose that $\sum_{l=1}^{\infty} l \gamma_r((2A)^{-l}) < \infty$. If $T1 = T^*1 = 0$ then T is bounded in $\dot{F}_p^{0,q}(w)$.
- 2. Let ϕ_1 and ϕ_2 be of lower types i_1 and i_2 , and of upper types s_1 and s_2 lower than ϵ , respectively.

Suppose that $\sum_{l=1}^{\infty} (2A)^{l\alpha} \gamma_r((2A)^{-l}) < \infty$, for some $0 < \alpha < \epsilon$.

If T1 = 0 then T is bounded in $\dot{F}_p^{\phi_1/\phi_2,q}(w)$ for $0 < i_1 - s_2 \le s_1 - i_2 \le \alpha$.

If $T1 = T^*1 = 0$ then T is bounded in $\dot{F}_p^{\phi_1/\phi_2,q}(w)$ for $-\alpha \le i_1 - s_2 \le s_1 - i_2 \le \alpha$.

4 Proof of the theorems

Note that if the kernel K satisfies (S0) or (S^r0) then T can be extended to a continous linear operator, $T: M^{(\beta,\gamma)} \to (\Lambda_o^{\beta})'$, for every $\gamma > 0$.

In fact, for $f \in M^{(\beta,\gamma)}$ and $g \in \Lambda_o^{\beta}$ we consider $x_0 \in X$, like in the definition of $M^{(\beta,\gamma)}$ and R > 0 such that $sopg \in B(x_0, R)$. We choose $\xi \in \Lambda_o^{\theta}$ such that $\xi \equiv 1$ in $B(x_0, 2AR)$ and $\xi \equiv 0$ in $B(x_0, 4A^2R)$, and consider the following extension

$$\langle Tf, g \rangle := \langle T(f\xi), g \rangle + \langle Tf(1-\xi), g \rangle,$$
 (4.12)

where the first term in (4.12) is well defined since $f\xi \in \Lambda_o^{\beta}$ and the second term must be understood as the integral

$$I = \int \int K(x,y)f(y)(1-\xi(y))g(x)d\mu(y)d\mu(x) \tag{4.13}$$

which is absolutely convergent for K satisfying (S0) if f and g-are molecules. It is not hard to see that this extension is independent of the choice of ξ and coincides with the original operator when $f \in \Lambda_o^{\beta}$. In order to prove the boundedness of this operator on

the Besov and Triebel-Lizorkin spaces, in view of Theorem (1.1) and since $D_k^*g \in \Lambda_o^{\beta}$ for every $k \in \mathbb{Z}$, we have that

$$\langle D_k T f, g \rangle = \langle T f, D_k^* g \rangle$$

$$= \lim_{N \to \infty} \sum_{|j| \le N} \langle T D_j(\hat{D}_j f), D_k^* g \rangle$$

$$= \lim_{N \to \infty} \sum_{|j| \le N} \langle D_k T D_j(\hat{D}_j f), g \rangle, \tag{4.14}$$

for every $f \in M^{(\beta,\gamma)}$ and $g \in \Lambda_0^{\beta}$. Setting $T_{k,j} = D_k T D_j$, the application

$$K_{k,j}(x,y) = \langle TD_j(.,y), D_k(x,.) \rangle,$$

is the associated kernel to $T_{k,j}$ since for $f \in M^{(\beta,\gamma)}$ and $g \in \Lambda_a^{\beta}$, we have that

$$\langle T_{k,j}f, g \rangle = \langle TD_{j}f, D_{k}^{*}g \rangle$$

$$= \langle T \int D_{j}(.,y)f(y)d\mu(y), \int D_{k}(x,.)g(x)d\mu(x) \rangle$$

$$= \int \int \langle TD_{j}(.,y), D_{k}(x,.) \rangle f(y)g(x)d\mu(x)d\mu(y), \quad (4.15)$$

where (4.15) follows from the point of view of the theory of Bochner's integral. To prove Theorem (3.1) we need the following technical lemma:

LEMMA 4.1 Let T be a linear continous operator from Λ_o^{β} to $(\Lambda_o^{\beta})'$, for some $0 < \beta < \epsilon$, which is weakely bounded of order ϵ and such that T1 = 0. Suppose that T is associated to a kernel K satisfying (S0), (S1) and (S1').

Then, for $k \geq j$, we have

$$\int_{X} |K_{k,j}(x,y)| d\mu(y) + \int_{X} |K_{k,j}(x,y)| d\mu(x) \le \omega((2A)^{-|k-j|})$$
 (4.16)

where ω satisfies $\sum_{l=1}^{\infty} \omega((2A)^{-l})(2A)^{l\alpha} < \infty$, whenever $\sum_{l=1}^{\infty} \gamma_1((2A)^{-l})(2A)^{l\alpha} < \infty$, for some α , with $0 \le \alpha < \epsilon$. For k < j, the left-hand side of (4.16) is bounded by a constant.

PROOF:

Let us first consider the case $k \geq j$ and suppose that $\delta(x,y) \geq 4A^2(2A)^{-j}$. Since $sop D_k(x,.)$ and $sop D_j(.,y)$ are disjoint sets and $\int_X D_k(x,z) d\mu(z) = 0$ then $K_{k,j}$ is well defined in the form

 $K_{k,j}(x,y) = \int_X \int_X D_k(x,z) [K(z,u) - K(x,u)] D_j(u,y) d\mu(u) d\mu(z).$

As $\int |D_j(.,y)| d\mu(y) \le C$ and $\delta(u,y) \le (2A)^{-j}$ for $u \in sop\ D_j(.,y)$, we get that $\delta(x,u) \ge (2A)^{-j+1}$ and then,

$$\int_{\delta(x,y)\geq 4A^{2}(2A)^{-j}} |K_{k,j}(x,y)| d\mu(y)
\leq \int_{\delta(x,z)\leq (2A)^{-k}} |D_{k}(x,z)| \int_{\delta(x,u)\geq 2A(2A)^{-j}} |K(z,u) - K(x,u)|
\times \left(\int |D_{j}(u,y)| d\mu(y)\right) d\mu(u) d\mu(z)
\leq C \int_{\delta(x,z)\leq (2A)^{-k}} |D_{k}(x,z)|
\times \left(\int_{\delta(x,u)\geq 2A(2A)^{k-j}(2A)^{-k}} |K(z,u) - K(x,u)| d\mu(u)\right) d\mu(z). (4.17)$$

Applying (H1), which follows from (S1), the inner integral in (4.17) is then bounded by $\gamma_1((2A)^{-(k-j)})$ and, as $||D_k(x,.)||_1$ is uniformly bounded in k and x, we obtain that

$$\int_{\delta(x,y)>4A^2(2A)^{-j}} |K_{k,j}(x,y)| d\mu(y) \le C\gamma_1((2A)^{-(k-j)}), \tag{4.18}$$

