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Abstract

In this paper we extend the definition of the Besov and the Triebel-Lizorkin
spaces in the context of spaces of homogeneous-type given by Han and Sawyerin
[HS]. We consider, as a control of the ‘local regularity’, functions 1 (t) more gen-
eral than the potentials t* used in their case. We also state T'1-type theorems -
in these spaces. Our approach yields some new results for kernels satisfying
integral regularity conditions.

1 Introduction

In the context of spaces of homogeneous type, G. David, J.L. Journée and S. Semmes,
in [DJS], showed how to construct an appropiate family of operators { Dy}, .7z whose
kernels satisfy certain size, smoothness and moment conditions and the nondegeneracy

~ condition Y4y Dk = I on L%, In [HS], Han and E. Sawyer introduced a class of
distributions on spaces of homogeneous type and then established a Calderén-type
reproducing formula associated to that family of operators for this class. This formula
allowed them to define the Besov spaces By'?, 1 < p,q < oo and the Triebel-Lizorkin
spaces F:"’, 1 < p,q < oo and to show that those spaces arc independent of the
family of operators { D}, 7z involved in their definition and, in this way, to develop
-Littlewood-Paley characterizations of them. .

By considering more general functions (t) than the potential functions ¢t* as a
measure of the local regularity, in this paper we define the Besov spaces FB;,/”", 1<
p,q < oo and Triebel-Lizorkin spaces F";j"", 1 < p,q < oo on spaces of homogeneous-
type. We also state T'1-theorems of boundedness of generalized Calderén-Zygmund
operators on these spaces for kernels satisfying integral conditions of size and smooth-
ness .

In the context of IR, Y. Han and S. Hofmann in [HH] prove T'1- theorems on the
Besov spaces By, 1 < p,q < oo and the Triebel-Lizorkin spaces F;'q(w), 1<pg<

*Supported by UNL and IMAL-CONICET
tSupported by UNL and IMAL-CONICET



52 Silvia I. Hartzstein and Beatriz E. Viviani

oo, In the case of the Besov spaces they consider the following smoothness conditions

(L'1)  sup (/ ' ]I\(x+u y+ u) K(z ,y)ldx
wiRicn \VSle

= -3y
+/p1{<|, -yl |1\(.’I:+u,y+v) (x y)ldy> = n(2 ),

where the ‘modulus of contmmty T satisfies 352, 71((2A)'j ) < oo, for a =0 and
7(t )_t‘for0<a<e
In the case of the Triebel-Lizorkin spaces they consider the conditions

n>o
ful+ivls R

‘ ) : ' 1/r
k py\n/r’ i _ r
(2)  sp (2R) ((/wz_ylsw,ﬂ| (o +u,y+v) - K(z,9)] dz)

1/r '
. I\" _ A— rd ' = 51- —k
+ (/ngz_ﬂgmﬂl (x+u‘,y+v)‘ (z,9)l y) ) =6,(2 ‘),

where [} 6,(¢)log 14 < oo for & = 0 and (t)=tfor0<a<e

On the other hand, in the context of homogeneous-type spaces, Han and Sawyer
in [HS] prove T1- theorems on the Besov and Triebel-LIzorkin spaces for kernels
satisfying standard conditions of size and smoothness. These are

(P1) |K (z,y)| < Ad(z,y)™!

. N\ €
(P2) - |K(ey) - K(&0)l+ 1Ky, 2) ~ K(u,2)] < (——(———)) (29)",
: i(z,y)
for 6(z,y) > 26(z,z").

In the same context, we consider integral kernel estimates, slightly stronger than
the ones established in [HH], when they are compared in IR" for convolution kernels,
although our assumptions concerning to the ‘modulus of continuity’ and on the local
regularity control of the spaces are weaker than theirs. Our results are a refinement
of those obtained in [HS] since we recalier these last ones for standard kernels and
'local regularity controlled by ¥(t) = t°. '

In the next we establish the general settings of this work.

Given a set X we shall say that a real valued function é(z, y) defined on X x X
is a quasi-distance on X if there exists a constant A > 0 such that for all z,y,z € X
it verifies: :

a) 6(z,y) > 0 and (z,y) J= Oifandonlyifz =y
b) é(z,y) = é(y, )
¢) 8(z,y) < Alb(z,2) + 8(z,y))-

In a set X endowed with a quasi-distance §(z,y), the balls Bs(z,r) = {y : é(z,y) <r}
- form a basis of neighborhoods of z for the topology induced by the uniform structure
on X. Let p be a positive measureon a o- algebra of subsets of X which contains the
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open set and the balls B(z,r). We say that X = (X, 9, i) is a space of homogeneous
type if there exists a finite constant A’ such that

#(Bs(z,2r)) < A'(Bs(z,7)) o ay

holds for all z € X and r > 0. Macias and Segovia ([MS]) showed that it is always
possible to find a quasi-distance d(z,y) equivalent to é(z,y) and 0 < 6 < 1, such that

|d(z,y) - d(a’,y)| < Cr'~d(z,2")’ (1.2)

holds whenever d(z,y) < = and d(z',y) <.
We also say that (X,d,u) is of order 6 if § satisfies (1.2). (X,d, 1) is a normal space
if there exist constants A; y A, such that

Arr < u(Bs(z,r)) < Agr (1.3)

hols for every z € X and r > 0.
In this paper X := (X,é,u) will mean a normal space of homogeneous type of
order 6.

Given a ball B in X and a number 77, 0 < < 6, we denote by A"(B) the set of

all the complex- valued functions f with support in B such that

If(z) — f(y)| £ Cé(z,y)", z,y € X.

We denote |f|, the infimum of the constants appearing in (1.4) and ||f]l;, = || flle +
| fla- We say that a function f belongs to Ag if f € A?(B) for some ball B. The space

‘A is the inductive limit of the Banach %)a,ces A"(B). The spacé of all continous
- linear functionals on A will be denoted (

\ 7/
o)
A nonegative real function ¢ defined on the positive nuinbers is said to be of lower
type a > 0 if there exists a constant C} > 0 such that
P(st) < Cis%¢(t) for 0 <s < 1and ¢ > 0.
Similarly, ¢ is said to be of upper type B if there exists a constant C; > 0 such that

d(st) > CasPP(t) for 0 < s <1and t>0.

