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Abstract 

This paper contains a comparative study of two families of simple planar 
curves. On the one hand, we have the fractal curves on the unit interval, with 
self-similar structure, which have associated a Hausdorff dimension. On the 
other hand, we have the opposite: a class of locally rectifiable unbounded 
curves, which have another "fractional dimension" defined by M. Mendes 
France. We propose a geometrical constructive process that will allow us 
to obtain -as the limit of a sequence of polygonal curves- one curve of the 
first family, by contracting transformations; and another of the second fam
ily, by expansing transformations. Thanks to this process of linking curves 
from both families, we are able to compare their dimensions -'-our aim in this 
work-, and to obtain interesting results such as the equality of the latter in 
the case of strict self-similarity . 

... The reader may feel surprised that there is no mention of Benoit Mandelbrot 
in these notes. His objects are fractals, i. e., locally irregulaT. Mine, on the contr'aTY 
aTe locally smooth. The curves I discuss are locally rectifiable. My topic could be 
thought of "anti-Mandelbmtian" within "Mandelbrotmania". I was, I am, and J 
hope to r'emain influenced by B. Mandelbrot. [1] 

Michel Mendes France. 

1 Introd uction 

In this paper we will study two families of non-intersecting planar curves. The 
first of these families, which we call F H, is composed of fractal curves F with a self 
similar structure defined by Ncontractions ofratios al, a2, .•. , aN (O<ai<l, l'S.i'S.N) 
and satisfying the Closed-set criterion ([2]), which guarantees their non-overlapping 
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18 R. HANSEN AND M. PIACQUADIO 

character. These fractals are also called Moran fractals. The Hausdorff dimension 
of one of these curves is the unique value d=dimH(F) that satisfies the equation: 

N 

" d _ ~ai - 1 . 
i=l 

(1) 

The second family, that we will call :FMF, contains curves f that are: simple, un
bounded and locally rectifiable, i.e. any arc of the curve f has finite length. We are 
interested in the "fractional dimension" defined by Mendes France for this type of 
curve [1]. 

The two families have no curve in common; moreover, their curves have absolutely 
different geometrical properties; however, we will see that there exists a geometrical 
constructive process that allow us to link curves of both families, and therefore, to 
compare their respective dimensions --such is the aim in this work. 

2 The Mendes France dimension of the curve 

For a curve fE:FMF, we fix an origin and we consider the first portion fL of f of 
length L. Let 10>0 be given, and let us consider the set: 

This set is also known as the c-Minkowski sausage offL . Let CL be the length of 
the boundary of the convex hull of fl.. Then, the Mendes France dimension of a 
curve f is, by definition: 

1· l' . f logA(fL(c)) = 1m ImIll , 
£\,O 1./,00 10gCL 

where A(fdc)) denotes the area of fdc). There is a remark in [1] showing that 
the value of lim infL/'oo IOgl~!~}£)) does not depend critically on 10, so we will either 
take 10 away, or replace it by a suitable value in order to make calculations; hence 
we can write: 

d· (f) 1" flogA(fdc)) 
ImMF = ImIll 1 C . 

1./,00 og I. 
(2) 

This remark is very important, because, intuitively, it says that it doesn't matter 
how "wide" the c-Minkowski sausage is, but how the sausage "fills up" the plane 
according to the development of f I. when L grows. Therefore, we are dealing with 
a type of dimension which does not look at the curve with a "zoom lens" --as the 
Hausdorff dimension does; on the contrary, this dimension "zooms out" looking from 
afar at the behavior of the curve when its length tends to infinity. 

To illustrate this idea, let us consider two well known curves. First, the Archirnedean 
spiral of step equal to r (Fig. 1). When the length L tends to infinity, we have to step 
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THE DIMENSIONS OF HAUSDORFF AND MENDES FRANCE 19 

away from the plane again and again to observe its behavior, because its convex hull 
also grows. And if we continue moving away, soon we won't be able to distinguish 
the step r, and we will see the spiral as filling up m? completely. Let us now take 
f:=r, and let us consider the corresponding r-Minkowski sausage of f, r( r). We can 
easily see that it covers all the plane; then, the dimension of Mendes France of f is 
2. Instead, if we consider a logarithmic spiral (Fig. 2), it doesn't matter which is 
the value of f: chosen; no matter how far away we are from m?, we always see an 
arc --the same arc- of the curve f, which has dimension of Hausdorff equal to 1, 
and its r(f:) will always appear equally "thin" . It comes therefore, as no surprise 
that the dimension of Mendes France of this curve is unity. 