To handle the integral in $d\mu(x)$ on the set $\delta(x,y) \geq 4A^2(2A)^{-j}$, we apply (S1') and the property $||D_k||_{\infty} \leq C(2A)^k$ to get

$$\begin{split} \int_{\delta(x,y)\geq 4A^2(2A)^{-j}} |K_{k,j}(x,y)| d\mu(x) \\ &\leq C \int |D_j(u,y)| \int_{\delta(x,u)\geq 2A(2A)^{k-j}(2A)^{-k}} \\ &\qquad \times \left((2A)^k \int_{\delta(x,z)\leq (2A)^{-k}} |K(z,u)-K(x,u)| d\mu(z) \right) d\mu(x) d\mu(u) \\ &\leq C \gamma_1((2A)^{-(k-j)}). \end{split}$$

We now consider the case $\delta(x,y) \leq 4A^2(2A)^{-j}$. Choosing $\xi \in C_0^{\infty}(-3A,3A)$ such that $\xi \equiv 1$ in [-2A,2A] we define $h_k(z) = \xi\left((2A)^k\delta(x,z)\right)$. Since T1 = 0, we can split $K_{k,j}$ as

$$K_{k,j}(x,y) = \langle D_k(x,.), T(D_j(.,y)h_k) \rangle + \langle D_k(x,.), T(D_j(.,y)(1-h_k)) \rangle = \langle D_k(x,.), T((D_j(.,y)-D_j(x,y))h_k) \rangle + \langle D_k(x,.), T((D_j(.,y)-D_j(x,y))(1-h_k)) \rangle = D+B$$

$$(4.19)$$

But, since $||D_k(x,.)||_{\epsilon} \leq C(2A)^{k(1+\epsilon)}$,

 $||[D_j(.,y)-D_j(x,y)]h_k||_{\epsilon} \leq C(2A)^{j(1+\epsilon)}$ and their supports are both contained in the ball $B(x,(2A)^{-k})$ then, applying the weak boundary property, we have that $|D| \leq C(2A)^{j}(2A)^{-(k-j)\epsilon}$, where the constant C is independent of k and j and $\gamma_2((2A)^{-(k-j)}) := (2A)^{-(k-j)\epsilon}$ satisfies (3.11) when $\alpha < \epsilon$.

On the other side, since $\delta(z,u) \geq (2A)^{-k}$ and $\int_X D_k(x,z) d\mu(z) = 0$, the second term in (4.19) can be written as

$$B = \int \int D_{k}(x,z)(K(z,u) - K(x,u))(D_{j}(u,y) - D_{j}(x,y)) \times (1 - h_{k}(u))d\mu(u)d\mu(z). \tag{4.20}$$

Next we split |B| as

$$|B| \leq \left(\int \int_{(2A)(2A)^{-k} \leq \delta(x,u) \leq (2A)(2A)^{-j}} + \int \int_{\delta(x,u) \geq (2A)(2A)^{-j}} \right) |D_{k}(x,z)| |K(z,u) - K(x,u)| |D_{j}(u,y) - D_{j}(x,y)| d\mu(u) d\mu(z)$$

$$= B_{1} + B_{2}. \tag{4.21}$$

Since there is a positive contant C, independent of j, such that $|D_j(u,y) - D_j(x,y)| \le C \min\left((2A)^{j(1+\epsilon)}\delta(x,u)^{\epsilon},(2A)^j\right)$, we first get that

$$B_2 \le C(2A)^j \int |D_k(x,z)| \left(\int_{\delta(x,u) \ge (2A)(2A)^{-j}} |K(z,u) - K(x,u)| d\mu(u) \right) d\mu(z). \tag{4.22}$$

Spliting $(2A)^{-j} = (2A)^{k-j}(2A)^{-k}$, $(k \ge j)$, and applying (H1), we obtain that $B_2 \le C(2A)^j \gamma_1((2A)^{-(k-j)})$. We also get that

$$B_{1} \leq C(2A)^{j(1+\epsilon)} \times \int |D_{k}(x,z)| \left(\int_{(2A)^{-k+1} \leq \delta(x,u) \leq (2A)^{-j+1}} \delta(x,u)^{\epsilon} |K(z,u) - K(x,u)| d\mu(u) \right) d\mu(z).$$

$$(4.23)$$

Applying (H1), the inner integral in (4.23) is dominated by

$$\begin{split} &\sum_{m=1}^{k-j} \int_{\substack{(2A)^{-k+m} \leq \delta(x,u) \\ \leq (2A)^{-k+m+1}}} \delta(x,u)^{\epsilon} |K(z,u) - K(x,u)| d\mu(u) \\ &\leq C (2A)^{-k\epsilon} \sum_{m=1}^{k-j} (2A)^{m\epsilon} \int_{\delta(x,u) \geq (2A)^m (2A)^{-k}} |K(z,u) - K(x,u)| d\mu(u) \\ &\leq C (2A)^{-k\epsilon} \sum_{m=1}^{k-j} (2A)^{m\epsilon} \gamma_1((2A)^{-m}), \end{split}$$

and then it follows that $B_1 \leq C(2A)^j \gamma_3((2A)^{-(k-j)})$, where $\gamma_3((2A)^{-l}) = (2A)^{-l\epsilon} \sum_{m=1}^l (2A)^{m\epsilon} \gamma_1((2A)^{-m})$ verifies (3.11) for $\alpha < \epsilon$. Denoting $\omega = \gamma_1 + \gamma_2 + \gamma_3$, from the above results, for $k \geq j$ we have that

$$\int_{\delta(x,y) \le (4A^2)(2A)^{-j}} |K_{k,j}(x,y)| \{ d\mu(x) + d\mu(y) \}
\le \int_{\delta(x,y) \le (4A^2)(2A)^{-j}} D + B\{ d\mu(x) + d\mu(y) \} \le C\omega((2A)^{-(k-j)}).$$
(4.24)

Let now consider the case k < j. As $\int D_j d\mu(u) = 0$, for $\delta(x,y) \ge 4A^2(2A)^{-k}$, we have that

 $K_{k,j}(x,y) = \int_X \int_X D_j(u,y) (K(z,u) - K(z,y)) D_k(x,z) d\mu(u) d\mu(z).$ Since in this case we get that $\delta(z,u) \geq (2A)^{-k}$, from (H1'), we deduce that

$$\int_{\delta(x,y)\geq 4A^{2}(2A)^{-k}} |K_{k,j}(x,y)| d\mu(x)
\leq C \int |D_{j}(u,y)| (\int_{\delta(z,u)\geq (2A)^{-k}} |K(z,u)-K(z,y)| d\mu(z)) d\mu(u)
\leq C\gamma_{1}(1) \int |D_{j}(u,y)| d\mu(u) \leq C.$$
(4.25)