In the next we state the properties of an approximation to the identity as defined
in [HS]. In [DJS], it is shown how to build such approximation to the identity. Let A
be the constant of the triangular inequality associated to ¢

DEFINITION 1.1 A sequence (Sk)kez of integral operators is called an approximation
to the identity, uf the kernels Sk(x,y) associated to Sy are functions from X x X in
C and there ezist 0 < € £ 6 and a finite constant C such that for all k € Z and
z,z',y,y € X they satisfy

Se(2,9) =0 if 6(2,9) > (24)* and ||Selle < C(2A), (1.4)
|Sk(z,y) — Sk(a',y)| < C(2A)¥H+)6(z, '), (1.5)
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1Sk(2,y) — Sk(2,y)| € CRAKIS(y,y)e, - (1.6)
1Selay) = Sela, )] = [S(e", ) — Se(&', 9] ~

< CRAMi(z, /)6y, v,

- @)

[ Sz n)duty) = [ Sepdu@ =1 T

In dll this paper the constant €, 0 < € < 0, will denote that .associa.ted to an approzi-
mation to the identity satisfying (1.5), (1.6) and (1.7) of Definition (1.1).

The operators Dy = Sk — Sk—1 satisfy Sxez Di = I in L? since limyyoo Skf = f and
limg ;oo Sk.f = 0 in L?. Moreover, their associated kernels D(z, y) satisfy properties
(1.4) to (1.7) of Definition (1.1) and ’

[, Del@,y)du(y) = [, Dila,y)du(a) = 0. (1.9)

In [HS] was introduced a suitable class of test functions defined on X, the set M)
and its dual space (M¥)"

DEFINITION 1.2 Given 0 < B<1,v>0andzo€ X fir. A function f defined on X
is a_smooth molecule of type (B,%) of width d centered in xq, if there exists a constant
C > 0 such that

d
(d + &(z, 20))"+7’

, , d d
If(z) = f(z')] < Cé(z,= )B ((d+ 8(z, o))+ + (d+o(z, 1‘0))“’“’) )

[ f@)du(z) =

hold for every z € X.

[f(e)l <C

We denote by ||f||£g7;, the infimum of the constants appearing in (1.10) and (1.10).
A7) is a Banach space and the space (M%) is the set of all conti-

nous and linear functional on M#"), We denote by < h, f > the natural application
of h € (MBMY to f e MBM,

In [HS], the authors prove Calderdén-type reproduction formulas for both spaces.
These formulas are stated in the following theorems:

THEOREM 1.1 Let (Sk)kez be an app'roz:z'znation to the identity and set Dp = Sk —
Sk-1. There exist families of operators (Di)ie; and (Di)yey such that for all f €
MB) ‘ ’

=) D¢Dif = > Di Dy f,

~ k=-o00 ) k=—00

where the series converges in ME') for ' < B and v < 7.
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If (Dk)ke 2y Dk) xez are like in Theorem (1.1) then their assoc1ated kernels Dy (z, y)
and Dy (z, y) are (¢, €')-smooth molecules of width (2A)"‘, as functions of the first and
second variable respectwely Therefore, Dk f and Dk feM (A7), whenever f € M (ﬁ"y)

0 < By,7 < e This allows to define Dih and Dih as elements of (M(ﬂ 7)) for
he (M(”"))' by < Dih,f >=< h,Dif > and < Dih,f >=< h,Dif >. It is
then proved in [HS] that the formulas in Theorem (1.1) are also valid in the sense ‘of
distributions. More precisely

THEOREM 1.2 Let (Di)kez, (Di)iez and (Dk)kez be like in Theorem (1. 1) Then :
for all f € (MBMY we have that

f= Z DDy f = Z Dkaf,

k=-o00 =00

in the sense of

(f,g) - hm( Z Dkafrg) = hm< Z Dkaf')g)

|k|I<M |k|<M

for all g € M®), with B' > B and v > 7.

2 Generalized Besov and Triebel-Lizorkin spaces

In the context of spaces of homogeneous type, Han and Sawyer ([HS]) define the Besov
spaces B;‘ 4 and Triebel-Lizorkin spaces F 4, of distributions whese ‘local regularity’
is controlled by the function t*, with —e < a < ¢ and its integrability by p and q.
.Replacing the potentials t* by more general functxons ¥(t), we define the spaces B via
and F"""

In the sequel we denote by ¢ the function ¥ = ¢;/p2, where ¢,(t) and ¢(t) are
quasi increasing functions of upper type s; < € and s; < €, respectively and {Di }kez
the family of operators defined in Theorem (1.1).

DEFINITION -2.1 For f € (MBM)', with 0 < B, < ¢, we define
L

I£ll5ge = (Z(WA) )nDkfnp)") f1<p<oml<qso,

kez

with the obvious change for the case ¢ = oo Interchanging the order of the norms in

L? and 19 we have
1

”f”F;f" = " (2(1/)((2A) k)IDkfl)q) “LPv if 1<p,q<oo.

keZ
Also, if w is a nonnegative locally integrable function, we denote
L

”f“li“,!“'q(w) | (Z(¢((2A) )lefl) ) ”LP(w), if 1< I;,q < oo.

kez
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In a similar way to the case ¥(t) = t®, (see [HS]), it can be proved that if (Pi)rez is.
another approximation to the identity of order ¢ and Ej = P, — P_; then thenorms
obtained replacing Dy by Ej are equivalent to the defined in (2.1), (2. 1) and (2.1).

The same result is true replacing the operators Dy by D,, or Dy.

The Besov space B""’ 1< p,g < oo, is the set of all f € (M(B"")) , with 8 > s,
and v > s; , such tha.t '

I £llgge < o0 and l(f,h)-l‘s.‘Cﬂflvlg;,«,yuth.ll(ar.q)v,

for all h € M6,
Analogously, The Triebel-Lizorkin space F“""(w), with 1 < P, g < 00, is the set of all

fe (M(ﬁ"’)) , with 8 > s, and 7v'> s2, such that

I1f|lpwv(.,,,<°° s 010 < gl |

for all h € M®#B),

When $(t) = t* we have the usua.l Besov space B""’ and the Tnebel—szorkm
space F"‘ I(w).
In the followmg, we state the main properties of the generalized Besov and Triebel-
Lizorkin spaces, B""” 1< p,qg<ooand F“’ q(w), 1 < p,q < oo, without including
their proof in order of not extending this WOrk. Both classes are Banach spaces
and the corresponding dual spaces are B;,/ ¥4 and Fpl,/ 'M'(w""'/ P) respectively, with
1/p+1/p = 1 and 1/g + 1/¢ = 1. The molecular space M?) is continously
embbeded in both of them if s; < 8 and sy < 4. Moreover, M(¢¢) is dense in B;{"“,
1 <p,q < oo and F;/"q,l < p,q < 00, for all €, such that max(s;,sz) < € <.

