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Abstract

For the non-linear operator
2, 8
Au) = - ; 52 (

we consider the existence of solution, in Wg’p (Q), - Q, open and bounded in
R™ for the equation A(u) + g(z,u) = f(z) with appropriate f and g, using
motonicity methods. . .
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1. Introduction

Let oy % 5
0 u |77 Ou
A =-g e ) ?>2
The problem: solve ‘
A(u) + g(z,u) = f(z) ()

in Q C R", open and bounded subset is considered for instance in [3], in the cases
g =0, and g(z,r) = |r|P~2r, using Galerkin method. We will consider the problem
with more general g, using monotonicity methods. Here, the function g(z,r) will be
supposed to have the properties: ‘

(a) g(z,r) is measurable in ¢ € Q, for fixed 7 € R. It is a continuous function in
r, for each fixed z. For each z € Q, ¢(z,0) =0 and, for all » € R and z € ,
g(z,r)r 2 0;

(b) there exists a non-decreasing continuous function A: R — R with A(0) = 0 such
_ that for a given C € R: |g(z,7)| < |h(r)] and |h(r)| < C{|g(z,7)|+|r|P~ +1},
forallz € Qand r € R.

We remark that u € W,P(Q) = V is a solution of (*) if equality, there, holds in the
sense of distributions, that is, for each ¢ € D(Q),

(A(u), @) + (9(z,u), ¢) = (f,#)
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10 A. WANDERLEY AND N. RIBEIRO

where (-, - ) is the duality between V' and V.

2. Existence of solution

Let us define the functions g,(z,r), by:

glz,r) i gl r)<n
gn(z,7) = n if g(z,ry=>n
-n if g(z,r)<-n

Lemma 1. For each n, natural and f € V' there exists u, € V such that

A(un) + gn(,us) = f.

Proof. Let u € V. Since |gn(z,u(z))| < n, the function from Q to R, that to each
z € Q associates gn(z,u(x)) belongs to LP'(Q) and since u € LP(f), the functional
from V to R associating to each v € V,

/g(w, u(z))v(z) dz

is well defined. It is bounded on V' and therefore, is an element of V', denoted by
gn(z,u). Hence the functional:

u > A(u) + ga(z,u)

is (non-linear), bounded on V. By the definition of g,(z,r) and the hypothesis (a)
on g(z,r) we will have that

A(u) + gn(z,u) (1)

is coercive since A is coercive. A(u) is bounded, hemicontinuous and monotonic and
therefore
A(u) + gn(z,u)

is pseudomonotonic, since gn(z,u) is pseudomonotonic (see (3], p. 189). We also
have
A(u) + gn(z, u),

is surjective (proposition in [3], p. 247) and for each n, natural and f € V' there
exists u, € V such that

A(un) + gn(z,un) = f.

Since u, € V and gn(z,u,) € V' is an element of L” () we may write

(A(), 1) + / (2 ) 47 = (1), @)
Q
Since gn(x, un)u, > 0, we have
allun|lP < (Atn,un) < (f,un) < | fllve |uall,
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ON A NON-LINEAR ELLIPTIC PROBLEM 11

for some o € R and there is M > 0 such that

|lunl| £ M, forall neN.
V beeing reflexive there is a subsequence also denoted by (u,), such that u, con-
verges weakly in V to u € V and A(u,) converges weakly in V' for n € V' that
° Un - v and A(u,)—mn, n— oo (3)

Lemma 2. In the conditions of Lemma 1,

gn(x,un)-ag(x,u), in LI(Q)

Proof. We will verify that g,(z,u,) are equiuniformly integrable, that is: for each
€ > 0 there is § > 0 such that for each B C Q2 measurable, with u(B) < 4,

/ |gn(z,us)|dz <€, forall neN.
B
Since A(u) + gn(z,u) is coercive, we obtain

/ﬂgnm, Un)dz = (f,tun) — (A(tin), un) < || fllve M + My M = My,

Let Re N, R > 0, arbitrary.
For almost all z €  such that |u,(z)| < R,

|9n (2, un)| < lg(z, un)| < |h(un)| < {h(R) + |A(—R)[},
and almost all z € 2 such that |u,(z)| > R,
R|gn(z, un)| < [un(2)]|gn (@, tn)| = un(2)gn (T, un),

by conditions (a) and (b).
Hence, for each R > 0, R € N and for almost all z € Q,

R|gn (2, un)| < un(2)gn(z,us) + R{h(R) + |R(-R)[}
and it follows that

/ 10n(2, )| dz < R / (2, un)dz + u(B){R(R) + [h(~R)]},
B B

for each R > 0 and for all B C 2, measurable. Let € > 0 and R be such that

2M2 _ £
b= 0 T Rm A R
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12 A. WANDERLEY AND N. RIBEIRO

To the first step we recall that the L'(Q)-convergence of g,(z,u,) to g(z, u) given in
Lemma 2, may be interpreted as a D'(Q2)-convergence as well as a weak-convergence
in V' of A(u,) to 7.

Hence, by (1), (3) and (4),
n+g(z,u)=f, in D(Q). (5)
Let H(r) = [; h(s)ds. H is continuous, convex and H(0) = 0. Moreover,

u(z)
/ h(s)ds
0

Therefore, H(u) € L'() and there is a sequence (v;); in C$°(2) such that

|H(u)| = < [h(u(x))u(@)] = [l [h(u)] < Clul{lg(-,u)| + [uf"~" +1}.

v; = u strongly in V
v; = u ae in

and by Lemma 3, p. 11, [1], H(v;) is bounded for all j by a fixed function in L!().
Let v € V and z € Q. If u(z) < v(z) then, for some u < £ < v,
H(v) — H(u) = H'(¢)(v — v) = h(§)(v — u) = h(u)(v - u).
If v(z) < u(z) then,
H(u) — H(v) = H (¢)(u —v) = h{({)(u = v) < h(u)(u - v).
Therefore H(v) — H(u) > h(u)(v — u) or
h(u)v < H(v) — h(u) + h(u)u < H(v) + h(uw)u

since H(u) > 0.