Similarly, from the null average of $D_k(x,.)$, we write $K_{k,j}(x,y) = \int_X \int_X D_k(x,z) (K(z,u) - K(x,u)) D_j(u,y)$ and, by (H1), we get

$$\int_{\delta(x,y)\geq 4A^{2}(2A)^{-k}} |K_{k,j}(x,y)| d\mu(y)
\leq C \int |D_{k}(x,z)| \left(\int_{\delta(x,u)\geq (2A)^{-k}} |K(z,u) - K(x,u)| d\mu(u) \right) d\mu(z)
\leq C.$$
(4.26)

For $\delta(x,y) \leq 4A^2(2A)^{-k}$ we proceed as in the case $k \geq j$. In fact, denoting $l_j(z) = \xi\left((2A)^j\delta(y,z)\right); z \in X$, where ξ is defined like in that case, we display $K_{k,j}$ as

$$K_{k,j}(x,y) = \langle D_k(x,.)l_j, T(D_j(.,y)) \rangle$$

$$+ \int \int D_k(x,z)K(z,u)D_j(u,y)(1-l_j(z))d\mu(u)d\mu(z)$$

$$= \tilde{D} + \tilde{B}. \tag{4.27}$$

From the (WBP), the first term \tilde{D} , which must be understood in the sense of distributions, satisfies $|\tilde{D}| \leq C(2A)^k$, because $|D_k l_j|_{\epsilon} \leq C(2A)^k (2A)^{j\epsilon}$, $|D_j|_{\epsilon} \leq C(2A)^{j(1+\epsilon)}$ and their supports are both contained in $B(y, 3A(2A)^{-j})$.

From the null average of $D_j(.,y)$ and the property $||D_k(x,.)||_{\infty} \leq C(2A)^k$, applying (H1'), we also get that

$$\begin{split} & |\tilde{B}| \\ & \leq C(2A)^k \int_{\delta(y,u) \leq (2A)^{-j}} |D_j(u,y)| (\int_{\substack{\delta(y,z) \geq (2A)^{(2A)^{-j}} \\ \delta(z,z) < (2A)^{-k}}} |K(z,u) - K(z,y)| d\mu(z)) d\mu(u) \\ & \leq C(2A)^k. \end{split}$$

By integrating $|\tilde{D}| + |\tilde{B}|$ over the set $\{\delta(x,y) \leq 4A^2(2A)^{-k}\}$ in $d\mu(x)$ and in $d\mu(y)$ we obtain the desired estimate and this ends the proof of Lemma $(4.1).\diamondsuit$

REMARKS 4.2 Note that if in addition we have $T^*1 = 0$, then we also obtain (4.16) for k < j since conditions on T and T^* are symmetric and

$$K_{k,j}(x,y) = \langle D_k(x,.), TD_j(.,y) \rangle = \langle T^*D_k(x,.), D_j(.,y) \rangle$$

= $\langle T^*D_k(.,x), D_j(y,.) \rangle = K_{j,k}^*(y,x).$ (4.28)

PROOF: OF THEOREM (3.1)

Let denote $\Omega = \dot{B}_{p}^{\psi,q}$ and $\beta = \max(s_1, s_2)$, where $\psi = \phi_1/\phi_2$.

Since $M^{(\epsilon',\epsilon')}$ is dense in Ω , $1 \leq p, q < \infty$, for all ϵ' such that $\beta < \epsilon' < \epsilon$ it is enough to show that there exists a constant C > 0 such that $||Tf||_{\Omega} \leq C||f||_{\Omega}$ for all $f \in M^{(\epsilon',\epsilon')}$. By Lemma (4.1), $T_{k,j}$ is an integral operator defined by

$$T_{k,j}h(x) = \int K_{k,j}(x,y)h(y)d\mu(y), \quad x \in X.$$

and for $k \geq j$ and $1 \leq p < \infty$, it satisfies

$$||T_{k,j}h||_{p} \le C\omega((2A)^{-(k-j)})||h||_{p}, \tag{4.29}$$

In fact, applying Hölder's inequality, for 1 we have

$$||T_{k,j}h||_{p} \leq \left(\int \left(\int |K_{k,j}(x,y)||h(y)|d\mu(y)\right)^{p} d\mu(x)\right)^{1/p} \\ \leq \left(\int \left(\int |K_{k,j}(x,y)|d\mu(y)\right)^{p/p'} \left(\int |K_{k,j}(x,y)||h(y)|^{p} d\mu(y)\right) d\mu(x)\right)^{1/p} \\ \leq C\omega((2A)^{-(k-j)})||h||_{p}$$
(4.30)

and, for p = 1, we have

$$||T_{k,j}h||_1 \le \int \int |K_{k,j}(x,y)||h(y)|d\mu(y)d\mu(x) \le C\omega((2A)^{-(k-j)})||h||_1.$$
 (4.31)

For k < j and also from Lemma (4.1) we obtain

$$||T_{k,j}(\hat{D}_j f)||_p \le C||\hat{D}_j f||_p.$$
 (4.32)

On the other hand, from (4.14) we have

$$||Tf||_{\dot{B}_{p}^{\psi,q}} = \left(\sum_{k\in\mathbb{Z}} \left(\frac{||D_{k}(Tf)||_{p}}{\psi((2A)^{-k})}\right)^{q}\right)^{1/q}$$

$$\leq \left(\sum_{k\in\mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} \sum_{j\in\mathbb{Z}} ||D_{k}TD_{j}(\hat{D}_{j}f)||_{p}\right)^{q}\right)^{1/q}$$

$$= \left(\sum_{k\in\mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} \sum_{j\in\mathbb{Z}} ||T_{k,j}(\hat{D}_{j}f)||_{p}\right)^{q}\right)^{1/q}.$$

$$\leq \left(\sum_{k\in\mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} \sum_{j\leq k} ||T_{k,j}(\hat{D}_{j}f)||_{p}\right)^{q}\right)^{1/q}$$

$$+ \left(\sum_{k\in\mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} \sum_{j>k} ||T_{k,j}(\hat{D}_{j}f)||_{p}\right)^{q}\right)^{1/q} = S_{1} + S_{2}. \quad (4.33)$$

Nevertheless, from the definitions of lower and upper type, we obtain

$$\frac{1}{\psi((2A)^{-k})} \leq \frac{\phi_2((2A)^{-k})}{\phi_1((2A)^{-k})} \leq C(2A)^{(k-j)(s_1-i_2)} \frac{\phi_2((2A)^{-j})}{\phi_1((2A)^{-j})}$$

$$= C(2A)^{(k-j)(s_1-i_2)} \frac{1}{\psi((2A)^{-j})} \text{ for } k \geq j, \qquad (4.34)$$

$$\frac{1}{\psi((2A)^{-k})} \leq C(2A)^{(j-k)(s_2-i_1)} \frac{1}{\psi((2A)^{-j})} \text{ for } k < j. \qquad (4.35)$$

