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We study the mean curvature equation I:l.X = 2H Xu, 1\ Xv . For any fixed 

H = H(u, v , X, Xu" Xv) we give a family of boundary data 9 such that thc 

Dirichlet problem is solvable. Furthermore, we prove under some conditions 

local and global uniqueness of the solutions in the Banach Space Cl (n, JR3) . 

1 .  INTRODUCTION 

We consider the Dirichlet problem in a bounded Cl,l domain n c IR2 for a 

vector function X :  n --+ JR3 which satisfies the equation of prescribed mean 

curvature 

{ I:l.X = 2H( u, v ,  X, Xu" Xv)Xu 1\ Xv 
( 1 )  

X = 9 i n  an 
in n 

where Xu and Xv are the partial derivatives of X ,  1\ denotes the exterior 

product in JR3 , H :  n x (JR3)3 --+ JR is a given continuous function and the 

boundary data 9 belongs to W2,p (n, IR3) for some 2 < ]J < 00 .  As the usual 

prescription of the Dirichlet data, we may assume without loss of gencrality 

that 9 is harmonic. 

Problem ( 1 )  arises in the Plateau and Dirichlet problems for the prescribed 

mean curvature equation that has been studied by variational methods for 

constant H in [BC] , [H], [S] and for H = H(X) ill [ADNM] , [W] . Indeed, 

it is possible to find solutions of (1) by minimizing the functional DH (X) = 
D(X) + 2V(X) , where D is the Dirichlet integral and V is the Hildebrandt 's 
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volume given by VeX) = .� IB Q(X)Xu. /\ xv , with divQ = 3H . However, 
for the general case a functional for (1) is not known. Solutions by topological 
methods are given in [AM] , and in [ABMR] for a nonparametric surface. For 
H and 9 constant, the solution X == 9 is unique [We] . A nonuniqueness result 
for constant H >  0 and nonconstant 9 with H l Ig l loo < 1 is given in [BC] . 
In order to study problem (1) we consider the operator T : C1 (0, JR3)  --t 
C1 (0, IR3) given by TX = X ,  where X E W2 ,p Y Cl is the unique solution 
of the linear problem 

{ b.X = 2H (u, v ,  X, Xu. , Xv)Xu /\ Xv 

X = 9 in ao 
m 0 

Thus, any strong solution of ( 1 ) may be regarded as a fixed point of T .  We 
remark that any weak solution in W1,OO (0, JR3) is strong, and classical if 9 
and ao are smooth (see [AM]) .  
2 .  SOLVABILITY O F  (1 )  
In  order to  find a fixed poiut of  T ,  we recall the apriori bound CA for the 
Laplacian, i .e. I IX I 1 2 ,p ::; cA I l b.X l lp for every X E W2,p n W�'P (see [GT] ) ,  
and remark that by the compactness of the imbedding W2,p y Cl  the oper­
ator T is compact . Thus, by Schauder's Theorem it suffices to find R such 
that T(Bn(g) )  c Bn(g) . For the sake of simplicity, for X E Cl we define 
H l x : 0 -+ IR given by Hlx (u, v) = H (u, v, X, Xu. , Xv) , and we say that H 
is Lipschitz on X E Cl (0, JR3) if there exist R > 0 and k = k (R) such that 

for any Y E BR(X) , 

THEOREM 1 
Let K be cl compact, subs()/, of IH.3 . Tllen tllere exists it COJlstall t Coo = 
COO (H, K) SUdl tl1at (1) is solvable for any 9 E AK,coo , witll 

Proof 
For R >  0 ,  and fixed C E lR we define HR = SUPgEAK,c hn (g) E IR ,  where 
hR (g) is given by 
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AB HR i s  nondecreaslng' w e  may fix R such that RH-R = -4· 1 . , where Cl CI C� 
is the constant of the irnbedding W2,p Y. Cl . Thus, for 9 E AK;c , if I IX -
g l l l ,oo � R � R we have: 

