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ABSTRACT

We study the mean curvature equation AX = 2HX, A X, . For any fixed
H=H (u,v, X, X, X,) we give a family of boundary data g such that the
Dirichlet problem is solvable. Furthermore, we prove under some conditions
local and global uniqueness of the solutions in the Banach Space C!(2,R3).

1. INTRODUCTION

We consider the Dirichlet problem in a bounded C*! domain Q C IR? for a
vector function X : @ — IR3 which satisfies the equation of prescribed mean
curvature

. AX =2H(u,v, X, Xy, Xo) Xu A X, in Q
X=g in 99

where X, and X, are the partial derivatives of X, A denotes the exterior
product in R®, H:Q x (IR®)® — IR is a given continuous function and the
boundary data g belongs to W2P(Q,IR3) for some 2 < p < 0o. As the usual
prescription of the Dirichlet data, we may assume without loss of generality

that ¢ is harmonic.

Problem (1) arises in the Plateau and Dirichlet problems for the prescribed
mean curvature equation that has been studied by variational methods [or
constant H in [BC], [H], [S] and for H = H(X) in [ADNM], [W]. Indeed,
it is possible to find solutions of (1) by minimizing the functional Dy (X) =
D(X)+2V(X), where D is the Dirichlet integral and V is the Hildebrandt’s



76

Pablo Amster and Maria C. Mariani

volume given by V(X) = 1 [ Q(X)Xu A X,, with divQ = 3H. However,
for the general case a functional for (1) is not known. Solutions by topological
methods are given in [AM], and in [ABMR] for a nonparametric surface. For
H and g constant, the solution X = g is unique [We]. A nonuniqueness result
for constant H > 0 and nonconstant g with H||g||cc < 1 is given in [BC].

In order to study problem (1) we consider the operator T : C'(Q,R®) —
CY(Q,1R%) given by TX = X, where X € W%P < C! is the unique solution
of the linear problem
AX = 2H (u,v, X, Xu, Xo)Xu AN Xy in Q
{ X=g in 0Q
Thus, any strong solution of (1) may be regarded as a fixed point of T'. We

remark that any weak solution in W°°(£,IR3) is strong, and classical if g
and 0} are smooth (see [AM]).

2. SOLVABILITY OF (1)

In order to find a fixed point of T, we recall the apriori bound ca for the
Laplacian, i.e. ||X|l2, < callAX||, for every X € W22 N WP (see [GT)),
and remark that by the compactness of the imbedding W?® < C! the oper-
ator T is compact. Thus, by Schauder’s Theorem it suffices to find R such
that T(Br(g)) C Br(g). For the sake of simplicity, for X € C! we define
H|x : Q@ = R given by H|x(u,v) = H(u,v, X, Xu, Xo), and we say that H
is Lipschitz on X € C'(Q,IR3) if there exist R > 0 and k = k(R) such that

\\Hly - Hlxlly < F|Y = X|10  for any Y € Br(X).

THEOREM 1
Let K be a compact subset of IR3. Then there exists a constant co, =

Coo (H, K) such that (1) is solvable for any g € Ak , with

Ak, ={g e WP (Q,R?) : g(Q) C K, ||Vgloo < coo}

Proof
For R > 0, and fixed ¢ € IR we define Hg = supge;lKEhR(g) € IR, where
hr(g) is given by

hr(g)= _ sup |Hlxllp
I1X=glls.0 SR
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As Hp is nondecreasiﬁg we may fix R such that I_{Hﬁ = ﬁ , where ¢;
is the constant of the imbedding WP < C!. Thus, for g € Ak, if || X —
9ll1,00 SR L R we have:

ITX = gll1,e0 < cscall HixlplI VXS, < crcaHr(R+ [[Vglloo)?

As Hp < Hy, it suffices to find R € (0,72] such that cica H(R+(|Vy|lo)? <

R. Setting ¢ = min{g, ZHZ%J}:} , it’s inunediate to see that the parabola
n

| 1 |
2, _ 2
B+ @Vl = g R+ 901,

admits the positive root

1
0= ZCIC‘H-—R-

(1 - \/1 — dcieca Hgl|Vglloo — 2c1cHE|IVgHOO)

Let z = ||Vy|lco and consider the function

, 1 :
F(z) = SorcHy (1 — /1 = dercHp - 261CHR.E)

Then, as F'(z) >0 for 0 <z < ETiMT , we conclude that Ry < F(5—t—) =
g nR

_ 4(;1(_'Hl—t ,
4C_1éﬁi— = R, and the proof is complete. o
REMARKS:

i) As the proof of Theorem 1 does not depend on the choice of T, a sharper
, , wined falino _ - 1
value for co, may be obtained taking maxzer (mln{c, Torea HF(E)} .