Therefore, applying (4.34) and (4.29) we get

$$S_{1} \leq C \left(\sum_{k \in \mathbb{Z}} \left(\sum_{j \leq k} (2A)^{(k-j)(s_{1}-i_{2})} \omega((2A)^{-(k-j)}) \frac{1}{\psi((2A)^{-j})} \|\hat{D}_{j}f\|_{p} \right)^{q} \right)^{1/q}$$

$$= C \left(\sum_{k \in \mathbb{Z}} \left(\sum_{j \geq 0} (2A)^{j(s_{1}-i_{2})} \omega((2A)^{-j}) \frac{1}{\psi((2A)^{-(k-j)})} \|\hat{D}_{k-j}f\|_{p} \right)^{q} \right)^{1/q}$$

$$\leq C \sum_{j \geq 0} (2A)^{j(s_{1}-i_{2})} \omega((2A)^{-j}) \left(\sum_{k \in \mathbb{Z}} \left(\frac{1}{\psi((2A)^{-(k-j)})} \|\hat{D}_{k-j}f\|_{p} \right)^{q} \right)^{1/q}$$

$$\leq C \|f\|_{\dot{B}^{\psi,q}_{\pi}}, \tag{4.36}$$

since by hypothesis,

$$\sum_{j\geq 0} (2A)^{j(s_1-i_2)} \omega((2A)^{-j}) \leq \sum_{j\geq 0} (2A)^{j\alpha} \omega((2A)^{-j}) < \infty.$$

On the other side, applying (4.35) and (4.32) we have

$$S_{2} \leq C \left(\sum_{k \in \mathbb{Z}} \left(\sum_{j > k} (2A)^{(j-k)(s_{2}-i_{1})} \frac{1}{\psi((2A)^{-j})} \|\hat{D}_{j}f\|_{p} \right)^{q} \right)^{1/q}$$

$$= C \left(\sum_{k \in \mathbb{Z}} \left(\sum_{j < 0} (2A)^{j(i_{1}-s_{2})} \frac{1}{\psi((2A)^{-(k-j)})} \|\hat{D}_{k-j}f\|_{p} \right)^{q} \right)^{1/q}$$

$$\leq C \sum_{j < 0} (2A)^{j(i_{1}-s_{2})} \left(\sum_{k \in \mathbb{Z}} \left(\frac{1}{\psi((2A)^{-(k-j)})} \|\hat{D}_{k-j}f\|_{p} \right)^{q} \right)^{1/q}$$

$$\leq C \|f\|_{\dot{B}^{\psi,q}}, \tag{4.38}$$

whenever $i_1 - s_2 > 0$. Finally, by Remark (4.2), if $T1 = T^*1 = 0$ then (4.16) is valid, and also (4.29), for all k and $j \in \mathbb{Z}$. Therefore, instead of (4.37) the bound for S_2 is

$$S_{2} \leq C \left(\sum_{k \in \mathbb{Z}} \left(\sum_{j>k} (2A)^{(j-k)(s_{2}-i_{1})} \omega((2A)^{-(j-k)}) \frac{1}{\psi((2A)^{-j})} \|\hat{D}_{j}f\|_{p} \right)^{q} \right)^{1/q}$$

$$\leq C \sum_{j>0} (2A)^{j(s_{2}-i_{1})} \omega((2A)^{-j}) \left(\sum_{k \in \mathbb{Z}} \left(\frac{1}{\psi((2A)^{-(k-j)})} \|\hat{D}_{k-j}f\|_{p} \right)^{q} \right)^{1/q}$$

$$\leq C \|f\|_{\dot{B}_{p}^{\psi,q}}, \tag{4.39}$$

whenever $s_2 - i_1 \leq \alpha$. In this way, the proof of this theorem is complete. \Diamond

To prove Theorem (3.2) we need the following two technical lemmas:

LEMMA 4.3 Let T be associated to a kernel K satisfying (S^r1) with modulus of continuity γ_r , $1 < r < \infty$ and 1/r + 1/r' = 1. Then, for $k \ge j$, we have

$$\left(\int_{(2A)^{i}(2A)^{-j} \leq \delta(x,y) \leq (2A)^{i+1}(2A)^{-j}} |K_{k,j}(x,y)|^{r} d\mu(y)\right)^{\frac{1}{r}} \\
\leq C((2A)^{i}(2A)^{-j})^{-\frac{1}{r^{j}}} \sum_{l=-1}^{1} \gamma_{r}((2A)^{-(i+l)}(2A)^{-|k-j|}), \ i=2,3,\dots$$
(4.41)

For k < j, we have

$$\left(\int_{(2A)^{i}(2A)^{-k} \leq \delta(x,y) \leq (2A)^{i+1}(2A)^{-k}} |K_{k,j}(x,y)|^{r} d\mu(y)\right)^{\frac{1}{r}} \\
\leq C((2A)^{i}(2A)^{-k})^{-\frac{1}{r^{j}}} \sum_{l=-1}^{1} \gamma_{r}((2A)^{-(i+l)}(2A)^{-|k-j|}), \ i=2,3,\dots$$
(4.42)

PROOF:

Let first consider the case $k \geq j$. Denote $t = (2A)^{-j}$ and $s = (2A)^{-k}$. Let also define the set $Q_i = \{y : (2A)^i t \leq \delta(x,y) \leq (2A)^{i+1} t\}, i = 2,3,\ldots$ For $y \in Q_i$, $D_k(x,z) \neq 0$ and $D_j(u,y) \neq 0$, we get that $\delta(z,u) \geq (2A)^{i-1} t$ and then the kernel $K_{k,j}(x,y)$ is well defined as

$$K_{k,j}(x,y) = \int_{X} \int_{X} D_{k}(x,z) K(z,u) D_{j}(u,y) d\mu(u) d\mu(z)$$

$$= \int_{X} \int_{X} D_{k}(x,z) (K(z,u) - K(x,u)) D_{j}(u,y) d\mu(u) d\mu(z), \quad (4.43)$$

as $\int D_k(x,z)d\mu(z) = 0$. Since $sop D_j(.,y) \in B(y,t)$ and $\|D_j\|_{\infty} \leq C1/t$ we have that

$$\left(\int_{Q_i} |K_{k,j}(x,y)|^r d\mu(y)\right)^{\frac{1}{r}} \\
\leq C \left(\int_{Q_i} \left(\int |D_k(x,z)| \left(\frac{1}{t} \int\limits_{\delta(u,y) < t} |K(z,u) - K(x,u)| d\mu(u)\right) d\mu(z)\right)^{\frac{1}{r}} d\mu(y)\right)^{\frac{1}{r}} (4.44)$$