As HR � HR '  it suffices to find R E  (0, RJ such that CICLlHR(R +  1 1  \7g 1 100 )2 � 
R . Setting Coo = rnill {c, 4C L c�1I } , it 's  immediate to  see that the parabola 

It 

admits the positive root 

Let x = l I \7g l loo and consider the fUllct ion 

Then as F' {x) > 0 for 0 < x < _J�_. we conclude that Ro < F(· _1_ ) = , - - 4<: l C1111 ' - 4CJ C.fin . _1_ = R arid the pt-oof is complete. - 0 4CI C.fi}f , 
REMARKS: 
i) As tile proof of TIlCorem 1 does Hot depend on tile cilOice of c ,  a siwrper 

value for Coo may be obtained tuking maxcEIR (min{c, 4C! C��fn(C) } ) . 
ii) We may also observe tl1ut 

TllCIl, if we define 

h'R (g) = sup I IH lx l loo ,  I IX -g liI.oo S:R 

it follows tllat 

HR = sup h£! (g) 
g(n)cK, l I v g ll �jJ S:c 
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Tlms, takillg R(c) such that R1.Ifi = 4 10 1 1/�pc1 cLl ' (1) is solvable for any 9 

belonging to tlw set {9 E W2,1' (n,  llV) : 9 (0) C J{, I IVg l 1 21' :::; C21'} , wi tll 

C2p = SlIP (lllill{C, 
10 1 1/2 1 Hoo (-) }) cEIR 4 PCICLl R C 

iii) If 11 is bounded with respec t to X ,  tllen Coo and C2p may be cllOosen 

independently of J{ . 
ivY In some ceJSes it llOlds tlmt Coo = C2p = +00 .  For example, for 11 = 
HI (u,v,X) with \111 ('u 'V :1:) 1 < 'r lx l + 8  alld r < _1 it  is clear tllat if X = 1+VX2 , " - C1 C ' 
aT X for some 0 :::; a :::; 1 , tllen 

Tllis:proves that I IX I \ I .oo :::; M for some constant M ,  and tile result follows 

by Leray-Scilauder's Tlleorem. 

3. LO CAL UNIQUENESS OF THE SOLUTIONS 

THEOREM 2 

Let Y E C1 (0, JR3) , and assume that 11 is Lipschitz on Y with constant k 
and radius R .  We define 

c(Y) = 2hR (Y) (2 1 IVYI l00 + R) + k I lVY I I� 

Tlwn, for X E BR(Y) : 

In particular, if Y is a solution of (1) and CICLlC(Y) < 1 ,  tlwn Y is unique in 

BR (Y) . 
Proaf 
Given X E BR (Y) , it follows that 

I IT (X) - T(Y) 1 \ I . 00 :::; 2c1c l l11 \xXu 1\ Xv - I1\VYu 1\ Y.u l lp 
:::; 2clc( I I11 lx  ( Xu - Yu) 1\ Xv + Y u 1\ (Xv - Yv) ) I Ip+ I I (l1 lx -11\v)Y ul\Yv l lp) 
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As I IV {X - Y) l Ioo � R ,  the result follows. 

Furthermore, if C1C.o.C(Y). < 1 ,  and X # Y E BR (Y) are fixed points of T 
then !IX - YI i I ,oo < I IX - Y I i I ,oo ,  a contradiction. 0 

REMARK: 
In particular, for H = H(u, v) , c(Y) = 2 1 1Hl lp (2 1 1VYl l oo + R) for any R .  
Hence, any solution Y such that I IVYl loo < 2i1HijpCl C is isolated: 

The following result shows that if H is Lipschitz near a constant , the existence 
condition given in Theorem 1 may be stated in more precise terms. Moreover, 
if I Ig - a l l  1 ,00 is small, then T is a contraction in BR(g) : 

