ON A NON-LINEAR ELLIPTIC PROBLEM¹

Augusto Wanderley and Neyde Ribeiro

Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro Rua São Francisco Xavier, 524, 29559-013, Rio de Janeiro, RJ, Brasil e-mail: wandmja@terra.com.br, e-mail: bfelisb@centroin.com.br

Abstract

For the non-linear operator

$$A(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\left| \frac{\partial u}{\partial x_i} \right|^{p-2} \frac{\partial u}{\partial x_i} \right), \qquad p > 2,$$

we consider the existence of solution, in $W_0^{1,p}(\Omega)$, Ω , open and bounded in \mathbb{R}^n for the equation A(u) + g(x, u) = f(x) with appropriate \underline{f} and \underline{g} , using motonicity methods.

1. Introduction

Let

$$A(u) = -\sum \frac{\partial}{\partial x_i} \left(\left| \frac{\partial u}{\partial x_i} \right|^{p-2} \frac{\partial u}{\partial x_i} \right), \qquad p > 2.$$

The problem: solve

$$A(u) + g(x, u) = f(x) \tag{(*)}$$

in $\Omega \subset \mathbb{R}^n$, open and bounded subset is considered for instance in [3], in the cases $g \equiv 0$, and $g(x,r) = |r|^{p-2}r$, using Galerkin method. We will consider the problem with more general g, using monotonicity methods. Here, the function g(x,r) will be supposed to have the properties:

- (a) g(x,r) is measurable in $\underline{x} \in \Omega$, for fixed $r \in \mathbb{R}$. It is a continuous function in r, for each fixed x. For each $x \in \Omega$, g(x,0) = 0 and, for all $r \in \mathbb{R}$ and $x \in \Omega$, $g(x,r)r \ge 0$;
- (b) there exists a non-decreasing continuous function $h: \mathbb{R} \to \mathbb{R}$ with h(0) = 0 such that for a given $C \in \mathbb{R}$: $|g(x,r)| \le |h(r)|$ and $|h(r)| \le C\{|g(x,r)| + |r|^{p-1} + 1\}$, for all $x \in \Omega$ and $r \in \mathbb{R}$.

We remark that $u \in W_0^{1,p}(\Omega) = V$ is a solution of (*) if equality, there, holds in the sense of distributions, that is, for each $\varphi \in \mathcal{D}(\Omega)$,

$$(A(u), \varphi) + (g(x, u), \varphi) = (f, \varphi)$$

¹Key words and phrases: non-linear, existence, solution, Sobolev spaces, motonicity. Subject Classifications. Primary: 35A15; Secondary: 35A35.

A. WANDERLEY AND N. RIBEIRO

where (\cdot, \cdot) is the duality between V' and V.

2. Existence of solution

Let us define the functions $g_n(x,r)$, by:

$$g_n(x,r) = \left\{egin{array}{ccc} g(x,r) & ext{if} & |g(x,r)| \leq n \ n & ext{if} & g(x,r) \geq n \ -n & ext{if} & g(x,r) \leq -n \end{array}
ight.$$

Lemma 1. For each n, natural and $f \in V'$ there exists $u_n \in V$ such that

$$A(u_n) + g_n(x, u_n) = f.$$

Proof. Let $u \in V$. Since $|g_n(x, u(x))| \leq n$, the function from Ω to \mathbb{R} , that to each $x \in \Omega$ associates $g_n(x, u(x))$ belongs to $L^{p'}(\Omega)$ and since $u \in L^p(\Omega)$, the functional from V to \mathbb{R} associating to each $v \in V$,

$$\int g(x,u(x))v(x)\,dx$$

is well defined. It is bounded on V and therefore, is an element of V', denoted by $g_n(x, u)$. Hence the functional:

$$u \mapsto A(u) + g_n(x, u)$$

is (non-linear), bounded on V. By the definition of $g_n(x,r)$ and the hypothesis (a) on g(x,r) we will have that

$$A(u) + g_n(x, u) \tag{1}$$

is coercive since A is coercive. A(u) is bounded, hemicontinuous and monotonic and therefore

$$A(u) + g_n(x, u)$$

is pseudomonotonic, since $g_n(x, u)$ is pseudomonotonic (see [3], p. 189). We also have

$$A(u) + g_n(x, u),$$

is surjective (proposition in [3], p. 247) and for each \underline{n} , natural and $f \in V'$ there exists $u_n \in V$ such that

$$A(u_n) + g_n(x, u_n) = f.$$

Since $u_n \in V$ and $g_n(x, u_n) \in V'$ is an element of $L^{p'}(\Omega)$ we may write

$$(A(u_n), u_n) + \int_{\Omega} g_n(x, u_n) u_n \, dx = (f, u_n).$$
(2)