Applying Hölder's inequality to the inner integral in (4.44), we obtain that

$$\left(\int_{Q_{i}} |K_{k,j}(x,y)|^{r} d\mu(y)\right)^{\frac{1}{r}} \\
\leq C \left(\int_{Q_{i}} \left(\int |D_{k}(x,z)| \left(\frac{1}{t} \int_{\delta(u,y) < t} |K(z,u) - K(x,u)|^{r} d\mu(u)\right)^{\frac{1}{r}} d\mu(z)\right)^{r} d\mu(y)\right)^{\frac{1}{r}} d\mu(y)\right)^{\frac{1}{r}} d\mu(y) d\mu(y$$

Then applying Minkowski's inequality, we get

$$\left(\int_{Q_{i}} |K_{k,j}(x,y)|^{r} d\mu(y)\right)^{\frac{1}{r}}$$

$$\leq C \int_{\delta(x,z)\leq s} |D_{k}(x,z)| \left(\int_{Q_{i}} \frac{1}{t} \int_{\delta(u,y)
(4.46)$$

Moreover, if $y \in Q_i$ and $\delta(u, y) < t$, then $(2A)^{i-1}t \le \delta(x, u) \le (2A)^{i+2}t$. Therefore, writing $t = (2A)^{k-j}s$ and applying Tonelli's theorem to the integrals in $d\mu(u)$ and $d\mu(y)$ we obtain the bound

$$\left(\int_{Q_{i}} |K_{k,j}(x,y)|^{r} d\mu(y)\right)^{\frac{1}{r}} \\
\leq C \sup_{\substack{(x,z):\delta(x,z)0}} \left(\int_{(2A)^{i+k-j-1}s \leq \delta(x,u) < (2A)^{i+k-j+2}s} |K(z,u) - K(x,u)|^{r} d\mu(u)\right)^{\frac{1}{r}} (4.47)$$

Since $i + k - j \ge 1$, we apply the weaker condition $(H^r 1)$ to prove that

$$\left(\int\limits_{Q_{i}} |K_{k,j}(x,y)|^{r} d\mu(y)\right)^{\frac{1}{r}} \leq C((2A)^{i-j})^{-\frac{1}{r^{j}}} \sum_{l=-1}^{1} \gamma_{r}((2A)^{-(i+k-j+l)}) \quad (4.48)$$

and then we get (4.41).

Let now consider the case k < j and denote $\hat{Q}_i = \{y: (2A)^i s \le \delta(x,y) \le (2A)^{i+1} s\}$, with $i=2,3,\ldots$

Substructing K(z, y) instead of K(x, u) in (4.43) and proceeding as in (4.44), (4.45) and (4.46), we get that

$$\left(\int_{\hat{Q}_{t}} |K_{k,j}(x,y)|^{r} d\mu(y)\right)^{\frac{1}{r}}$$

$$\leq C \int |D_{k}(x,z)| \left(\int_{\hat{Q}_{t}} \left(\frac{1}{t} \int_{\delta(u,y)
(4.49)$$

But, if $y \in \hat{Q}_i$, $\delta(x,z) < s$ and $\delta(u,y) < t$ then $(2A)^{i-1}s \leq \delta(z,y) < (2A)^{i+2}s$. Moreover, writing $s = (2A)^{j-k}t$ and applying condition (S^r1) , we obtain

$$\left(\int_{\hat{Q}_{i}} |K_{k,j}(x,y)|^{r} d\mu(y)\right)^{\frac{1}{r}} \\
\leq C \sup_{\delta(v,w) < t} \left(\int_{\substack{(2A)^{i+j-k-1} \\ < (2A)^{i+j-k+2}t}} \sup_{0 < \tau \le t} \left(\frac{1}{\tau} \int_{\delta(u,y) < \tau} |K(v,u) - K(w,y)|^{r} d\mu(u)\right) d\mu(y)\right)^{\frac{1}{r}} \\
\leq C((2A)^{i-k})^{-\frac{1}{r^{j}}} \sum_{l=-1}^{1} \gamma_{r}((2A)^{-(i+j-k+l)}). \diamond \tag{4.50}$$

LEMMA 4.4 Let r, r' and γ_r be like in Lemma (4.3). Let $T: \Lambda_o^{\beta} \to (\Lambda_o^{\beta})'$ be a linear continous operator, $0 < \beta \leq \epsilon$ which is weakely bounded of order ϵ with $0 < \epsilon \leq \theta$ and such that T1 = 0. Let also K, its associated kernel, verify (S^r0) , (S^r1) and (H^r1') . Then,

(a) For $k \geq j$, we have

$$\int |K_{k,j}(x,y)| |h(y)| d\mu(y) \le \omega \left((2A)^{-|k-j|} \right) \left(M(|h|^{r'})(x) \right)^{\frac{1}{r'}} \tag{4.51}$$

where M is the Hardy-Littlewood maximal operator. Moreover, ω satisfies $\sum_{l=0}^{\infty} \omega((2A)^{-l}) < \infty$; whenever γ_r satisfies $\sum_{l=0}^{\infty} l \gamma_r((2A)^{-l}) < \infty$, and ω satisfies (3.11) with $0 < \alpha < \epsilon$, whenever γ_r satisfies the same condition.

(b) For k < j there is a constant C, not depending of k and j, such that if γ_r verifies $\sum_{l=0}^{\infty} \gamma_r((2A)^{-l}) < \infty \text{ then }$

$$\int |K_{k,j}(x,y)| |h(y)| d\mu(y) \le C \left(M(|h|^{r'})(x) \right)^{\frac{1}{r'}}. \tag{4.52}$$

Proof:

We first consider the case $k \geq j$. Denote, as in the previous lemma, $t = (2A)^{-j}$, $s = (2A)^{-k}$ and $Q_i = \{(2A)^i t \leq \delta(x, y) \leq (2A)^{i+1} t\}$ with $i = 2, 3, \ldots$. Then, we have

$$\int |K_{k,j}(x,y)||h(y)|d\mu(y) = \left(\int_{\delta(x,y)\leq 4A^2t} + \sum_{i=2}^{\infty} \int_{Q_i} \right) |K_{k,j}(x,y)||h(y)|d\mu(y)$$

$$= I_1 + I_2. \tag{4.53}$$

To estimate I_1 we use the bounds obtained in the proof of Lemma (4.1) for the case $\delta(x,y) \leq 4A^2(2A)^{-j}$ and $k \geq j$.

