Revista de la Unión Matemática Argentina Volumen 42, Nro. 1, 2000, 75-83

SOLVABILITY AND UNIQUENESS RESULTS FOR EQUATIONS OF MEAN CURVATURE TYPE Pablo Amster and María Cristina Mariani

FCEyN - Universidad de Buenos Aires

ABSTRACT

We study the mean curvature equation $\Delta X = 2HX_u \wedge X_v$. For any fixed $H = H(u, v, X, X_u, X_v)$ we give a family of boundary data g such that the Dirichlet problem is solvable. Furthermore, we prove under some conditions local and global uniqueness of the solutions in the Banach Space $C^1(\overline{\Omega}, \mathbb{R}^3)$.

1. INTRODUCTION

We consider the Dirichlet problem in a bounded $C^{1,1}$ domain $\Omega \subset \mathbb{R}^2$ for a vector function $X: \overline{\Omega} \longrightarrow \mathbb{R}^3$ which satisfies the equation of prescribed mean curvature

(1)
$$\begin{cases} \Delta X = 2H(u, v, X, X_u, X_v)X_u \wedge X_v & \text{in } \Omega \\ X = g & \text{in } \partial\Omega \end{cases}$$

where X_u and X_v are the partial derivatives of X, \wedge denotes the exterior product in \mathbb{R}^3 , $H: \overline{\Omega} \times (\mathbb{R}^3)^3 \longrightarrow \mathbb{R}$ is a given continuous function and the boundary data g belongs to $W^{2,p}(\Omega, \mathbb{R}^3)$ for some 2 . As the usualprescription of the Dirichlet data, we may assume without loss of generalitythat <math>g is harmonic.

Problem (1) arises in the Plateau and Dirichlet problems for the prescribed mean curvature equation that has been studied by variational methods for constant H in [BC], [H], [S] and for H = H(X) in [ADNM], [W]. Indeed, it is possible to find solutions of (1) by minimizing the functional $D_H(X) =$ D(X) + 2V(X), where D is the Dirichlet integral and V is the Hildebrandt's volume given by $V(X) = \frac{1}{3} \int_B Q(X) X_u \wedge X_v$, with divQ = 3H. However, for the general case a functional for (1) is not known. Solutions by topological methods are given in [AM], and in [ABMR] for a nonparametric surface. For H and g constant, the solution $X \equiv g$ is unique [We]. A nonuniqueness result for constant H > 0 and nonconstant g with $H||g||_{\infty} < 1$ is given in [BC]. In order to study problem (1) we consider the operator $T : C^1(\overline{\Omega}, \mathbb{R}^3) \longrightarrow$ $C^1(\overline{\Omega}, \mathbb{R}^3)$ given by $T\overline{X} = X$, where $X \in W^{2,p} \hookrightarrow C^1$ is the unique solution of the linear problem

$$\begin{cases} \Delta X = 2H(u, v, \overline{X}, \overline{X}_u, \overline{X}_v)\overline{X}_u \wedge \overline{X}_v & \text{in } \Omega \\ X = g & \text{in } \partial\Omega \end{cases}$$

Thus, any strong solution of (1) may be regarded as a fixed point of T. We remark that any weak solution in $W^{1,\infty}(\Omega, \mathbb{R}^3)$ is strong, and classical if g and $\partial\Omega$ are smooth (see [AM]).

2. SOLVABILITY OF (1)

In order to find a fixed point of T, we recall the apriori bound c_{Δ} for the Laplacian, i.e. $||X||_{2,p} \leq c_{\Delta} ||\Delta X||_p$ for every $X \in W^{2,p} \cap W_0^{1,p}$ (see [GT]), and remark that by the compactness of the imbedding $W^{2,p} \hookrightarrow C^1$ the operator T is compact. Thus, by Schauder's Theorem it suffices to find R such that $T(B_R(g)) \subset B_R(g)$. For the sake of simplicity, for $X \in C^1$ we define $H|_X : \overline{\Omega} \to \mathbb{R}$ given by $H|_X(u,v) = H(u,v,X,X_u,X_v)$, and we say that H is Lipschitz on $X \in C^1(\overline{\Omega}, \mathbb{R}^3)$ if there exist R > 0 and k = k(R) such that

$$||H|_Y - H|_X||_p \le k ||Y - X||_{1,\infty}$$
 for any $Y \in B_R(X)$.