Since $g_n(x, u_n)u_n \ge 0$, we have

$$\alpha ||u_n||^p \le (Au_n, u_n) \le (f, u_n) \le ||f||_{V'} ||u_n||,$$

Rev. Un. Mat. Argentina, Vol. 42-2

for some $\alpha \in \mathbb{R}$ and there is M > 0 such that

$$||u_n|| \leq M$$
, for all $n \in \mathbb{N}$.

V beeing reflexive there is a subsequence also denoted by $(u_n)_n$ such that u_n converges weakly in V to $u \in V$ and $A(u_n)$ converges weakly in V' for $\eta \in V'$ that is

$$u_n \rightarrow u \quad \text{and} \quad A(u_n) \rightarrow \eta, \quad n \rightarrow \infty.$$
 (3)

Lemma 2. In the conditions of Lemma 1,

$$g_n(x, u_n) \rightarrow g(x, u), \text{ in } L^1(\Omega).$$

Proof. We will verify that $g_n(x, u_n)$ are equiuniformly integrable, that is: for each $\varepsilon > 0$ there is $\delta > 0$ such that for each $B \subset \Omega$ measurable, with $\mu(B) < \delta$,

$$\int_B |g_n(x,u_n)| \, dx < \varepsilon, \quad ext{for all} \quad n \in \mathbb{N}.$$

Since $A(u) + g_n(x, u)$ is coercive, we obtain

$$\int_{\Omega} g_n(x, u_n) dx = (f, u_n) - (A(u_n), u_n) \le ||f||_{V'} M + M_1 M = M_2.$$

Let $R \in \mathbb{N}$, R > 0, arbitrary.

For almost all $x \in \Omega$ such that $|u_n(x)| \leq R$,

$$|g_n(x, u_n)| \le |g(x, u_n)| \le |h(u_n)| \le \{h(R) + |h(-R)|\},\$$

and almost all $x \in \Omega$ such that $|u_n(x)| \geq R$,

$$|R|g_n(x, u_n)| \le |u_n(x)| |g_n(x, u_n)| = u_n(x)g_n(x, u_n),$$

by conditions (a) and (b).

Hence, for each R > 0, $R \in \mathbb{N}$ and for almost all $x \in \Omega$,

$$R|g_n(x, u_n)| \le u_n(x)g_n(x, u_n) + R\{h(R) + |h(-R)|\}$$

and it follows that

$$\int_{B} |g_n(x, u_n)| dx \leq R^{-1} \int_{B} u_n g_n(x, u_n) dx + \mu(B) \{h(R) + |h(-R)|\},$$

for each R > 0 and for all $B \subset \Omega$, measurable. Let $\varepsilon > 0$ and R be such that

$$R > \frac{2M_2}{\varepsilon}$$
 and $\delta = \frac{\varepsilon}{2\{h(R) + |h(-R)|\}}$

Rev. Un. Mat. Argentina, Vol. 42-2

A. WANDERLEY AND N. RIBEIRO

To the first step we recall that the $L^1(\Omega)$ -convergence of $g_n(x, u_n)$ to g(x, u) given in Lemma 2, may be interpreted as a $\mathcal{D}'(\Omega)$ -convergence as well as a weak-convergence in V' of $A(u_n)$ to η .

Hence, by (1), (3) and (4),

$$\eta + g(x, u) = f, \quad \text{in} \quad \mathcal{D}'(\Omega).$$
 (5)

Let $H(r) = \int_0^r h(s) \, ds$. H is continuous, convex and H(0) = 0. Moreover,

$$|H(u)| = \left| \int_0^{u(x)} h(s) ds \right| \le |h(u(x))u(x)| = |u| |h(u)| \le C |u| \{ |g(\cdot, u)| + |u|^{p-1} + 1 \}.$$

Therefore, $H(u) \in L^1(\Omega)$ and there is a sequence $(v_j)_j$ in $C_0^{\infty}(\Omega)$ such that

$$v_j \rightarrow u$$
 strongly in $V_i \rightarrow u$ a.e. in Ω ,

and by Lemma 3, p. 11, [1], $H(v_j)$ is bounded for all \underline{j} by a fixed function in $L^1(\Omega)$. Let $v \in V$ and $x \in \Omega$. If u(x) < v(x) then, for some $u < \xi < v$,

$$H(v) - H(u) = H'(\xi)(v - u) = h(\xi)(v - u) \ge h(u)(v - u).$$

If v(x) < u(x) then,

$$H(u) - H(v) = H'(\zeta)(u - v) = h(\zeta)(u - v) \le h(u)(u - v).$$

Therefore $H(v) - H(u) \ge h(u)(v-u)$ or

$$h(u)v \le H(v) - h(u) + h(u)u \le H(v) + h(u)u$$

since $H(u) \ge 0$.