Using the hypothesis T1 = 0, in (4.19) we have $K_{k,j}(x,y) = D + B$, with

$$|D| \le C(2A)^{j}(2A)^{-(k-j)\epsilon} := C(2A)^{j}\delta_1((2A)^{-(k-j)})$$

and $|B| \leq B_1 + B_2$, with

$$B_{1} \leq \int \int_{(2A)(2A)^{-k} \leq \delta(x,u) \leq (2A)(2A)^{-j}} |D_{k}(x,z)| |K(z,u) - K(x,u)| \times |D_{j}(u,y) - D_{j}(x,y)| d\mu(u) d\mu(z), \tag{4.54}$$

$$B_{2} \leq \int \int_{\delta(x,u)\geq (2A)(2A)^{-j}} |D_{k}(x,z)| |K(z,u) - K(x,u)| \times |D_{j}(u,y) - D_{j}(x,y)| d\mu(u) d\mu(z). \tag{4.55}$$

By the fact that $||D_j||_{\infty} \leq C(2A)^j$, spliting the inner integral in (4.55) as the series of the integrals over the sets $(2A)^i t \leq \delta(x,u) \leq (2A)^{i+1} t$ and applying Hölder's inequality, we get that

$$B_{2} \leq C(2A)^{j} \int |D_{k}(x,z)| \times \sum_{i=1}^{\infty} \left((2A)^{i} t \right)^{\frac{1}{r^{j}}} C \left(\int_{(2A)^{i} t \leq \delta(x,u) \leq (2A)^{i+1} t} |K(z,u) - K(x,u)|^{r} d\mu(u) \right)^{\frac{1}{r}} d\mu(z).$$

$$(4.56)$$

As i-j=(i+k-j)-k and i+k-j>1, it is enough to apply the weaker condition (H^r1) to conclude that

$$B_2 \le C(2A)^j \delta_2((2A)^{-(k-j)}),$$
 (4.57)

with $\delta_2((2A)^{-l}) := \sum_{i=1}^{\infty} \gamma_r((2A)^{-i}(2A)^{-l})$. On the other side, like in (4.23), we have that

$$B_{1} \leq C(2A)^{j(1+\epsilon)}$$

$$\times \int |D_{k}(x,z)| \left(\int_{(2A)s \leq \delta(x,u) \leq (2A)t} \delta(x,u)^{\epsilon} |K(z,u) - K(x,u)| d\mu(u) \right) d\mu(z)$$

$$(4.58)$$

Splitting the inner integral as the sum of k-j integrals over the sets $\{(2A)^m s \le \delta(x,u) \le (2A)^{m+1} s\}$, applying Hölder's inequality and, once more, condition $(H^r 1)$, we obtain

$$B_1 \le C_{\epsilon}(2A)^j \delta_3((2A)^{-(k-j)}),$$
 (4.59)

with $\delta_3((2A)^{-l}) := (2A)^{-l\epsilon} \sum_{m=1}^l (2A)^{m\epsilon} \gamma_r((2A)^{-m}).$

It is easy to check that $\dot{\omega}_1 = \delta_1 + \delta_2 + \delta_3$, satisfies the summability properties enunciated in this Lemma and also, the first term in (4.53) satisfies

$$I_{1} \leq C\omega_{1}((2A)^{-(k-j)})(2A)^{j} \int_{\delta(x,y)\leq 4A^{2}(2A)^{-j}} |h(y)|d\mu(y)$$

$$\leq C\omega_{1}((2A)^{-(k-j)}) \left((2A)^{j} \int_{\delta(x,y)\leq 4A^{2}(2A)^{-j}} |h(y)|^{r'} d\mu(y) \right)^{\frac{1}{r'}}$$

$$\leq C\omega_{1}((2A)^{-|k-j|})[M(|h|^{r'})(x)]^{\frac{1}{r'}}. \tag{4.60}$$

On the other side, from Hölder's inequality and inequality (4.41) obtained in Lemma (4.3), it follows that

$$I_{2} \leq \sum_{i=2}^{\infty} \left(\int_{Q_{i}} |K_{k,j}(x,y)|^{r} d\mu(y) \right)^{\frac{1}{r}} \left(\int_{\delta(x,y)<(2A)^{i+1}t} |h(y)|^{r'} d\mu(y) \right)^{\frac{1}{r'}}$$

$$\leq \sum_{i=2}^{\infty} \sum_{l=-1}^{1} \gamma_{r}((2A)^{-(i+l)}(2A)^{-(k-j)}) [(2A)^{i}t]^{-\frac{1}{r'}} \left(\int_{\delta(x,y)<(2A)^{i+1}t} |h(y)|^{r'} d\mu(y) \right)^{\frac{1}{r'}}$$

$$\leq C\omega_{2}((2A)^{-(k-j)}) \left[M(|h|^{r'})(x) \right]^{\frac{1}{r'}}, \tag{4.61}$$

with $\omega_2((2A)^{-l}) := \sum_{i=1}^{\infty} \gamma_r((2A)^{-i}(2A)^{-l})$. As ω_2 satisfies the required summability properties, taking $\omega = \omega_1 + \omega_2$ we completed the proof of this lemma for the case $k \geq j$.

We now consider the case k < j. In a similar fashion to the previous case we have

$$\int |K_{k,j}(x,y)||h(y)|d\mu(y) = \left(\int_{\delta(x,y)\leq 4A^2s} + \sum_{i=2}^{\infty} \int_{\tilde{Q}_i} \right) |K_{k,j}(x,y)||h(y)|d\mu(y)$$

$$= \tilde{I}_1 + \tilde{I}_2, \tag{4.62}$$

where $\tilde{Q}_{i} = \{(2A)^{i}s \leq \delta(x,y) \leq (2A)^{i+1}s\}.$

Proceeding as in (4.27) of Lemma (4.1), for $\delta(x,y) \leq 4A^2s$ we write

$$K_{k,j}(x,y) = \langle D_k(x,.)l_j, T(D_j(.,y)) \rangle$$

$$+ \int D_j(u,y) \int D_k(x,z) |K(z,u) - K(z,y)| (1 - l_j(z)) d\mu(u) d\mu(z)$$

$$= \tilde{D} + \tilde{B},$$

where $l_j(z) = \xi((2A)^j \delta(y, z))$ and ξ is defined as in that lemma.

By the weak boundary property (WBP), we have that $\tilde{D} \leq C(2A)^k$.