THEOREM 1

Let K be a compact subset of \mathbb{R}^3 . Then there exists a constant $c_{\infty} = c_{\infty}(H, K)$ such that (1) is solvable for any $g \in A_{K,c_{\infty}}$, with

$$A_{K,c_{\infty}} = \{g \in W^{2,p}(\Omega, \mathbb{R}^3) : g(\overline{\Omega}) \subset K, \|\nabla g\|_{\infty} \le c_{\infty}\}$$

Proof

For R > 0, and fixed $\overline{c} \in \mathbb{R}$ we define $H_R = \sup_{g \in A_{K,\overline{c}}} h_R(g) \in \mathbb{R}$, where $h_R(g)$ is given by

$$h_R(g) = \sup_{\|X-g\|_{1,\infty} \le R} \|H|_{\overline{X}}\|_p$$

As H_R is nondecreasing we may fix \overline{R} such that $\overline{R}H_{\overline{R}} = \frac{1}{4c_1c_{\Delta}}$, where c_1 is the constant of the imbedding $W^{2,p} \hookrightarrow C^1$. Thus, for $g \in A_{K,\overline{c}}$, if $\|\overline{X} - g\|_{1,\infty} \leq R \leq \overline{R}$ we have:

$$\|T\overline{X} - g\|_{1,\infty} \le c_1 c_\Delta \|H|_{\overline{X}}\|_p \|\nabla \overline{X}\|_{\infty}^2 \le c_1 c_\Delta H_R (R + \|\nabla g\|_{\infty})^2$$

As $H_R \leq H_{\overline{R}}$, it suffices to find $R \in (0, \overline{R}]$ such that $c_1 c_\Delta H_{\overline{R}} (R + ||\nabla g||_{\infty})^2 \leq R$. Setting $c_{\infty} = \min\{\overline{c}, \frac{1}{4c_1c_\Delta H_{\overline{\mu}}}\}$, it's immediate to see that the parabola

$$R^{2} + (2\|\nabla g\|_{\infty} - \frac{1}{c_{1}cH_{\overline{R}}})R + \|\nabla g\|_{\infty}^{2}$$

admits the positive root

$$R_0 = \frac{1}{2c_1 c H_{\overline{R}}} \left(1 - \sqrt{1 - 4c_1 c_\Delta H_{\overline{R}}} \|\nabla g\|_{\infty} - 2c_1 c H_{\overline{R}} \|\nabla g\|_{\infty} \right)$$

Let $x = \|\nabla g\|_{\infty}$ and consider the function

$$F(x) = \frac{1}{2c_1 c H_{\overline{R}}} \left(1 - \sqrt{1 - 4c_1 c H_{\overline{R}} x} - 2c_1 c H_{\overline{R}} x \right)$$

Then, as $F'(x) \ge 0$ for $0 \le x < \frac{1}{4c_1 c H_{\overline{R}}}$, we conclude that $R_0 \le F(\frac{1}{4c_1 c H_{\overline{R}}}) = \frac{1}{4c_1 c H_{\overline{R}}} = \overline{R}$, and the proof is complete.