In the case of X = IR", we give some examples of classical distributions spaces
that can be characterized as special cases of the Besov and Triebel-Lizorkin spaces

For 1 < p < oo, F92 = L. (See [Tr2] and [FIW)).

If ¢ is of positive lower type and upper type lower than 1, B‘f"" A ALY, (see [Tr2)],
(S], [J], [B), (I]) where Ap 9 is the set of all the functions (modulus constants) such

tha.t
If(z +9) - (z)||p)“ dy ' ‘ ' | |
- <oo, for ,1<p<_ <g<oo:
[/m ( o) ) Wir| S T tSPS-olsgse
and ’
sup |f(z+y)— ( )”p<oo, for ,1<p<ooand g=o0
JeR g0 o(lyl) '

The homogeneous Sobolev space L with 1 <p<ooand k a nonegative integer,
~ consists of all tempered distributions f such that D" f € LP(R") for v = (71,.. -3 Vn)
and |y| = k. Endowed with the norm Ifllis = Zpnj=r 1D fllp we have that, L’c
F k.2 (See [Tr2] and [FIW]).
Let consider the fractional derivative operator Do deﬁned by Dah(f) €|=R(€),
0 <a<n, for h € So={f€eS: soprIR"—O} leenfE S!, Do f is defined
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by < Da fih>=< f,Dyh >, for h € S'a . The homogeneous fractional Sobolev space
L;’,‘, a>0,1<p< oo, is the set of all f € S! such that D,f € LP endowed with
the norm |[|f||;z- = ||DafllLe. Then that Ir = F *2? with equivalences of norms. In
the setting of homogeneous type spaces this result is obtained by Gatto and Vagi in

[GV]

3 Definition of the Calderén-Zygmund generalized
operators and main theorems

Let be A = {(z,z)/z € X} and consider the continous linear mapping T: AS — (AZ)"
for every 0 < 8 < 0, associated to a kernel A’ (.’L‘ y), defined on X x X — A and locally
integrable outside A such that

(Tf,9) / / 9(z)K (z,y) f(y)du(z)dp(y) -~ (3.10)

for all f, g € A? with disjoint supports
We say that T has the wcak boundary property of order B,0< ﬂ <4, T verifies

(WBP) (T1.9)| < Cu(BY**#]|sllglls

for f and g in A?(B) and evefy ball B C X. Note that (WBP) is also true for every
€>f. '

To obtain the continuity of T on the generalized Besov spaces we requlre the
following size and smoothness conditions on K

(S0) sup (IK(z,y)| + |K(y, z)|)du(z) < C, for every y € X;

R>0 \/RSJ(z,y)SZAR

1 ’ .
s1 1 ((w,2) — K u(2)) < -
(s1) /a(z,wz(uum)m(oit&s Lo o 1K) A(y,xndu(z))du(x)_71((2A) )

' . 1 - _ .
Sy = ( -K < -
S mmonn (2 Lo K 0) I\(z,y)ld#(2)>du(x)_71((2A) )

0<s<R S

for every w,y € X and R > 0 such that §(w,y) < R, for j = 1,2,3,... and where
the modulus o f continuity v, is a quasi-increasing function deﬁned int> 0 such that
limy 0 'yl( ) = 0 and which satisfies :

S (24" n((24)) < o0 | 1)

j=1

for some a > 0, ( or the cquivalent condition f; fyl(t')t,,—L;dt < 00).
If K satisfies the punctual smoothness condition

B 1K(2,3) = Ko’ + Kw,2) = K ) < o (F22) 8000

for §(z,y) > 2Aé(z,z’), where w is a quasi—increasing function such that
T2 lweo((24)7") < oo, then A verifies (S1) and (S1') and 7, verifies
T2om((24)™) < 0
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If K verifies (S1) then it satisfies the following Hérmander-type condition:
(H1) | B (w, ) - K(%-’C)Idﬁ(‘x) < ’71((2A)_j)

for every w,y € X and R >0 such tha.t dw,y) <R, j€ IN where 7, is as in (S1).
Similarly, (S1') implies

/6(1‘ ¥)2(24)iR

(HY) [ MK @) = K@ y)ldue) € m(24)7)

for every w,y € X and R > 0 such that §(w,y) < R, j €.
In order to-establish continuity resultson the generalized weighted Triebel-Lizorkin

spaces we need the following cond1t10ns on the kernel A’(z,y) associated to the ope1—
“ator T

Let 1 <r < oo and r' such that 1/r +1/r =1, then we set

1/r )
(5°0) sup R (/R oK K 2DdGa)) <

R>0 -
for every y € X;

’ i/r
r 1 ) -~ . ) rd T
(571) {ﬁzg(,;m,;, (03353; /M«|A(w,z)—f_x(y,w_)| du(Z)) dﬂ(w)] |
< ((24)'R)™" 1 ((24)7), and

: 1/r
Tl ' ) l r
(571') [/H (Oggg“ L (i) = - K(e) dﬂ(Z)) (x)]

<(24)Jt1R
< ((2A)’R) e((24)7).

for every w,y € X and R > 0 such that §(w,y) < R, j = 2,3,... and v is a quasi-
increasing function such that limy07,(t) = 0 satisfying either 372, 17,((24)7!) < oo

or (3.11).

If K satisfies the punctual estimate (P), then K also satisfies (5§71) and (S71')
and v, = Weo.