Taking in account that $||D_k||_{\infty} \leq C(2A)^k$, applying Hölder's inequality, then the hypothesis (H^r1') and, finally, the weaker property $\sum_{i=1}^{\infty} \gamma_r((2A)^{-i}) \leq C$, we get

$$|\tilde{B}| \leq C(2A)^k \int |D_j(u,y)|$$

$$\times \sum_{i=2}^{\infty} ((2A)^{i}t)^{1/r'} \left(\int_{\delta(z,y) \le (2A)^{i+1}t} |K(z,u) - K(z,y)|^{r} d\mu(z) \right)^{1/r} d\mu(u)$$

$$\le C(2A)^{k} \sum_{i=2}^{\infty} \gamma_{r}((2A)^{-i}) \le C(2A)^{k}$$
(4.63)

Then it follows that

$$\tilde{I}_1 \le C(2A)^k \int_{\delta(x,y) \le 4A^2(2A)^{-k}} |h(y)| d\mu(y) \le C \left[M(|h|^{r'})(x) \right]^{\frac{1}{r'}}. \tag{4.64}$$

To estimate \tilde{I}_2 we first apply Hölder's inequality, then inequality (4.42) obtained in Lemma (4.3) and, as γ_r is quasi increasing we get that

$$\tilde{I}_{2} \leq \sum_{i=2}^{\infty} \sum_{l=-1}^{1} \gamma_{r}((2A)^{-(i+l)}(2A)^{-(j-k)}) \\
\times \left((2A)^{i}(2A)^{-k} \right)^{\frac{-1}{r'}} \left(\int_{\delta(x,y) \leq (2A)^{i+1}(2A)^{-k}} |h(y)|^{r'} d\mu(y) \right)^{\frac{1}{r'}} \\
\leq \sum_{i=2}^{\infty} \sum_{l=-1}^{1} \gamma_{r}((2A)^{-(i+l)}) \left[M(|h|^{r'})(x) \right]^{\frac{1}{r'}} \leq C \left[M(|h|^{r'})(x) \right]^{\frac{1}{r'}}. \quad (4.65)$$

In this way the case k < j is also proved. \Diamond

REMARKS 4.5 Note that if we have $T^*1=0$ in addition of the hypothesis of Lemma (4.4), then we also obtain (4.51) for the case k < j. In fact, we proceed in a similar way to that of the case $k \ge j$ but, for the case $\delta(x,y) \le 4A^2(2A)^{-k}$ we apply (H^r1') , and for the case $\delta(x,y) > 4A^2(2A)^{-k}$, we use (4.42).

Proof: of Theorem (3.2)

Let denote $\Omega = \dot{F}_p^{\psi,q}(w)$ and, $\beta = 0$ for $\psi(t) = 1$ or $\beta = \max(s_1, s_2)$ for $\psi = \phi_1/\phi_2$. Since the space $M^{(\epsilon',\epsilon')}$ is dense in Ω for all ϵ' such that $\beta < \epsilon' < \epsilon$, it is enough to show that there is a constant C > 0 such that $||Tf||_{\Omega} \le C||f||_{\Omega}$ for all $f \in M^{(\epsilon',\epsilon')}$. But,

$$||Tf||_{\Omega} = ||\left(\sum_{k\in\mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} |D_{k}(Tf)(x)|\right)^{q}\right)^{1/q} ||_{L^{p}(w)}$$

$$= ||\left(\sum_{k\in\mathbb{Z}} \left(\frac{1}{\psi((2A)^{-k})} | < Tf, D_{k}(x,.) > |\right)^{q}\right)^{1/q} ||_{L^{p}(w)}$$

$$\leq ||\left(\sum_{k\in\mathbb{Z}} \frac{1}{\psi((2A)^{-k})} \left(\sum_{j\in\mathbb{Z}} |D_{k}TD_{j}(\hat{D}_{j}f)(x)|\right)^{q}\right)^{1/q} ||_{L^{p}(w)}$$

$$= ||\left(\sum_{k\in\mathbb{Z}} \frac{1}{\psi((2A)^{-k})} \left(\sum_{j\in\mathbb{Z}} |T_{k,j}(\hat{D}_{j}f)(x)|\right)^{q}\right)^{1/q} ||_{L^{p}(w)},$$

$$\leq \| \left(\sum_{k \in \mathbb{Z}} \frac{1}{\psi((2A)^{-k})} \left(\sum_{j \leq k} |T_{k,j}(\hat{D}_{j}f)(x)| \right)^{q} \right)^{1/q} \|_{L^{p}(w)} \\
+ \| \left(\sum_{k \in \mathbb{Z}} \frac{1}{\psi((2A)^{-k})} \left(\sum_{j > k} |T_{k,j}(\hat{D}_{j}f)(x)| \right)^{q} \right)^{1/q} \|_{L^{p}(w)} \\
= \| S_{1}(x) \|_{L^{p}(w)} + \| S_{2}(x) \|_{L^{p}(w)}, \tag{4.66}$$

where $T_{k,j}(\hat{D}_j f)(x) = \int K_{k,j}(x,y)(\hat{D}_j f)(y)d\mu(y)$. To estimate S_1 we apply (4.51) of Lemma (4.4) to obtain that $T_{k,j}$ satisfies

$$|T_{k,j}(\hat{D}_j f)(x)| \le C\omega((2A)^{-(k-j)})(M|\hat{D}_j f|^{r'}(x))^{\frac{1}{r'}},$$

for $k \geq j$. From inequality (4.34) obtained in the proof of Theorem 3.1 (which is obviously true in the case $\psi(t) = 1$), and Minkowski's inequality it follows that

$$S_{1}(x) \leq \left(\sum_{k \in \mathbb{Z}} \left(\sum_{j \leq k} (2A)^{(k-j)(s_{1}-i_{2})} \omega((2A)^{-(k-j)}) \left(M(\frac{|\hat{D}_{j}f|}{\psi((2A)^{-j})})^{r'}(x)\right)^{\frac{1}{r'}}\right)^{q}\right)^{1/q} \\ \leq \sum_{j \geq 0} (2A)^{j(s_{1}-i_{2})} \omega((2A)^{-j}) \left(\sum_{k \in \mathbb{Z}} \left(M(\frac{|\hat{D}_{k-j}f|}{\psi((2A)^{-(k-j)})})^{r'}(x)\right)^{\frac{q}{r'}}\right)^{1/q} \\ = \sum_{j \geq 0} (2A)^{j(s_{1}-i_{2})} \omega((2A)^{-j}) \left(\sum_{k \in \mathbb{Z}} \left(M(\frac{|\hat{D}_{k}f|}{\psi((2A)^{-k})})^{r'}(x)\right)^{\frac{q}{r'}}\right)^{1/q}$$

$$(4.67)$$

Nevertheless, by Lemma (4.4), the first factor in the last inequality is a finite constant since, from the hypothesis $\sum_{j\geq 0} j\gamma_r((2A)^{-j}) < \infty$, in the case $\psi(t) = 1$ it is equal to $\sum_{j\geq 0} \omega((2A)^{-j}) < \infty$, and, from the hypothesis $\sum_{j\geq 0} (2A)^{j\alpha} \gamma_r((2A)^{-j}) < \infty$, in the case $\psi(t) = \phi_1(t)/\phi_2(t)$ and $s_1 - i_2 \leq \alpha$, it is lower than or equal to $\sum_{j\geq 0} (2A)^{j\alpha} \omega((2A)^{-j}) < \infty$.