Now, if x is such that u(x) and v(x) have the same signal, then \underline{v} has the same signal as h(u); therefore,

$$|g(x,u)v| \le |h(u)v| = h(u)v \le H(v) + h(u)u.$$

And, if \underline{u} and \underline{v} have different signals then g(x, u) and \underline{v} have distinct signals. Since $H(v) + h(u)u \ge 0$ we have: $g(x, u)v \le H(v) + h(u)u$.

By the above inequalities,

$$(g(x,u)v_j)^+ \le H(v_j) + h(u)u.$$

The second member of the inequality is dominated by a $L^1(\Omega)$ function, for each $j \in \mathbb{N}$.

We have $(g(x, u)v_j)^+ \rightarrow (g(x, u)u)^+ = g(x, u)u$, a.e. in Ω . Therefore, by Lebesgue theorem, To the first step we recall that the $L^1(\Omega)$ -convergence of $g_n(x, u_n)$ to g(x, u) given in Lemma 2, may be interpreted as a $\mathcal{D}'(\Omega)$ -convergence as well as a weak-convergence in V' of $A(u_n)$ to η .

Hence, by (1), (3) and (4),

$$\eta + g(x, u) = f, \quad \text{in} \quad \mathcal{D}'(\Omega).$$
 (5)

Let $H(r) = \int_0^r h(s) ds$. H is continuous, convex and H(0) = 0. Moreover,

$$|H(u)| = \left| \int_0^{u(x)} h(s) ds \right| \le |h(u(x))u(x)| = |u| |h(u)| \le C |u| \{ |g(\cdot, u)| + |u|^{p-1} + 1 \}.$$

Therefore, $H(u) \in L^1(\Omega)$ and there is a sequence $(v_j)_j$ in $C_0^{\infty}(\Omega)$ such that

$$egin{array}{lll} v_j
ightarrow u & ext{strongly in} & V \ v_j
ightarrow u & ext{a.e.} & ext{in} & \Omega, \end{array}$$

and by Lemma 3, p. 11, [1], $H(v_j)$ is bounded for all \underline{j} by a fixed function in $L^1(\Omega)$. Let $v \in V$ and $x \in \Omega$. If u(x) < v(x) then, for some $u < \xi < v$,

$$H(v) - H(u) = H'(\xi)(v - u) = h(\xi)(v - u) \ge h(u)(v - u).$$

If v(x) < u(x) then,

$$H(u) - H(v) = H'(\zeta)(u - v) = h(\zeta)(u - v) \le h(u)(u - v).$$

Therefore $H(v) - H(u) \ge h(u)(v-u)$ or

$$h(u)v \le H(v) - h(u) + h(u)u \le H(v) + h(u)u$$

since $H(u) \ge 0$.

Now, if x is such that u(x) and v(x) have the same signal, then \underline{v} has the same signal as h(u); therefore,

$$|g(x,u)v| \le |h(u)v| = h(u)v \le H(v) + h(u)u.$$

And, if \underline{u} and \underline{v} have different signals then g(x, u) and \underline{v} have distinct signals. Since $H(v) + h(u)u \ge 0$ we have: $g(x, u)v \le H(v) + h(u)u$.

By the above inequalities,

$$(g(x,u)v_j)^+ \le H(v_j) + h(u)u.$$

The second member of the inequality is dominated by a $L^1(\Omega)$ function, for each $j \in \mathbb{N}$.