If K verifies (S71) then it also satisfies:

\ 1/r
() (/m),qumml (10,2) - Ky, (o))
,. ((2A)’R) e ((24) )

for every w,y € X and R > 0 such that §(w,y) <
Analogously, from (571’) we obtain

. 1/r
(H™1') (/(2A)J‘R<6(m AR .II\"’(J;, w) — K(.a:, y)|’d,u(:c))
< ((24)R)™M 7, ((24)7)

whenever w,y € X and R > 0 is such that §(w,y) < R.
We now state the main theorems of this work:
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‘THEOREM 3.1 Let T: M2 — (AB) be a linear continous operator, with 0 < B < ¢,
weakely bounded of order € associated to a kernel K which verifies (S0), (S1) and
(57°).

Let ¢y and ¢, be functzon.s of lower types, i, e iz and of upper types s, < € and S2,€,
respectively. Supposc that v, ve'rzﬁes ZJ_O(2A)-’“’71((2A) J) < oo for some a, such
that 0 < a < e.

IfT1=0thenT isa boundcd operator on B""/"“""" for0 < iy —s; < 51— £ @ with
O0<a<eandl < pq< oco.

IfT1.=T*1 =0 then T is bounded on B‘”‘/""" fo: —a<i—s <s—i <aand
l1<pg<oo.

THEOREM 3. 2 Let 1 < p<oo,1<q<o0,1 <7 < min{pq}, r such that
I/r+1/r'=1andw € Ay

Let T: A% — (AP)' be a linear continous operator with 0 <’ﬁ < €, weakely bounded of
order e, associated to a kernel K satisfying (570), (S™1) and (H"1') with modulus of
continuity 7., a quasi-increasirig function such that lim,_o 7-(t) = 0.

1. Let suppose that 32, 17, ((2A)™") < 0o. If T1 = T*1 = 0 then T is bounded in
Epo(w).

2. Let ¢ and ¢, be of lower types i) and iz, and of upper types si and s; lower
than €, respectively. \
Suppose that 372,(24)'*7,((24)™") < oo, for some 0 < a < e.
IfT1 =0 then T is bounded in F;’/d’”"(w) for0<iy—s; <8y —i2< a.
IfT1 =T"1'= 0 then T is bounded in F#1/%29(w) for —a < i1—s, < s1—12 < .

4 Proof of the theorems

Note that if the kernel A" satisfies (S0) or (S70) then T' can be extended to a continous
linear operator, T: M(#" — (AB)' for every v > 0.

In fact, for f € M®¥" and g € A? we consider zp € X, like in the definition of
M¥) and R > 0 such that sopg € B(zo, R). We choose £ € A% such that £ =1 in
B(%0,2AR) and € =0 in B(z0,4A4*R), and consider the following extension

(Tf,g> = (T(ff),g)+<Tf(1 _5)19)’ (4'12)

where the first term in (4.12) is well defined since f¢ € A? and the second term must
be understood as the integral

1= [ [ K@) - €w)se)dsy)dne) (413)

which is absolutely convergent for A" satisfying (S0) if f and g-are molecules. It is not
hard to see that this extension is independent of the choice of £ and coincides with the
original operator when f € A2. In order to prove the boundedness of this operator on
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the Besov and Tricbel-Lizorkin spaces, in view of Theorem (1.1) and since Dyg € Aﬂ
for every k € Z, we have that
< DiTf,g> = <Tf,Djg>
= hm Z < TD (D f) Dkg >

| ISN .
= A;I_I&H% < D,,TD (D, f),g >, . (.4.:14)‘

for every f € MB and g € Ag . Setting Tk j = DyTDj, the appliCation
| Kei(2,9) = (TD;(,v), Dila,)),
is the associated kernel to Tk,; since for f € M(P") and g € A%, we have that
<Tw;f,g> = <TD,f,Dig> |
= <T [ Di(,u){(®)du(y), [ De(e, Jo(e)dp(z) >

- //<TD- Di(z,.) > f(y)g(2)du(z)du(y), (4.15)

where (4.15) follows from the point of view of the theory of Bochner s integral. To
prove Theorem (3.1) we need the following technical lemma:

LEMMA 4.1 Let T be a linear continous operator from AP to (A8)', for some 0 <
B < €, which is weakely bounded of order € and such that T1 = 0. Suppose that T is -
associated to a kernel K satisfying (S0), (S1) and (S1'). ’
Then, for k > j, we have

[ Es@lduw) + [ 1Keslaldute) Swi@a) ™ (a.16)

where w satisfies Y52, w((24)7N(24)" < oo, whenever 2, 11((24)7Y)(24)" < oo,
for some o, with 0 < a < €. For k < j, the lefi-hand side of ({.16) is bounded by a

constant.

Proor: '

Let us first consider the case k > j and suppose that §(z,y) > 44%(24)~7. Since
sopDi(z,.) and sopDj(.,y) are disjoint sets and [y Di(z,z)du(z) = 0 then Kj; is
well defined in the form

Kug(,4) = Iy [ Da(z, 2K (2, w) — K(2,)]D(u, y)du(u)du(z).

As [{D;(.,y)ldpu(y) < C and é(u,y) < (24)77 for u € sop Dj(.,y), we get that
§(z,u) > (2A)77*! and then,

Ki;j(2,y)ld
/'s(fy)>4A2(2A) :I (ki (2, y)|dp(y)

s /6(1,2)5(%)—" IDF(x,Z)l/tS(zu)>2A(2A)‘J |K(2,u) = K(z,u)|
x ([ 103w, ldu)) du(u)duz)

<cf Di(z,2)| |
- j&(x,z)ﬁ(ZA)_kI e 2)|

¢ - K d du(z). (4.
XU, sanraeans K0 = K (@ wldu()du(z). (4.17)
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Applying (H1), which follows from (S1), the inner integral in (4.17) is then bounded
by 1((24)~*=9) and, as || Dx(z,.)||1 is uniformly bounded in & and z, we obtain that

) < (k—3) ] ) '
-/6(z ¥)>4A2(2A4)-) |K k"(z’y)ld“(y Cn((24)” )s (4.18)