COROLLARY 3 
Let a E 1R3 , and assume that H is Lipschitz on BRo {a) with constant k and 

radius Ro . Let Ha = I IH l a l l p  = I IH(u, v, a, 0, 0) l ip . Then: 

a) (1) admits a solution in BR (g) for any harmonic 9 E W2,p (n, 1R3) such 

h 1 1  1 1  R . { R  JH�+ c::.o. -
Ha } t at 9 - a 1 ,00 = � mm T' 4k • 

b) (1) admits a unique solution in BR(g) for any ha.rmonic 9 E W2,p (n, 1R3) 

such that I I g  - a lkcxl = R � min{� , 

Proof 

2H2+ (1+2 V2) k  V2H a C l  c.o. a 
2k ( 1+�V2) } . 

If I Ig - a lk,oo = R � � ,  then BR(g) C BRo (a) and as in Theorem 2 we 
obtain, for X E BR(g) : 

- - - 2 I IT(X) - g 1 l 1 ,00 � 2C1C.o. I IHlxX'U 1\ Xv l lp  � 4C1C.o.hR(g)R 

Then T{BR {g) )  C BR(g) for hR{g)R � 4c;c.o. and as hR (g) � h2R {a) � 
Ha + 2kR part a) follows. Furthermore, if also Y E  BR(g) we have: 

I IT{X) - T{Y) ! I 1 ,00 � c1c.o. (2 I 1Hlx l lp Il V(X - Y) l loo l l {X� + y� ) 1/2 I 1oo 

+k I lVYI I� I IX - YI 1 1 ,oo) � 4CIC.o. (v2hR (9)R + kR2) I IX - Y1 1 1 ,00 
and then T is a contracticm in BR(g) for v'2hR(9)R + kR2 < 4;l C . Thus, b) 
is proved. 0 

In the next theorem we obtain the local uniqueness under different assump-
, 

tions. For this purpose, we define for Xo , X E C1 (n, 1R3) and Z {u , v) = 
(Z1 !Z2 , Z3) E (1R3)3 the matrices given by 

79 . 
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( . . aH · ) AW = 2 . Hlx W /\ XOv + ( axu (u., v, Z)W)XOu /\ XOv 

. ( . . . BH . ) BW = 2 HlxXou /\ W + ( axv (u., v, Z)W)XOu /\ XOv 

and the number . 
r := ( 1I 1A 12 +IBI 2 I1oo ) 1/2 

Al  
where Al is  the first eigenvalue of -� . 
In particular, for X = Xo , Z = (Xo , XOu,  Xo,J we will write A(Xo) , B(Xo) ,  
C(Xo) and r (Xo) respectively. 

THEOREM 4 

Let X 0 E Cl (D, 1R 3) be a solution of (1) such that one of the following condi­

tions holds: 

i) H is Lipschitz on Xo with constant 2 I IX 6 X 11 for some 0 < 1 , CICO Ou /\ Ov 00 
some constant Co depending on Xo and . 

ii) H is continuously differentiable on Xo with respect to X, Xu and Xv , 

and r (Xo) < 1 , C(Xo) ;::: - K,  > Al (r -:- 1) : 

Then Xo is isolated in Cl (D, 1R3) . 

Proof 
If X is another solution of ( 1) ,  then Y = X - Xo is a solution of the equation 

{ �Y = 2Hly+xo (Y + Xo)u /\ (Y + Xo)v - 2HlxoXou AXov 

Y = 0 in an 
m D 

Let S be the operator given by S(Y) = 2Hlxo (Xou /\ Yv + Yu /\ XOv ) , then: 
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If i) holds, L satisfiee the conditions of lemma 6 below, and then we obtain, 
for- small 0 < R = I IY lh,oo : 

R :::; clco l lLYl lp :::; kR2 + oR 

for a constant k . Leting R --t 0 we 'obtain 1 :::; 0 , a contradiction. This 
shows that Xo is' isolated. 