We have $(g(x, u)v_j)^+ \to (g(x, u)u)^+ = g(x, u)u$, a.e. in Ω . Therefore, by Lebesgue theorem,

$$\int_{\Omega} (g(x,u)v_j)^+ dx \to \int_{\Omega} g(x,u)u \, dx.$$
(6)

Rev. Un. Mat. Argentina, Vol. 42-2

A. WANDERLEY AND N. RIBEIRO

Using (5), we have $(\eta, \varphi) + (g(x, u), \varphi) = (f, \varphi)$, for all $\varphi \in \mathcal{D}(\Omega)$. For the functions $(v_j) \in C_0^{\infty}(\Omega)$ in Lemma 3, page 11, of [1], we have

 $(\eta, v_j) + (g(x, u), v_j) = (f, v_j), \text{ for all } j \in \mathbb{N}, and(\eta, v_j) \to (\eta, u).$ (7)Similarly $(f, v_j) \to (f, u), \text{ and } (g(x, u), v_j) = \int_{\Omega} g(x, u) v_j \, dx.$

Therefore

$$(\eta, v_j) + \int_{\Omega} g(x, u) v_j \, dx = (f, v_j), \tag{8}$$

and

$$(\eta, v_j) = (f, v_j) - \int_{\Omega} g(x, u) v_j \, dx \ge (f, v_j) - \int_{\Omega} (g(x, u) v_j)^+ \, dx$$

and

$$(\eta, u) \ge (f, u) - \int_{\Omega} g(x, u) u \, dx, \text{ when } j \to \infty.$$
 (9)

Let $Y_n = (Au_n - Av, u_n - v), \quad v \in V$, arbitrary. By (2) we have

$$0 \le Y_n = (Au_n, u_n) - (Au_n, v) - (Av, u_n) + (Av, v) = = (f, u_n) - \int_{\Omega} g_n(x, u_n) u_n \, dx - (Au_n, v) - -(Av, u_n) + (Av, v).$$

Then, by (9).

$$0 \leq \limsup Y_n \leq (f, u) - \liminf \int_{\Omega} g_n(x, u_n) u_n \, dx - (\eta, v) - (Av, u) + (Av, v) \leq (\eta - Av, u - v).$$

That is, $(\eta - Av, u - v) \ge 0$ for each $v \in V$. Let $v = u - \lambda w$, $w \in V$, $\lambda \in \mathbb{R}$ arbitrarily chosen.

Then, $(\eta - A(u - \lambda w), \lambda w) \ge 0$, and, for $\lambda > 0 : (\eta - A(u - \lambda w), w) > 0$.

As $\lambda^+ \to 0$, we have, by the hemicontinuity of A: $(\eta - Au, w) \ge 0$. If $\lambda < 0$, then $(\eta - A(u - \lambda w), w) \le 0$ and as $\lambda \to 0$, we have $(\eta - Au, w) \le 0$. Hence, for all $w \in V$, $(\eta - Au, w) = 0$, and $\eta = A(u)$. Using (5), we have

$$Au + g(x, u) = f, \quad in \quad \mathcal{D}'(\Omega) \tag{10}$$

Finally we will prove that

$$(Au, u) + \int_{\Omega} g(x, u)u \, dx = (f, u).$$

Recall the equality (2)

$$A(u_n, u_n) + \int_{\Omega} g_n(x, u_n) u_n \, dx = (f, u_n).$$

Rev. Un. Mat. Argentina, Vol. 42-2

14

From (9), we obtain

$$(f,u) \le (Au,u) + \int_{\Omega} g(x,u)u \, dx. \tag{11}$$

On the other hand,

$$(f, u) = \lim_{n \to \infty} (f, u_n) = \lim_{n \to \infty} \left[(Au_n, u_n) + \int_{\Omega} g_n(x, u_n) u_n \, dx \right]$$

$$\geq \liminf_{n \to \infty} \left[(Au_n, u_n - u) + (Au_n, u) + \int_{\Omega} g_n(x, u_n) u_n \, dx \right]$$

$$\geq (Au, u) + \int_{\Omega} g(x, u) u \, dx,$$
(12)

since $\liminf (Au_n, u_n - u) \ge 0$. From (11) and (12), we have our result.

References

- Brézis, H., Integrales convexes dans les espaces de Sobolev, Israel J. Math., 13, 1972, pp. 9–23.
- [2] Brézis, H. and Browder, F., Strongly Nonlinear Elliptic Boundary Value Problems, Ann. Sc. Norm. Sup. di Pisa, 1978, pp. 587-598.
- [3] Lions, J.L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Ed. Dunod, Paris, 1969.
- [4] Natanson, I., Theory of Functions of a Real Variable, Ed. Frederick Ungar, N.Y., 1955.

Recibido : 11 de febrero de 2000. Aceptado : 11 de junio de 2001.