To handle the integral in du(z) on the set §(z,y) > 44%2A4)77, we apply (S 1 ) a,nd
the property || Difle < C(2A) to get :

| /s(r‘ywm)_,. |Kes(2,9)ldu(2)
<C / |D;(u

)l Jsizm)22424) 45 (22)-* |
k , - e - v
o ((2A) f‘s aciones KW I&(x,u)|dp(z)) du(z)dpuu)
< Cm((2a)y ). ‘ |
We now consider the case §(z,y) < 44%24)77. Choosing ¢ € C§*(—34,3A) such.
that £ = 1 in [-2A,2A] we define hi(z) = {((2A)k6(x,z)). Since T1 = 0, we can
split K% ; as ‘
Nij(z,y) = <  Di(z,.),T(Dj(.,y)he) >
+ < Di(s,.),T(Ds(., y)(l —he)) >
= < Di(z,.),T((D;(-y) - Di(2,y))h) >
+ < Di(z,),T((Di(-,y) = Di(=,y))(1 — he)) > ‘
= D+B | (4.19)
But, since || Di(z, )|l < C(2A4)k0+9),
I[D;(-,y) = Dj(z,y))helle < C(2A4)"*+9) and their supports are both contained in

the ball B(z,(24)7*) then, applying the weak boundary property, we have that
|D| < C(2A4)7(2A)~(k-9)¢ where the constant C is independent of k£ and j and
T12((24)~*k=9)) := (2A) (k=3)e satisfies (3.11) when a < €.

On the other side, since §(z,u) > (24)7 and [y Di(z, 2)du(z) = 0, the second term
in (4.19) can be written as ’

B = [ [ Due,2)(K(zu) - Kz, w)(Dy(u,y) - Dyz,y))

X(1 — hi(u))du(uw)du(z). (4.20)
Next we split |B]| as

815 ([ fonr +f] )
(24)(24)~*<8(z,u) < (24)(24)~F 8(z,u)>(24)(24)~

|De(=, 2)|| K (2,u) — K(z,u)||D;(u,y) — Dj(z, y)ldp(u)du(z)

Since there is a positive contant C, independent of j, such that,
|D;(u,y) — Dj(z,y)| < Crin ((2A)j(1+‘)5(x,u)‘, (2A)j) , we first get that

5(z,u)>(24)(24)~

By < C(2A)J'/|Dk(z,z)|(/ , |K (2,u) — K(z,u)|du(w))du(z). (4.22)
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Spliting (2A)" = (2A)FI(2A)7*, (k > j), and applymg (Hl), we obtam that
B; < C(24)7,((24)~%=9). We also get that ' '
B < C(zA)J(lﬂ) '
S0 ([ o carany s 0K 1) = K0l di)) )
. | . (4.23)

Applying (H1), the inner iﬁtegral in (4.23) is dominai;ed_by

k—j : o
Z /;2A)-"+"!$6(=,u) 6(x,u)‘|I\'(z, u) - I\"(:z:,u)|dp(u)
m=1. <(24)—k+m+1
) . . k—j .
< 2 "\ —ke me : ' R e d
< CRAR T QA™ [ s K50~ K@ wldu)
k=j
< C2A)7™™ X 2A)™n((24)™),
. m=1

and then it follows that B; < C(2A)j73((2A)‘(k;j)), where _
73((24)7") = (24)™ 2! _ 1 (24)™11((24)~™) verifies (3.11) for @ < e Denoting
w =71 + 72 + 73, from the above results, for k£ > j we have that

d
/"(zy <(442)(24) =3 I “‘J( »y){du(z) +‘l#(y)}

[ | -j
= f&zy)<(4,42)(2,4)—1 A D + B{du(z) + dp(y)} < < Cw((ZA) (k )) | (4.24)

Let now consider the case k < j. As [ D;du(u) = 0, for 5(:1:,y) > 4A%(2A)°*
have that

Kij(2,) = iy Jx Di(w,y)(K(2,u) = K(2,)) De(z, 2)dps(w)du(z).
Since in this case we get that §(z,u) > (24)7, from (H1'), we deduce that

‘/6(1,11)24A2(2A)"" Ks(2,9)ldu() :
< [IDwnl(f o0 K (u) = K(y)ldu(e)du(w)
< Cn(1) [ 1D(u,y)ldu(w) < C. (425)

Similarly, from the null average of Di(z,.), we write
K(z,y) = [x Jx D(,2)(K(z,u) — K(z,u))Dj(u,y)

and, by (H1), we get
.’ 4 J
‘/‘;(I»y)>4/\2(14) kl k-J(zay)] [l,(y) _

< CfID@ AN oo K () = Kz, wldu(u)du(z)
< C ) - _ (4.26)
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For §(z,y) < 4A%(2A)~* we procceed as in the case k >.j. In fact, denoting .
lj(z) = € ((2A)*8(y, 2)); z € X, where £ is defined like in that case, we display K} ; as
Kij(z,y) = (Di(z, )IJ,T(D ( )
+[] Di(z, 2)K (2,4 Ds(uy ) (1 = () di(u)d(2)

= D+B _ - (4.27)
From the (WBP), the first term D, which must be understood in the sense of distrib-
utions, satisfies |D| < C(24)F, because | Diljle < C(2A)’°(2A)", |Djle < C(2A4)71+9)
and their supports are both conta.med in B(y,3A(24)7%). -

From the null average of Dj(.,y) and the property | Di(z, .)|loo < C (2A)", applying
(H1'), we also get that

L: |
k - ' - ”
< oAy DY [y e 1K (2w = K(y)ldu(z)du(x)

§(z,2)<(24)—F

IA

C(2A).

By integrating |D| + |B| over the set {§(z,y) < 4A%(24)~*} in du(z) and in du(y)
we obtain the desired estimate and this ends the proof of Lemma (4.1).0

REMARKS 4.2 Note that if in addition we have T*1 = 0, then we also obtain (4.16)
fork <'j since conditions on T and T* are symmetric and

Kij(z,y) = < Di(z,.),TD;(.,y) >=<T"Di(z,.), D (,y)'>
< T*Di(.,z), Dj(y,.) >= K (y, ). ‘ (4.28)

PROOF: OF THEORLM (3.1)

Let denote = B""’ and B = ma.x(sl,32) where ¥ = ¢1/¢.
Since M) is dense in €, 1 < p, q < oo, for all ¢ such that 3 < € < € it is enough to
show that there exists a constant C > 0 such that ||Tf|la < C||f||a forall f € M),
By Lemma (4.1), T}; is an integral operator defined by