Now, if z is such that u(z) and v(z) have the same signal, then v has the same
signal as h(u); therefore,

lg(z, u)v| < |h(w)v| = h(u)v < H(v) + h(u)u.

And, if u and v have different signals then g(z,u) and v have distinct signals. Since
H(v) + h(u)u > 0 we have: g(z,u)v < H(v) + h(u)u.
By the above inequalities,

(9(z,u)vy)* < H(v;) + h(u)u.
The second member of the inequality is dominated by a L!(Q2) function, for each
jEeN.
We have (g(z, u)v;)*t — (g(z,u)u)t = g(z,u)u, ae.in .

Therefore, by Lebesgue theorem,
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To the first step we recall that the L!(£2)-convergence of gn(z, u,) to g(z,u) given in
Lemma 2, may be interpreted as a D'(Q2)-convergence as well as a weak-convergence
in V' of A(u,) to .

Hence, by (1), (3) and (4),
n+ g(:l:, u’) =f, in D/(Q) (5)

Let H(r) = [y h(s)ds. H is continuous, convex and H(0) = 0. Moreover,

u(z)
/ h(s)ds
0

Therefore, H(u) € L'(Q2) and there is a sequence (v;); in C§°(f2) such that

|H(u)| = < [h(u(z))u(z)| = lul [h(w)] < Clul{lg(-, )| + [uf" +1}.

v; = u strongly in V
v; = u ae in £,

and by Lemma 3, p. 11, (1], H(v;) is bounded for all j by a fixed function in L*(Q2).
Let v € V and z € Q. If u(z) < v(z) then, for some u < £ < v,

H(v) — H(u) = H'(§)(v — v) = h(€)(v — u) 2 h(u)(v — u).
If v(z) < u(z) then,

H(u) - H(v) = H (¢)(u = v) = h(¢)(u —v) < h(u)(u = v).
Therefore H(v) — H(u) > h(u)(v —u) or

h(u)v < H(v) — h(u) + h(u)u < H(v) + h(u)u

since H(u) > 0.

Now, if z is such that u(z) and v(z) have the same signal, then v has the same
signal as h(u); therefore,

lg(z, w)v| < |h(u)v| = h(u)v < H(v) + h(u)u.

And, if u and v have different signals then g(z,v) and v have distinct signals. Since
H(v) + h(u)u > 0 we have: g(z,u)v < H(v) + h(u)u.

By the above inequalities,
(9(z, u)v;)* < H(v;) + h(u)u.

The second member of the inequality is dominated by a L*(Q) function, for each
JEN :

We have (g(z, u)v;)* — (g(e, upu)* = g(z,u)u, ae.in Q.

Therefore, by Lebesgue theorem,

/Q(g(x,u)vj)*' dr — /Qg(x,u)udx. (6)
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14 -+ A. WANDERLEY AND N. RIBEIRO

Using (5), we have (1, ) + (9(z,u), p) = (f,9), for all p € D(Q).
For the functions (v;) € C§°(€2) in Lemma 3, page 11, of [1], we have

(U,Uj) + (g(l‘, u))”j) = (f! U]')v for all j €N, and(fl, 'Uj) - (U,U)-

Similarly (f,v;) = (f,4), and (g(z,u),v;) = [, 9(z, v)v; dz.
Therefore :
(TI,'UJ') +/ng(xvu)vj dz = (f1 Uj)a
and ' | ‘
() = () = [ ol uusde> (o) - [ (ol u)* do
and
(n6) 2 (f,0) = [ glo,wuds, when j— oo
Q
Let Y, = (Au, — Av,u, —v), v € V,arbitrary.
By (2) we have .
0<Y, = (Aun,un)— (As,v) — (Av,u,) + (Av,v) =

= (f’ un) - fn gn(-'L', un)un dr — (A’U,n, 'U) -
—(Av,u,) + (Av,v).

Then, by (9),

0 <limsupY, < (f,u)—liminf [, gn(x, un)un dz — (,v) —
—(Av,u) + (Av,v) < (n— Av,u —v).

That is, (n—Av,u—v) >0 foreachv e V.
Let v=u— Aw, w €V, A€ R arbitrarily chosen.

Then, (n— A(u — Aw), \w) >0, and, for A > 0: (n — A(u — Aw), w) > 0.

As At — 0, we have, by the hemicontinuity of A: (n — Au, w) > 0.

If A <0, then (n — A(u — Aw),w) < 0 and as A — 0, we have (7 — Au,w) < 0

Hence, for all w € V, (n — Au,w) =0, and n = A(u).
Using (5), we have
Au+g(z,u) = f, in D'(Q)

Finally we will prove that

(4u,0) + [ glo,wpude = (7,u).
0"
Recall the equality (2)

Aun, up) + / In(T, Un)un dz = (f,u,).
Q
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ON A NON-LINEAR ELLIPTIC PROBLEM 15

From (9), we obtain
(f,u) < (Au,u) + / 9(z,u)udz. (11)
Q
On the other hand,

(fow) = Jim (f,u) = lim [(Atn, un) + o 9n (2, tn)un da]
> lim inf [(Au,., Up — u) + (Atn, u) + [, gn(Z, un)uy, dm] (12)
> (Au,u) + [, 9(z,v)u dz,
since lim inf (Aun, up — u) > 0.

From (11) and (12), we have our result.
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