Therefore, we have proved that

$$S_1(x) \le C \left(\sum_{k \in \mathbb{Z}} \left(M(\frac{|\hat{D}_k f|}{\psi((2A)^{-k})})^{r'}(x) \right)^{\frac{q}{r'}} \right)^{1/q}.$$
 (4.68)

Since $1 < p/r', q/r' < \infty$, we are able to apply the weighted version of the Fefferman-Stein vector valued maximal inequality to obtain that

$$||S_{1}||_{L^{p}(w)} \leq C||\left(\sum_{k\in\mathbb{Z}} \left(M(\frac{|\hat{D}_{k}f|}{\psi((2A)^{-k})})^{r'}(x)\right)^{\frac{q}{r'}}\right)^{1/q}||_{L^{p}(w)}$$

$$\leq ||\left(\sum_{k\in\mathbb{Z}} (\frac{|\hat{D}_{k}f|}{\psi((2A)^{-k})})^{q}(x)\right)^{1/q}||_{L^{p}(w)} = C||f||_{\dot{F}_{p}^{\psi,q}(w)}$$
(4.69)

Let now estimate S_2 . From Remark (4.5), when $T^*1 = 0$ we also have $|T_{k,j}(\hat{D}_j f)(x)| \leq C\omega((2A)^{-(j-k)})(M|\hat{D}_j f|^{r'}(x))^{\frac{1}{r'}}$ for k < j. Then using inequality (4.35) and proceeding like in the previous case we obtain that

$$S_{2}(x)$$

$$\leq C \left(\sum_{k \in \mathbb{Z}} \left(\sum_{j>k} (2A)^{(j-k)(s_{2}-i_{1})} \omega((2A)^{-(j-k)}) \left(M \left(\frac{|\hat{D}_{j}f|}{\psi((2A)^{-j})} \right)^{r'} (x) \right)^{\frac{1}{r'}} \right)^{q} \right)^{1/q}$$

$$\leq C \sum_{j>0} (2A)^{j(s_{2}-i_{1})} \omega((2A)^{-j}) \left(\sum_{k \in \mathbb{Z}} \left(M \left(\frac{|\hat{D}_{k}f|}{\psi((2A)^{-k})} \right)^{r'} (x) \right)^{\frac{q}{r'}} \right)^{1/q}$$

$$\leq C \left(\sum_{k \in \mathbb{Z}} \left(M \left(\frac{|\hat{D}_{k}f|}{\psi((2A)^{-k})} \right)^{r'} (x) \right)^{\frac{q}{r'}} \right)^{1/q},$$

$$(4.71)$$

since, by the same argument that in the previous case $k \geq j$, we can assert that $\sum_{j>0} (2A)^{j(s_2-i_1)} \omega((2A)^{-j}) < \infty$ if either $s_2 = i_1 = 0$, when $\psi(t) = 1$, or $s_2 - i_1 \leq \alpha$ in the other case. Then the proof follows in exactly the same way than before to get that

$$||S_2||_{L^p(w)} \le C||f||_{\dot{F}_p^{\psi,q}(w)}.$$
 (4.72)

Nevertheless, if condition $T^*1 = 0$ is not required then, from inequality (4.52), we still have that $|T_{k,j}(\hat{D}_j f)(x)| \leq C(M|\hat{D}_j f|^{r'}(x))^{\frac{1}{r'}}$. Then to estimate $S_2(x)$, the constant appearing in (4.70) must be replaced by $\sum_{j>0} (2A)^{j(s_2-i_1)} < \infty$ whenever $i_1 - s_2 > 0$. From there on, the proof is the same as before. \diamondsuit

References

- [B] O. Blasco Weighted Lipschitz Spaces Defined by a Banach Space, García-Cuerva, J. et al. Fourier Analysis and Partial Differential Equations. CRC, 1995, Ch.7.
- [C] A.P.Calderón, An atomic decomposition of distributions in parabolic H^p spaces, Advances in Math. 25, 1977, 216–225.
- [DJ] G. David y J.L.Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2)120, 1984, 371-397.
- [DJS] G. David y J.L.Journé y S. Semmes, Opérateurs de Calderón-Zygmund, fonction para-accretive et interpolation, Rev. Mat. Iberoamericana 1, 1985, 1-56.
- [FJHW] M.Frazier, B. Jawerth, Y.-S. Han y G. Weiss, The T1 Theorem for Triebel-Lizorkin spaces,

- Proceedings of the Conference on Harmonic Analysis and P.D.E., El Escorial 1987, Lecture Notes in Math, Vol. 1384, Springer Verlag, Berlin, 1989, 132–145.
- [FJW] M.Frazier, B. Jawerth y G. Weiss, Littlewood Paley theory and the study of function spaces, CBMS, Regional Conference Series in Math., No. 79, 1991.
 - [GV] A.E. Gatto y S.Vági, on Sobolev Spaces of Fractional Order and ε-Families of Operators on Spaces of Homogeneous Type, Studia Math 133 (1), 1999, 19-27.
 - [HH] Y.-S. Han y S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin Spaces, Transactions of the American Mathematical Society. Vol. 337, N.2, junio 1993.
- [HJTW] Y.-S. Han, B. Jawerth, M. Taibleson y G. Weiss, Littlewood Paley theory and ε-families of operators, Colloq. Math. 60/61, 1990, 321–359.
 - [HS] Y.-S. Han, E.T.Sawyer, Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces, Memoirs of the American Mathematical Society, Vol.110, N.530, 1994.
 - [I] B. Iaffei. Espacios Lipschitz generalizados y operadores invariantes por traslaciones,
 Tesis doctoral, UNL, 1996.
 - [J] S. Janson, On functions with conditions on the mean oscillation, Arkiv Math. 14, 1976, 189-196.
 - [MS] R.A. Macías y C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33, 1979, 257-270.
 - [MST] R.A. Macías, C. Segovia y J.L. Torrea, Singular integral operators with non necessarily bounded kernels on spaces of homogeneous type, Adv. in Math. 93(1), 1992, 25-60.
 - [S] E.M. Stein, Sigular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970
 - [Tr2] H. Triebel, Theory of Function Spaces II, Birkhauser-Verlag, 1992.

Silvia Hartzstein, silviah@math.unl.edu.ar Beaatriz E. Viviani, viviani@ceride.gov.ar

Recibido : 21 de Diciembre de 2000 Aceptado : 26 de Diciembre de 2000