Tuih(z) = [ Kis(a,0)h(u)duty), = € X.
" and for k >jand 1 < p < oo, it satisfies .
Tk hllp < Cu((24)" %) k], (4.29)

In fact, applying Hélder’s inequality, for 1 < p < oo we have

(/ (/ ”"k.f(x,y)Ilh(y)ldu(y))pdﬂ(m))l/p
(/ (/|I\'k,j(1',y)|dﬂ(y))l’/ﬂ’ (/|I\’k,j(l‘,y)”h(y)lpd#(y)) d,u(;c)) 1p

< Cw((24)™ D) all, (4.30)

1T, ; ||,

VAN

IN
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and, for p =1, we have

ITestl < [ [ 1Ko 0)lIB@)Idu(w)du(@) < Cw(@A) E )bl (431)
For k < j and also from Lemma (4.1) we obtain |
ITki(DiPllp < CUDifllp- (432)

On the other hand, from (4.14) we have
bw = _ ML)JLP ql
”Tf”B,,-q (1%22 (1/)((2/1)_") ) )
1/q
(ké (W%”Dk” b; f)llp) )
: ' Yq
(Ez (¢((2A) 5y 2 1Tes( Dy f)llp) ) :

. /g
(5 (g menn))”

1/q :
+('§(¢((2A) k),%%“f“ ,f)llp)) =5+ 5. (4.33)

Nevertheless, from the definitions of lower and upper type, we obtain

1 ¢2((2A) ) -3 81—!2- ¢2((2A)_J)
PEAH S h(EA)® S C(“)(k @A)
’ - (k=3)(s1—i2) or
= C(24) o A) 5y for k2 j  (4.34)
and .
L GR)o=i) L g ;. 4.35)"
Weaym < CRATTET Gy ferk<d o (439)

Therefore, applying (4.34) and (4.29) we get

S

IN

' ‘ | 1/q
C (Z (Z(ZA)(k—J)(n—tz)w((ZA) (kﬂj))rp((2A)-J I ,f||p) )

keZ \j<k

) ' q\ 1/q
c.(Z (Z@A)"""”w((2A)")mllm—gﬂlp) )

keZ \j20

IN

| o
O Y 2A4) " -((24) ) (Z (mllbk-jfllp) ) -

320 keZ

ClIf Nl g, - o (4.36)

IN
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since by hypothesis,
324y =y ((24)7) < S (24)°w((24)77) < co.

j=0 . 320

On the other side, applying (4.35) a.nd (4.32) we have

q\ 1/q
(- k)(u-u)______
q\ 1/q
= .7'(!'1-!2)_____1_____ ), .
c (é:z (g(m‘l), 1/1((2A)‘(’°‘1)) ”Dk—Jf“p) )
. 1/q
J(i1 =82 1 2T ! )
< Cllfllgper | (4.38)

whenever ¢, — s > 0. Finally, by Remark (4. 2) if T1 = T*1 = 0 then (4.16) is valid,
and also (4.29), for all £ and j € Z. Therefore, instead of (4.37) the bound for .S, is

q\ 1/q
5 < c(z (Z(2A)"-k><‘=-"> (@A) sy Ao fllp))

keZ \j>k

q\ Ve
J(s2—i1) J ——
< CXAreu(ed) )(Z‘; (s k_,))IIDk—,fIIp)> (439
< Clifllggs A (4.40)

whenever s; — i; < a. In this way, the proof of this theorem is complete. ¢

To prove Theorem (3.2) we need the following two technical lemmas:
LEMMA 4.3 Let T be associated to a kernel K satisfying (S™1) with modulus of con-
tinuity' 7., 1 <7 < 0o and 1/r +1/r' = 1. Then, for k > j, we have

1

( : IIx"k.j(w,y)l’du(y))
zA)-'(zA)-J'sa(x.y)<(u>"+l(zA)-:' _
< C((24 )(2A 27 ((24)~6+9(24) “k-ily i =2.3,...  (4.41)
I=-1 .
For k < j, we have

L
r

| Kki(2,y) I'dH(y))

(AM)"(2A)"‘$6(z.y)5(2A)‘+‘(2A)-“
1
< O(2A) AT Y 1 ((2a) Ay, i=2,3,...  (4.42)

I=-1



66 ' - -Silvia I. Hartzstein and Beatriz E. Viviani
Proot: ‘ _

Let first consider the case k > j. Denote t = .(2A)"'and.s = (24)7k. Let also
define the set Q; = {y : (24)'t £ é(z,y) < (24)"*t}, i =2,3,.... Fory € Qi,

Di(z,2z) # 0 and Dj(u,y) # 0, we get that 6(2 u) > (2A)"1t and then the kernel
Ky j(z,y) is well defined as

Kij(z,y) = / / Di(z, 2)K (2, 4) Dj{u, y)dps()dp(2) |
= / / Di(a,2) (K (z,u) ~ K(z,u)) Dj(u ,y)dﬂ(u)du(Z), (443)
as ka(x,z)du(z) = 0. Since sopD;(.,y) € B(y,t) and || Dj|lc < C1/t we have that

(/ . IKk,j(z, y)l'du(y))%
:

45 (/ (/|Dk(z z I(— / | K (2, u) - K(z, u)ld,u(u))du(z)) du(y)) (4.44)

6(“|V)<t

Applying Holder’s inequality to the inner integral in (4.44), we obtain that
N
() 1nstevrduts))
1

C(z,/ (/ |Dk(z,z)|<%6( /) lK(z,u)-K(z,u)rdu(u))'*du(z)) du(y)) (445)
i u,y)<t

Then applying Minkowski’s inequality, we get

1

(/Q-' K, y)|'du(y)) r

< c [ IDz2) (/ 2/ IK(z,u)—K(w,u)l'du(u)dn(y)) du(z).