REMARKS:

i) As the proof of Theorem 1 does not depend on the choice of \overline{c} , a sharper value for c_{∞} may be obtained taking $\max_{\overline{c} \in \mathbb{R}} \left(\min\{\overline{c}, \frac{1}{4c_1c_{\Delta}H_{\overline{R}}(\overline{c})}\} \right)$. ii) We may also observe that

$$\|T\overline{X} - g\|_{1,\infty} \le 2c_1 c_\Delta \|H|_{\overline{X}} \|_{\infty} \|\overline{X}_u \wedge \overline{X}_v\|_p \le c_1 c_\Delta \|H|_{\overline{X}} \|_{\infty} \|\nabla \overline{X}\|_{2p}^2$$

Then, if we define

$$h_R^{\infty}(g) = \sup_{\|X-g\|_{1,\infty} \le R} \|H|_{\overline{X}}\|_{\infty}, \qquad H_R^{\infty} = \sup_{g(\overline{\Omega}) \subset K, \|\nabla g\|_{2p} \le \overline{c}} h_R^{\infty}(g)$$

it follows that

$$||T\overline{X} - g||_{1,\infty} \le c_1 c_\Delta H_R^{\infty} (||\nabla g||_{2p} + |\Omega|^{1/2p} R)^2$$

Thus, taking $\overline{R}(\overline{c})$ such that $\overline{R}H_{\overline{R}}^{\infty} = \frac{1}{4|\Omega|^{1/2p}c_1c_{\Delta}}$, (1) is solvable for any g belonging to the set $\{g \in W^{2,p}(\Omega, \mathbb{R}^3) : g(\overline{\Omega}) \subset K, \|\nabla g\|_{2p} \leq c_{2p}\}$, with

$$c_{2p} = \sup_{\overline{c} \in \mathbb{R}} \left(\min\{\overline{c}, \frac{1}{4|\Omega|^{1/2p} c_1 c_\Delta H_{\overline{R}}^{\infty}(\overline{c})} \} \right)$$

iii) If H is bounded with respect to X, then c_{∞} and c_{2p} may be choosen independently of K.

iv) In some cases it holds that $c_{\infty} = c_{2p} = +\infty$. For example, for $H = \frac{H_1(u,v,X)}{1+\nabla X^2}$, with $|H_1(u,v,x)| \leq r|x| + s$ and $r < \frac{1}{c_1c}$, it is clear that if $X = \sigma TX$ for some $0 \leq \sigma \leq 1$, then

$$\|X - \sigma g\|_{1,\infty} \le 2c_1 c_\Delta \sigma \|\frac{H_1(u, v, X)}{1 + \nabla X^2} X_u \wedge X_v\|_p \le c_1 c_\Delta(r \|X\|_{1,\infty} + s)$$

This proves that $||X||_{1,\infty} \leq M$ for some constant M, and the result follows by Leray-Schauder's Theorem.

3. LOCAL UNIQUENESS OF THE SOLUTIONS

THEOREM 2

Let $\overline{Y} \in C^1(\overline{\Omega}, \mathbb{R}^3)$, and assume that H is Lipschitz on \overline{Y} with constant k and radius R. We define

$$c(\overline{Y}) = 2h_R(\overline{Y})(2\|\nabla\overline{Y}\|_{\infty} + R) + k\|\nabla\overline{Y}\|_{\infty}^2$$

Then, for $\overline{X} \in B_R(\overline{Y})$:

$$\|T(\overline{X}) - T(\overline{Y})\|_{1,\infty} \le c_1 c_{\Delta} c(\overline{Y}) \|\overline{X} - \overline{Y}\|_{1,\infty}$$

In particular, if \overline{Y} is a solution of (1) and $c_1c_{\Delta}c(\overline{Y}) < 1$, then \overline{Y} is unique in $B_R(\overline{Y})$.