On the other hand, if ii) holds we have: 

. aH I . aH I aH I HIY+xo - H)xo = ax Xo Y + axil. Xo Yu + axv Xo Yv + 1/J(Y) 

and the result follows in a similar way, from the equation 

with LY = LlY - A(Xo)Yu - B(Xo)Yv - C(Xo)Y . 

" REMARK: 

o 

In the previous theorem, the condition C � 0 holds if and only if XOu 1\ Xov 

is orthogonal to �� Ixo . Indeed, writing �� Ixo = (hI , h2 ' h3) , XOu 1\ Xov = 

(Xl ! X2 , X3) ,  we see tlwt 0 :::; Cei .ei = 2hiXi , and for Y = (t ,  1 , 0) we obtain 

that (th1 + h2) (txl + X2 ) � 0 for every t .  Then 0 � (h1X2 + h2Xl ) 2 -
4h1h2XIX2 = (h1X2 - h2Xl )2 . This implies that h1X2 = h2Xl , and in the same 

way we prove that h2X3 = h3X2 ' h1X3 = h3Xl . The converse is immediate. 

4. GLOBAL UNIQUENESS 

THEOREM 5 
Let Xo E G1 (O, JR.3) be a solution of (1) such that H is continuously dif­

ferentiable with respect , to X, Xu and Xv and assume tbat r < 1 and 

C � - /'i, > )'1 (r - 1 ) for any X E Cl (O, JR.3) ,  Z E (JR.3}3 . Tllen Xo is 

unique in C1 (O, JR.3) .  

Proof 
We proceed as in theorem 4: if Xo , X  E C1 (O, JR.3) are solutions of ( 1 ) ,  then 
for Y = X - Xo we have: 
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Moreover , by the mean value theorem we have, for fixed (u, v) : 

OH OH OH Hlx - Hlxo = OX (u, v , Z)Y + OXu (u, v, Z)Yu. +  OXv (u, v ,Z)Yv 

for some Z = Z(u, v) E L.oo (O, (JR3)3) , and then LY := �Y - AYu. - BYv -
CY = O .  As Y = 0 in 00 , we conclude from lemma 6 that Y == 0 . 0 

REMARK 
For example, ' conditions of theorem 5 hold for H = /.!.it';?2 , with HI small 

enough. From a previous remark, also existence holds in this case. In particular, 

for constant 9 existence and uniqueness can be proved when I IHl 1 l 2 > '?I£ .  

5 .  A TECHNICAL LEMMA 

In this section we extend a well-known result for linear elliptic second order 
operators in W2,P (0, JR) : 

LEMMA 6 ·  
Let L : W2,p (0, JR3) --+ LP (O, JR3) be the linear elliptic operator given by 

LX = �X + AXu. + BXv + ex , with A , B , C E Loo (0, JR3X3) ,  2 � p < 00 

and assume that r := ( 1 I I A I 211�1 2 I1oo f/2 < 1 and C :::; /'i, < AI (l - r) , where 

Al is the first eigenvalue of - � . 
Then there exists a constant c such that 

for every X E W2,p n W�'P (O, JR3) . 
Proof. 
Let Zn E W2,p n W�'P (0, JR3) be a sequence such that I ILZn l lp --+ 0 ,  
I IZn 1 l 2 ,p = 1 .  Then IILZn l 1 2 --+ 0 ,  and as 

! LZnZn :::; - 1 1V'Zn l l � + 1 1  ( IA I2 + IB I 2 ) 1/2 ! loo l lV'Zn I 1 2 1 I Zn I 1 2 
+ !  CZnZn :::; (r - 1 + ;l ) I IV'Zn l l � , 

we conclude that I IV' Zn l 1 2 --+ O .  By Poincare's inequality, we obtain that I IZn l l 2 --+ 0 and hence I I�Zn lb --+ O .  As the lemma holds for L = � and 
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. any 1 < p < 00 (see [GT]) , then I IZn l l 2 ,2 --+ 0 , and hence I IZn lh,p --+ O . 

This shows that I I�Zn l ip --+ 0 , a contradiction. 0 
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