§(x,2)<s i d(uy)<t

-

(4.46)

Moreover, if vy € Qi and 6(u,y) < ¢, then (24)""'t < §(z,u) < (2A)‘+2t Therefore, ‘
writing ¢ = (24)¥9s and applying Tonelli’s theorem to the integrals in du(u) and
du(y) we obtain the bound -

(/Q', |I\’k,j(m, Q)I'du(y)) 'Y

< C sup

(z,2):8(x,2)<e
>0

II{(Z’ u) - I\’(.’E, u)lrdu(u)) (4'47)

(42A)f+~-:‘-1 8<8(z,u)<(2A)i+k—i+24
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Sincei + k —j > 1, we apply the weaker condition (H"1) to prove that
' L : .
(Q II\'k,j(m,y)l'dﬂ(y)) < C(2A)7)7 3 4.((24) M) (448)
. 1==1 .
and then we get (4.41). - .
Let now consider the case k < j and denote Q; = {y : (2A4)'s < d(z,y) <
(2A)*+1s},with 1 = 2,3,.

Substructing K(z,y) mstead of K(z,u) in (4 43) and procceedmg as in (4 44), (4.45)
and (4.46), we get that

([, 1Kesteulrdute))”

L
r

< € [IDu(z.2)] («/ (% [ 1K - Kl duta ))_du(y)) du(2).

8(u,y)<t

| (4.49)
But, if y € Qi, 8(2,2) < s and §(u,y) < ¢ then (24)~'s < §(z,y) < (24)*%s.
Moreover, writing s = (24)'~*¢ and applying condition (S71), we obtam

1

(/Qi II\"k'j(I,y)lrdy(y));

1 . . .
< Csup [ s (— [ 1K@, - K(w,y)| du(U)) du(y)
§(v,w)<t " o<r<t \ T
(24)i+i—k=1c<4(w,y) S(uy)<r .
. C <(24)iti—k+2, .
1 .
< C(RAY™)T7 3 % ((24) H D)0 (450

I=—1

LEMMA 4.4 Let 7, r' and v, be like in Lemma (4.3). Let T: A? — (A8) be a linear

continous operator, 0 < 8 < € which is weakely bounded of order € with 0 < ¢ < 8 and
such that T1 = 0. Let also K, its associated kernel, verify (S70), (S'1) and (H'1').

Then,

(a) For k > j, we have

[ Kes(e,n)lIb(@)ldu(y) < w (247 %) (MR @)™ (45)

~where M is the Hardy-Littlewood mazimal operator. Moreover, w satisfies
TRow((24)7") < o0; whenever v, satisfies 3520 17, ((2A)™!) < oo, and w satis-
fies (3.11) with 0 < a < €, whenever 7, satisfies the same condition.

(b) For k < j there is a constant C, not depending of k and j, such that if ~,
-verifies ,
201 ((24)7!) < 0o then

[ 1K@ n)lh@lduty) < € (MUR@) 7. (@52)
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ProoOF: . } .
We first consider the case k > j. Denote, as in the previous lemma, t = (2A)7,
s=(2A)"%and Q; = {(2A)'t < 5(:1: y) < (2A4)*'t} with i = 2,3, .. Then, we have’

( | +3 [ ) s 1))

[ 1Kz, w)l h(w)lduty)

1—2
= L+ L. , - (4.53)

To estimate I; we use . the bounds obtained in the proof of Lemma (4.1) for the case
8(z,y) < 4A%*(2A)77 and k > .
Using the hypothesis T1 = 0, in (4.19) we have K,;(z,y) = D + B, thh

|D| < C(24)7(2A)~ (=9 .= C(24)76,((24)~* 7))
- and |B| £ By + B,, with ‘

B, < ' Di(z,2)||K(z,u) — K
b= / /(zszA)-*sa('z,u)sm)(u)-:'l (= z.)” (2, ) = K(z, u)l
x|Dj(u,y) — Dj(z,y)|du(u)du(z), (4.54)
< D C(z,u) — K
B S [ [osamans PO DNE ) = K]
X|Dj(u,y) = Dj(z,y)ldp(u)du(2). ' (4.55)

By the fact that |Dj|le < C'(2A)j, ‘spliting the inner integral in (4.55) as the se-
ries of the integrals over the sets (24)'t < 6(.7: u) < (2A)**'t and applying Holder’s
inequality, we get that

B, < C(zA)f/wk(z,z)l

1

‘ 2Ait%C-/ K(z,u) — K(z,u)|"d, du(z).
x;(( )> ((M)‘zssu.u)suft)-‘“tl Gl (@l ”(u)> He)

(4.56)

Asi—j=(i+k— ]) kandi+k-— ] > 1, it is enough to apply the weaker condition .
* (H"1) to conclude that -
B, < C(2A)8,((24) -9, (4.57)
with 6,((24)7!) := Z 2 1((24)7(2A)7"). On the other side, like in (4.23), we haV£
that DR

B, < C(24)71+9) . R
Xlek(l'aZ)l (/(2  §(z,u)|K(z,u) — K(l‘»")ldﬂ(“)) dp(2)

A)s<é(z,u)<(24)t
(4.58)

1

Spliting the inner integral as the sum of k — j integrals over the sets {(24)™s <
8 z,u) < (2A)™*!s}, applying Holder’s inequality and, once more, condition (H"1),
we obtain ‘

B, < C.(24)i6,((24)*-P), | (4.59)
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with &3((24)7) = (24)7 Yo (2A)™ e ((24)7™).
Itiseasy to check that w;, = 6,+08;+03, satisfies the summability properties enunciated
in this Lemma and also, the first term in (4.53) satisfies

L S Con(2a) N2y [ h)lds)
§(z,y)<1A2(2A)—J

1
,J

INA

Cuw, ((24)~ =)y ((2A)J’ Ih(y)l"du(y))

§(z,y)<4A2(24)=5

Cuw, ((24) %= [M(|A")(2)]7. (4.60)

I/\

On the other side, from Holder’s mequahty and mequa,hty (4. 41) obtained in Lemma
(4.3), it follows that

I, < 2 (/le’k.j_(z,y)l'dﬂ(y)) (fa(z'yk(wml (y )I' du(y)y
< i Z 24)"‘*')(21‘1)'(""")[(2?4)"15]'5( Ih(y)l"du(y))
=2l=-1 (@y)<(24)i+1¢ '
< Cun((24)7 %) [M(RI") ()", o (4.61)

with wy((24)7") := T2, 7.((24)7*(24) ™). As w; satisfies the required summability
propertles, taking w = w; + w; we completed the proof of this lemma for the case
k>3

We now consider the case k < j. In a similar fashion to the previous case we have

(/m.wg,ﬂﬁg Q/ ) sl DIMOIdts)

= L+1, (4.62)
where Q; = {(2A4)'s < §(z,y) < (24)"H1s}.
Procceeding as in (4.27) of Lemma (4.1), for §(z,y) < 4A4%s we write
Kij(z,y) = (De(, )T (Ds(,y))) _ |
[ D) [ Dule, )| K (2, 0) = K(2,)I(1 = (2)dia(u)dp(z)
_ biB,

[ 1B ) Ih@)lduy)

+

where [;(z) = £ ((24)?6(y, z)) and ¢ is defined as in that lemma.