<u>Proof</u>

Given $\overline{X} \in B_R(\overline{Y})$, it follows that

$$\|T(\overline{X}) - T(\overline{Y})\|_{1,\infty} \le 2c_1 c \|H|_{\overline{X}} \overline{X}_u \wedge \overline{X}_v - H|_{\overline{Y}} \overline{Y}_u \wedge \overline{Y}_v\|_p$$

 $\leq 2c_1 c (\|H|_{\overline{X}} \left((\overline{X}_u - \overline{Y}_u) \wedge \overline{X}_v + \overline{Y}_u \wedge (\overline{X}_v - \overline{Y}_v) \right) \|_p + \|(H|_{\overline{X}} - H|_{\overline{Y}}) \overline{Y}_u \wedge \overline{Y}_v \|_p)$

As $\|\nabla(\overline{X} - \overline{Y})\|_{\infty} \leq R$, the result follows.

Furthermore, if $c_1c_{\Delta}c(\overline{Y}) < 1$, and $\overline{X} \neq \overline{Y} \in B_R(\overline{Y})$ are fixed points of Tthen $\|\overline{X} - \overline{Y}\|_{1,\infty} < \|\overline{X} - \overline{Y}\|_{1,\infty}$, a contradiction.

REMARK:

In particular, for H = H(u, v), $c(\overline{Y}) = 2||H||_p(2||\nabla \overline{Y}||_{\infty} + R)$ for any R. Hence, any solution \overline{Y} such that $||\nabla \overline{Y}||_{\infty} < \frac{1}{2||H||_p c_1 c}$ is isolated.

The following result shows that if H is Lipschitz near a constant, the existence condition given in Theorem 1 may be stated in more precise terms. Moreover, if $||g - a||_{1,\infty}$ is small, then T is a contraction in $B_R(g)$:

COROLLARY 3

Let $a \in \mathbb{R}^3$, and assume that H is Lipschitz on $B_{R_0}(a)$ with constant k and radius R_0 . Let $H_a = ||H|_a||_p = ||H(u, v, a, 0, 0)||_p$. Then:

a) (1) admits a solution in $B_R(g)$ for any harmonic $g \in W^{2,p}(\Omega, \mathbb{R}^3)$ such that $\|g-a\|_{1,\infty} = R \leq \min\{\frac{R_0}{2}, \frac{\sqrt{H_a^2 + \frac{2k}{c_1c_\Delta}} - H_a}{4k}\}$.

b) (1) admits a unique solution in $B_R(g)$ for any harmonic $g \in W^{2,p}(\Omega, \mathbb{R}^3)$ such that $\|g-a\|_{1,\infty} = R \le \min\{\frac{R_0}{2}, \frac{\sqrt{2H_a^2 + \frac{(1+2\sqrt{2})k}{c_1c_\Delta}} - \sqrt{2}H_a}{2k(1+2\sqrt{2})}\}$.

<u>Proof</u>

If $||g - a||_{1,\infty} = R \leq \frac{R_0}{2}$, then $B_R(g) \subset B_{R_0}(a)$ and as in Theorem 2 we obtain, for $\overline{X} \in B_R(g)$:

$$\|T(\overline{X}) - g\|_{1,\infty} \le 2c_1 c_\Delta \|H|_{\overline{X}} \overline{X}_u \wedge \overline{X}_v\|_p \le 4c_1 c_\Delta h_R(g) R^2$$

Then $T(B_R(g)) \subset B_R(g)$ for $h_R(g)R \leq \frac{1}{4c_1c_{\Delta}}$ and as $h_R(g) \leq h_{2R}(a) \leq H_a + 2kR$ part a) follows. Furthermore, if also $\overline{Y} \in B_R(g)$ we have:

$$\|T(\overline{X}) - T(\overline{Y})\|_{1,\infty} \le c_1 c_\Delta (2\|H|_{\overline{X}}\|_p \|\nabla(\overline{X} - \overline{Y})\|_\infty \|(\overline{X}_v^2 + \overline{Y}_u^2)^{1/2}\|_\infty$$
$$+k\|\nabla\overline{Y}\|_\infty^2 \|\overline{X} - \overline{Y}\|_{1,\infty}) \le 4c_1 c_\Delta (\sqrt{2}h_R(g)R + kR^2) \|\overline{X} - \overline{Y}\|_{1,\infty}$$

and then T is a contraction in $B_R(g)$ for $\sqrt{2}h_R(g)R + kR^2 < \frac{1}{4c_1c}$. Thus, b) is proved.