ii) We may also observe that

ITX — gll1,00 < 2c1cal Hlxlloo I Xu A Xollp < crcall Hlxllo VXIS,
Then, if we deline

hg(g)= sup |Hlxllw, Hg= _ sup hi (9)
I X=gll1,00<R 9(Q)CK,||Vyllzp<c

it follows that

ITX ~ glloo < crcaHE (I Vgll2p + 10?7 R)?
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Thus, taking R(¢) such that EH%’ = ! , (1) is solvable for any g
A

R
belonging to the set {g € W2P(Q,1R3) : g(Q) C K, ||Vyll2p < c2p}, with

. 1
= su minqc, —
“2p Egg( tind 4|Q|1/2PcchH%°(c)})

iii) If H is bounded with respect to X, then co and cgp may be choosen
independently of K .

iv) In some cases it lolds that ce = czp = 4+o00. For example, for H =
L’ﬁ%’-‘ﬁ, with |Hy(u,v,z)| < r|lz|+s and r < E}—c’ it is clear that if X =
oTX for some 0 <o <1, then

Hqi(u,v, X)

| X = ogll1,00 < 2c1¢a0]| Xu A Xollp < crca(rl| Xl + 9)

= [+ VX2

This’ proves that || X||1,00 < M for some constant M , and the result follows
by Leray-Schauder’s Theorem.

3. LOCAL UNIQUENESS OF THE SOLUTIONS

THEOREM 2

Let Y € C'(Q,IR®), and assume that H is Lipschitz on Y with constant k
and radius R. We define

c(Y) = 2hp(Y) (2 VY|l + R) + K||VY]|2,
Then, for X € Br(Y):

IT(X) = T(Y)ll1,00 < crcacY)IX = Yll1,00

In particular, if Y is a solution of (1) and cicac(Y) < 1, then ‘7 is unique in
Ba(Y).

Proof
Given X € Br(Y), it follows that

IT(X) = T(Y)ll1,00 < 2c1¢|| HlxXu A Xy — HlgYu AYlp

< 2c1¢(||Hlx ((.X_u ~Y)AXy +Yu AN (X = ?v)) ||P+“(fllf_Hl?)?u/\?v”p)
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As ||[V(X = Y)|lo < R, the result follows.
Furthermore, if cicac(Y) < 1, and X #£Y € Bg(Y) are fixed points of T

‘then [|X =Y |1,00 < ||‘X Y||1,00 » & contradiction. m]
- REMARK: :
In particular, for H = H(u v), ¢(Y) = 2||H||,£,(2||VY||oo + R) for any R.

Hence, any solution Y such that ||[VY||eo < W is isolated:

. The following result shows that if H is Lipschitz near a constant, the existence
condition given in Theorem 1 may be stated in more precise terms. Moreover,
if ||g — al|1,00 is small, then T is a contraction in Br(g):

COROLLARY 3

Let a € R3, and assume that H is Lipschitz on BRo(a)_' with constant k and
radius Ro. Let H, = ||Hl|a|lp = ||H (u, v, a,0,0)||,. Then:
a) (1) admits a solution in Bg(g) for any harmonic g € W2P(Q,IR3) such

2+ 2k
that ||g —all1,00 = R < mm{—D- Al

b) (1) admits a unique solution in Bg(g) for any harmonic g € W2P(Q,1R3)
2H2+ 042V

such that ||g — all1,s = R < min{Ze, 2k(::;\/-)
Proof

If |g—alli0o = R < %‘1, then Bgr(g) C Bry(a) and as in Theorem 2 we
obtain, for X € Bg(g):

IT(X) = gll1,00 < 2e10a | H|zXu A Xolp < dercahir(g)R?

Then T(Br(g)) € Br(g) for hr(g)R < =2~ and as hgr(g) < hagr(a) <

—4cc

H, + 2kR part a) follows. Furthermore, if also Y € Br(g) we have:
IT(X) = T(Y)l1,00 < exca 2l HIxllpl V(X - Dol (X + ¥2) 2o

+E|| VY% )1X = ¥ l1,00) < 4cica(V2hr(g)R + kR2)||X Y||1 0o

and then T is a contractien in Bg(g) for \/§hR(g)R-+-IcR2 4 - - Thus, b)
is proved. O

In the next theorem we obtain the local uniqueness under different assump-
tions. For this purpose, we define for Xo,X € C'(Q,IR3) and.Z(u,v) =
(21,23, Z3) € (R3)? the matrices given by
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AW =2 (H'xW A Xo, + (583(}1—(11., v, Z)'W)Xou AXO.,)
. u
BW = 2 (Hl}{XO., /\W+ ( X, (u, v, Z)W)Xoub/\ XO,,)

_OH
oW = 2(5Y|2.W)Xou A Xo,

and the number

(HIAI2 T\lBlzlloo)

where A; is the first eigenvaIue of —A.

In particular, for X = Xo, Z = (Xo, Xou, Xo,) We w111 write A(X(]) B(Xy),
C(Xo) a.nd 7(Xo) respectively.