By the weak boundary property (WBP), we have that D < C(24)*.

Taking in account that ||Dillec < C(2A)*, applying Holder’s inequality, then the
hypothesis (H"1’) and, finally, the weaker property 52, 7,((24)™") < C, we get

Bl < c@4)* [1D;(w,v)|
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. RS : i
<A ([ oK) = Kl duta))  duto)

< CRAFY1((24)) < C24) (4.63)

Then it follows that -

h<o@a [ h(Wlduy) < © [MAE]" . 464)

(z:y)<442(24)~*

To estimate I, we first apply Holder’s inequality, then inequality (4.42) obtained in
Lemma (4.3) and, as v, is quasi increasing we get that

L <

aM%

i ((24) ('+‘)(2A) (J—k))

, 5
i A\-k) 7 r T
X ((2A) (24) k) (/.s(z,y)<(2A)-+l(2A) ,‘| ()l d/—‘(y))

L
o

< i EII 1((24)76+9) [M(lhl”.)(x)]i’ <C[M(af")@)]7 . (4.65)

1=2[=-1

In this way the case k < j is also proved.{

REMARKS 4.5 Note that if we have T*1 = 0 in addition of the hypothesis of Lemma
(4.4), then we also obtain (4.51) for the case k < j. In fact, we proceed ‘in a similar
way to that of the case k > j but, for the case §(z,y) < 4A%(2A4)~* we apply (H'1'),
and for the case §(z,y) > 4A%(2A)F, we use ({.42). :

PRroor: oF THEOREM (3.2)

Let denote § = F""’( Jand, B=0for¢(t)=1lorf = ma.x(sl,SQ) for ¢ = ¢1 /2.
Since the space M ‘) is dense in  for all € such that 8 < € < ¢, it is enough to
show that there is a'constant C' > 0 such that ||Tf|la < C||f|la for all f e M),
But, ’

1/q

. 1 \ ,
IT flla I (;§z (Wle(Tf)(x)l) ) [| 22 ()

q\ 4
= T ,.D Plw
(kez R < T D, )>|)) lirce
: q\ 1/g
D\TD,; ij z Nergo
< “(kez‘/’(u (Jezzl «TD;(D; f)( )I)) Il Lo w)
' a\ 1/q
= | ( (Z lTk,z(D ) )|) ) o (w)s
kezd) JjEZ
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’ a\ /q
1 N
I (Z HEAF) (Z |Tk.j(Djf)(1')|) ) Il 2o w)

kez i<k

IN

q\ 1/q
+ (z W (z |Tk,]-(f3jf)(z)|> ) Lrw)

kez ik |
151 (2) | p ) + 1152(2)l| Lo () : - (4.66)

where Tei(D, )(2) = [ Ku(2,9)(Dif)(y)du(y). *
To estimate S, we apply (4.51) of Lemnma (4.4) to obtain that T} ; satisfies

ITei(D;£)(@)] < Cw((24) D) (M|D, I (2))7,

for k > j. From inequality (4.34) obtained in the proof of Theorem 3.1 (which is
obviously true in the case ¥(¢) = 1), and Minkowski’s inequality it follows that

Sl(z)

. N 1\ ¢ 1/q
< (Z (zm)‘k-ﬂ"' ) ) (g @) ))

kez \j<k

R 2\ 1/q

>0 kez

i>0 kez

N a\ 1/q
_ io1=i2) 4y (9 4)5 _Defl e )T
- (4.67)

Nevertheless, by Lemma (4.4), the first factor in the last inequality is a finite con-
stant since, from the hypothesis 350 77-((24)77) < oo, in the case P(t) = 1 it is
equal to ¥;59w((2A4)™) < oo, and, from the hypothesis ¥;50(24)"*7:((24)77) <
o0, in the case ¥(t) = @,(t)/¢d2(t) and s — i3 < @, it is lower than or equal to
Yiro(2A4)°w((24)77) < oo.

Therefore, we have proved that

1/q

Site) < C(Z (M(—#}jﬁ%;;)"(z))") . (4.65)

keZ

Since 1 < p/r',q/r' < 0o, we arc able to apply the weighted version of the Fefferman-
Stein vector valued maximal inequality to obtain that

: A a\ /g
1Sillww < CI (Z (M(;p—(%j)i’_k—))”(z)) ) lireo)

kez

- 1/q
Defl
< ’ll (,;A(E(I(_?Z)T"j) (m)) o) = Cllfllppow) — (4:69)
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Let now estimate S,. Frdm Remark (4 5), when T*1 = 0 we also have
|Tw (D f) ()] < Cuw((24)~ (""))(M|D fI"'(2))7 for k < j. Then ubmg inequality
(4.35) and proceeding like in the previous case we obtain that

Sa(z) o
< o[ 5 [memsnaanron (i (;bz‘(?—ﬁ)-'—))ﬁ)
< oxeayt w((24)7) (g:z (M (ﬁ%'ﬁ) (x)) l) " (4.70)
< c(k; (M (w_(l(‘lzzflj)c_l@(z))l)/ : (4.71)

since, by the same argument that in the previous case k > j, we can assert that

¥ ,50(24)72=1w((24)77) < oo if either 82 =4 =0, when ¢(t) =1,0r 5, -7, < «
in the other case. Then the proof follows in exactly the same way than before to get
that

IS2llzr@wy < Clifllgyaqu): (4.72)

Nevertheless, if condition T*1 = 0 is not required then, from inequality (4.52), we still
have that [Tk ;(D;f)(z)] < C(M|D1f|"(:v))#. Then to estimate S3(z), the constant
appearing in (4.70) must be replaced by ¥;50(2A4)7*2~1) < oo whenever i, — 53 > 0.
From there on, the proof is the same as before. ¢
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