In the next theorem we obtain the local uniqueness under different assumptions. For this purpose, we define for $X_0, X \in C^1(\overline{\Omega}, \mathbb{R}^3)$ and $Z(u, v) = (Z_1, Z_2, Z_3) \in (\mathbb{R}^3)^3$ the matrices given by

Pablo Amster and María C. Mariani

$$AW = 2\left(H|_X W \wedge X_{0_v} + \left(\frac{\partial H}{\partial X_u}(u, v, Z)W\right)X_{0_u} \wedge X_{0_v}\right)$$
$$BW = 2\left(H|_X X_{0_u} \wedge W + \left(\frac{\partial H}{\partial X_v}(u, v, Z)W\right)X_{0_u} \wedge X_{0_v}\right)$$
$$CW = 2\left(\frac{\partial H}{\partial X}\Big|_Z W\right)X_{0_u} \wedge X_{0_v}$$

and the number

$$r := \left(\frac{\||A|^2 + |B|^2\|_{\infty}}{\lambda_1}\right)^{1/2}$$

where λ_1 is the first eigenvalue of $-\Delta$.

In particular, for $X = X_0$, $Z = (X_0, X_{0u}, X_{0v})$ we will write $A(X_0)$, $B(X_0)$, $C(X_0)$ and $r(X_0)$ respectively.

THEOREM 4

Let $X_0 \in C^1(\overline{\Omega}, \mathbb{R}^3)$ be a solution of (1) such that one of the following conditions holds:

i) H is Lipschitz on X_0 with constant $\frac{\delta}{2c_1c_0\|X_{0_u} \wedge X_{0_v}\|_{\infty}}$ for some $\delta < 1$, some constant c_0 depending on X_0 and

$$||H|_{X_0}X_{0_u}||_{\infty} + ||H|_{X_0}X_{0_v}||_{\infty} < \frac{\sqrt{\lambda_1}}{2}$$

ii) H is continuously differentiable on X_0 with respect to X, X_u and X_v , and $r(X_0) < 1$, $C(X_0) \ge -\kappa > \lambda_1(r-1)$.

Then X_0 is isolated in $C^1(\overline{\Omega}, \mathbb{R}^3)$.

Proof

If X is another solution of (1), then $Y = X - X_0$ is a solution of the equation

$$\begin{cases} \Delta Y = 2H|_{Y+X_0}(Y+X_0)_u \wedge (Y+X_0)_v - 2H|_{X_0}X_{0_u} \wedge X_{0_v} & \text{in } \Omega \\ Y = 0 & \text{in } \partial\Omega \end{cases}$$

Let S be the operator given by $S(Y) = 2H|_{X_0}(X_{0_u} \wedge Y_v + Y_u \wedge X_{0_v})$, then: $LY := \Delta Y - S(Y) = 2H|_{Y+X_0}Y_u \wedge Y_v + 2(H|_{Y+X_0} - H|_{X_0})(X_{0_u} \wedge Y_v + Y_u \wedge X_{0_v})$ $+ 2(H|_{Y+X_0} - H|_{X_0})X_{0_u} \wedge X_{0_v}$

If i) holds, L satisfies the conditions of lemma 6 below, and then we obtain, for small $0 < R = ||Y||_{1,\infty}$:

$$R \le c_1 c_0 \|LY\|_p \le kR^2 + \delta R$$

for a constant k. Leting $R \longrightarrow 0$ we obtain $1 \le \delta$, a contradiction. This shows that X_0 is isolated.