THEOREM 4

Let Xo € C*(S,R3) be a solution of (1) such that one of the following condi-

tions holds:

i) H is Lipschitz on Xy with constant for some 6 <1
) 26100”X0u A Xo, “oo ’

- some constant co depending on Xy and

A
I |xu Xo loo + 1HlxoXo oo < 22

ii) H is continuously differentiable on X, with respect to X, X, and X,,
and r(Xp) <1, C(Xo) 2 —k> M(r—1).
Then .X.O is isolated in C*(Q,IR3).

Proof
If X is another solution of (1), then Y X — X is a solution of the equation

AY = 2H|y4+x,(Y + Xo)u A (Y + Xo),, — 2H|x,Xo, A Xov in Q
Y=0 in 09Q.

Let S be the operator given by S(Y) = 2H|x,(Xo, AY, + Yy A Xy,), then:
LY ;=AY -S(Y) =2H|y+x,YuNYy+2(H|y+x, — H|x, ) (X0, ANYy +Yu A Xp,)

+2 (H|Y+Xq - Hlxo) Xou A XO-:
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If i) holds, L satisfies the conditions of lemma 6 below, and then we obtain,
for small 0 < R = ||Y||1,00° '

R < cie||LY||, < kR? + 6R
for a constant k. Leting R — 0 we obtain 1 < §, a contradiction. This

shows that X, is-isolated.

On the other hand, if ii) holds we have:

: OH
Hlyyx, — H|x, = X

L on
Xo aXu

: oH
Y. [
Xo v + 6X,, Xo

Y, +94(Y)

and the result follows in a similar. way, from the equation

LY = 2H|y 4 x, YuAYy+20(Y) Xo, AY, +Yu A X0, +2 (H|}+X° — H|x,) Xo0,AXo,
with LY = AY — A(X,)Ys — B(Xo)Y, — C(Xo)Y . m]

"REMARK:
In the previous theorem, the condition C > 0 holds if and only if Xo, A X,
H

is orthogonal to g—X— X, Indeed, writing g% X = (h1, h2, h3), Xo, A Xo, =
(z1,z2,3), we see that 0 < Ce;.e; = 2h;z;, and for Y = (t,1,0) we obtain
that (thy + ho)(tzy + z2) > 0 for every t. Then 0 > (hize + hox1)? —
4hihoz1z2 = (h1z2 — hoz1)?. This implies that hizs = hyx,, and in the same
way we prove that hoxs = h3zzy, hiT3 = hszq,. The converse is immediate.

4. GLOBAL UNIQUENESS

THEOREM 5
Let Xo € C(Q,R3) be a solution of (1) such that H is continuously dif-

ferentiable with respect to X,X, and X, and assume that r < 1 and
C > —k> M(r—1) forany X € C*(Q,R3), Z € (R3)3. Then X, is
unique in C*(Q,R3).

Proof

We proceed as in theorem 4: if X, X € C1(Q,IR3) are solutions of (1), then
for Y = X — X, we have:

AY—-2H|X (Yu/\XO., +Xu/\yu)_2(HIX—HIX0)X0u/\X0., =0
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Moreover, by the mean value theorem we have, for fixed (u,v):

Hix — Hix, = 2 (u,0,2)y + 2 (4,0, 2)7, + gg—(u,v, 2)Y,
v

0X 00X,
for some Z = Z(u,v) € L*(Q, (R?)3), and then LY := AY — AY, — BY, —
CY=0. As Y =0 in 99, we conclude from lemma 6 that Y =0. m|
- REMARK

For example, conditions of theorem 5 hold for H = f—i‘lﬁ%, with H; small
enough. From a previous remark, also existence holds in this case. In particular,

for constant g existence and uniqueness can be proved when ||Hi||2 > ——L‘ét’:\o .

5. A TECHNICAL LEMMA

In this section we extend a well-known result for linear elliptic second order
operators in W2?(Q,R):
LEMMA 6

Let L : W?P(Q,IR3) — LP(Q,IR®) be the linear elliptic operator given by
LX = AX + AX, + BX, + CX, with A,B,C € L®(Q,R¥3), 2 < p < oo

2 L1 m2 1/2
and assume that r := (il.!_él_‘l')\llél_llz) <1 and C <Kk <A(l-r), where

A1 is the first eigenvalue of —A.

Then there exists a constant ¢ such that
||X”2,p < CHL-X“P

for every X € WP N WOI"’(Q, R3).

Proof-

Let Z, € WP N WyP(Q,IR?) be a sequence such that ||LZ,|, — 0,
||Zn|l2,p =1. Then ||LZ,||2 — 0, and as '

/'LZnZn < =lIVZall3 + (AP + 1BI%) 2 [0l V Zn |21l Za |2

o+ [Crz s -1+ DIV
1 .

we conclude that ||VZ,||2 —50. By Poincaré’s inequality, we obtain that
|Zn|l]2 — 0 and hence ||AZ,||]2 — 0. As the lemma holds for L = A and
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‘any 1 < p < oo (see [GT]), then ||Z |l2,2 — 0, and hence ||Z ||1p — 0.
This shows that |AZy,|, — 0, a contradiction. - a -
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