On the other hand, if ii) holds we have:

$$H|_{Y+X_0} - H|_{X_0} = \frac{\partial H}{\partial X}\Big|_{X_0} Y + \frac{\partial H}{\partial X_u}\Big|_{X_0} Y_u + \frac{\partial H}{\partial X_v}\Big|_{X_0} Y_v + \psi(Y)$$

and the result follows in a similar way, from the equation

$$\overline{L}Y = 2H|_{Y+X_0}Y_u \wedge Y_v + 2\psi(Y)X_{0_u} \wedge Y_v + Y_u \wedge X_{0_v} + 2(H|_{Y+X_0} - H|_{X_0})X_{0_u} \wedge X_{0_v}$$

with $\overline{L}Y = \Delta Y - A(X_0)Y_u - B(X_0)Y_v - C(X_0)Y$.

REMARK:

In the previous theorem, the condition $C \ge 0$ holds if and only if $X_{0_u} \wedge X_{0_v}$ is orthogonal to $\frac{\partial H}{\partial X}\Big|_{X_0}$. Indeed, writing $\frac{\partial H}{\partial X}\Big|_{X_0} = (h_1, h_2, h_3)$, $X_{0_u} \wedge X_{0_v} = (x_1, x_2, x_3)$, we see that $0 \le Ce_i.e_i = 2h_ix_i$, and for Y = (t, 1, 0) we obtain that $(th_1 + h_2)(tx_1 + x_2) \ge 0$ for every t. Then $0 \ge (h_1x_2 + h_2x_1)^2 - 4h_1h_2x_1x_2 = (h_1x_2 - h_2x_1)^2$. This implies that $h_1x_2 = h_2x_1$, and in the same way we prove that $h_2x_3 = h_3x_2$, $h_1x_3 = h_3x_1$. The converse is immediate.

4. GLOBAL UNIQUENESS

THEOREM 5

Let $X_0 \in C^1(\overline{\Omega}, \mathbb{R}^3)$ be a solution of (1) such that H is continuously differentiable with respect to X, X_u and X_v and assume that r < 1 and $C \geq -\kappa > \lambda_1(r-1)$ for any $X \in C^1(\overline{\Omega}, \mathbb{R}^3)$, $Z \in (\mathbb{R}^3)^3$. Then X_0 is unique in $C^1(\overline{\Omega}, \mathbb{R}^3)$.

<u>Proof</u>

We proceed as in theorem 4: if $X_0, X \in C^1(\overline{\Omega}, \mathbb{R}^3)$ are solutions of (1), then for $Y = X - X_0$ we have:

$$\Delta Y - 2H|_X \left(Y_u \wedge X_{0_v} + X_u \wedge Y_v \right) - 2(H|_X - H|_{X_0}) X_{0_u} \wedge X_{0_v} = 0$$

Pablo Amster and María C. Mariani

Moreover, by the mean value theorem we have, for fixed (u, v):

$$H|_{X} - H|_{X_{0}} = \frac{\partial H}{\partial X}(u, v, Z)Y + \frac{\partial H}{\partial X_{u}}(u, v, Z)Y_{u} + \frac{\partial H}{\partial X_{v}}(u, v, Z)Y_{v}$$

for some $Z = Z(u, v) \in L^{\infty}(\Omega, (\mathbb{R}^3)^3)$, and then $LY := \Delta Y - AY_u - BY_v - CY = 0$. As Y = 0 in $\partial\Omega$, we conclude from lemma 6 that $Y \equiv 0$.

REMARK

For example, conditions of theorem 5 hold for $H = \frac{H_1(u,v)}{1+|\nabla X|^2}$, with H_1 small enough. From a previous remark, also existence holds in this case. In particular, for constant g existence and uniqueness can be proved when $||H_1||_2 > \frac{\sqrt{\lambda_1}}{2c_0}$.

5. A TECHNICAL LEMMA

In this section we extend a well-known result for linear elliptic second order operators in $W^{2,p}(\Omega, \mathbb{R})$:

LEMMA 6

Let $L: W^{2,p}(\Omega, \mathbb{R}^3) \longrightarrow L^p(\Omega, \mathbb{R}^3)$ be the linear elliptic operator given by $LX = \Delta X + AX_u + BX_v + CX$, with $A, B, C \in L^{\infty}(\Omega, \mathbb{R}^{3\times 3}), 2 and assume that <math>r := \left(\frac{\||A|^2 + |B|^2\|_{\infty}}{\lambda_1}\right)^{1/2} < 1$ and $C \leq \kappa < \lambda_1(1-r)$, where λ_1 is the first eigenvalue of $-\Delta$.

Then there exists a constant c such that

 $||X||_{2,p} \le c ||LX||_p$

for every $X \in W^{2,p} \cap W^{1,p}_0(\Omega, \mathbb{R}^3)$.

Proof

Let $Z_n \in W^{2,p} \cap W_0^{1,p}(\Omega, \mathbb{R}^3)$ be a sequence such that $||LZ_n||_p \longrightarrow 0$, $||Z_n||_{2,p} = 1$. Then $||LZ_n||_2 \longrightarrow 0$, and as

$$\int LZ_n Z_n \le -\|\nabla Z_n\|_2^2 + \|(|A|^2 + |B|^2)^{1/2}\|_{\infty} \|\nabla Z_n\|_2 \|Z_n\|_2$$
$$+ \int CZ_n Z_n \le (r - 1 + \frac{\kappa}{\lambda_1}) \|\nabla Z_n\|_2^2,$$

we conclude that $\|\nabla Z_n\|_2 \longrightarrow 0$. By Poincaré's inequality, we obtain that $\|Z_n\|_2 \longrightarrow 0$ and hence $\|\Delta Z_n\|_2 \longrightarrow 0$. As the lemma holds for $L = \Delta$ and

any $1 (see [GT]), then <math>||Z_n||_{2,2} \to 0$, and hence $||Z_n||_{1,p} \to 0$. This shows that $||\Delta Z_n||_p \to 0$, a contradiction.

REFERENCES

[ABMR] Amster P, Borgna J.P, Mariani M.C, Rial D.F: Solutions to the mean curvature equation for nonparametric surfaces by fixed point methods. Revista de la Unión Matemática Argentina, Volumen 41, 3, 1999. pp 15-21.

[ADNM] Amster P, De Nápoli P, Mariani M. C: Solutions to the prescribed mean curvature equation with Dirichlet conditions by variational methods. Proyecciones, Vol. 18, n: 2, pp. 155-164.

[AM] Amster P, M. C. Mariani M.C: The prescribed mean curvature equation with Dirichlet conditions. To appear in Nonlinear Analysis, Theory, Methods, and Applications.

[BC] Brezis H, Coron J:Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984), 149-187.

[GT] Gilbarg D, Trudinger N. S : Elliptic partial differential equations of second order, Springer- Verlag (1983).

[H] Hildebrandt S: On the Plateau problem for surfaces of constant mean curvature. Comm. Pure Appl. Math. 23 (1970) 97-114.

[S] Struwe M: Plateau 's problem and the calculus of variations, Lecture Notes Princeton Univ. Press (1988).

[W] Wang Guofang: The Dirichlet problem for the equation of prescribed mean curvature, Analyse Nonlinéaire 9 (1992), 643-655.

[We] Wente H.C: The differential equation $\Delta X = 2HX_u \wedge X_v$ with vanishing boundary values, Proc.Amer.Math.Soc 50, (1975),131-7.

P. Amster and M.C. Mariani

Departamento de Matemtica, Facultad de Ciencias Exactas y Naturales, UBA Pab. I, Ciudad Universitaria - (1428) Buenos Aires Argentina CONICET

E-mail: pamster@dm.uba.ar - mcmarian@dm.uba.ar

Recibido	:	5	de	Octubre	de	2000
Versión Modificada	:	5	de	Enero	de	2001
Aceptado	:	20	de	Enero	de	2001