Figure 1 Figure 2 

3 The strict self-similar curves 

The Hausdorff dimension of a fractal is not, in general, easy to compute, un
less the fractal has, for example, some self-similar structure. Among these cases, 
we have the strict self--similar case with N contracting transformations of ratios 
al =a2= ... =aN=1/n -for example the well-known von Koch curve, with n=3, N=4 
(Fig. 3). 
The process by which we obtain such a curve consists of replacing the unit interval 
1=[0,1] by a polygonal Pl made out of N segments, all of them with length equal to 
l/n (N)n). Successively, the polygonals P2, P3,"" etc., are obtained by making the 
same (n, N) substitution on each segment of the preceding polygonal. Repeating 
this replacement process ad infinitum, we obtain a bounded continuous curve F of 
infinite length and infinitely "wrinkled" that belongs to :F H and whose Hausdorff 
dimension is, by Eq. (1): 
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20 R. HANSEN AND M. PIACQUADIO 

o 

p~ 

F 

Figure 3 

Now (see Fig. 4), if we start again with the interval [0,1]' but in the first step we 
construct a polygonal P~ with N unit segments, and whose shape is the same as PI, 
then the diameter of P~ will be n times larger than the diameter of PI: P~ will be PI 
expanded by a ratio of n to 1, n being the inverse of the unique contraction factor 
involved in the fractal construction. In the second step, we construct a polygonal 
P~ identical to P2, but with diameter n2 times larger than that of P2, and so on. In 
this way we obtain a continuous unbounded curve f, locally rectifiable, ffFMF. We 
will call f strictly self-similar. We associate F with f, and we will compare the 
dimensions dimll(F) and dimMF(f). 

For any k~~step, the segments of the polygonal P~ are unity. Let fk be the length of P~, 
then A(fk(£))~£xfk=£xNk. IfCk is the length of the boundary of the convex hull 
of P~, then Ck~const.xdiam(p~)~const.xnk. Thus, the Mendes France dimension 
of the curve f is: 

dimMF(f) = lim 10gA(fk(£)) = lim log(£ X N k ) = logN 
k-too 10gCk k-too log(const. X nk) logn 

As we can note, in the strict self~-similar case, the Mendes France dimension of r is 
equal to the Hausdorff dimension of the corresponding fractal F. 

One question that arises in a natural way: does equality hold for processes other 
than the (n,N) ones? If this equality does not hold, which, then, would be the 
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THE DIMENSIONS OF HAUSDORFF AND MENDES FRANCE 21 

relationship between these two dimensions if, for instance, we take away strict self~ 
similarity and allow N contraction factors ai<l, l:5:.i:5:.N to be different? 

p' 
1 

P2 

o 

---.-.J/\ __ 

4 Self-similar curves 

Figure 4 

In the case of strict self~similarity, the expansion ratio used in the construction of 
polygonals p~ is the inverse of the unique contraction factor of the N transforma
tions generating the fractal. Instead, if we allow the N contraction ratios ai to be 
different, as shwon in Fig. 5, we have the possibility of constructing a curve choosing 
an expansion ratio among the reciprocals l/aj, 1/a2, ... , l/aN, and then we obtain N 
curves r al , r a2 , ... , rUN, all ofthem the limit curve of a sequence {p%i h-+oo(1:5:.i::;N)of 
polygonals, and all of them in :FMF. 

0 

d 2 n d] 

~ n n 
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22 R. HANSEN AND M. PIACQUADIO 

In this section we will analyze the geometric differences among r a ! , r a2 , •.. , raN; we 
will compare the different dimMF(rai ) (l::;i::;N), and we will compare the latter 
with the unique Hausdorff dimension of the corresponding fractal curve F. 

Let us consider an iterative replacement process that generates a fractal curve F with 
ratios a1::;a2::; ... ::;aN<1, then each of its reciprocals 1/a1?1/a2? .. ?.1/aN produces 
a different curve. If we take 1/a1 -the largest factor- we can see, as shown in Fig. 
6, that in every polygonal p%! the shortest segment is always unity, and p%! adds new 
segments larger than the segments in p%~ 1. Let us look at r a !: in p~! the shortest 
segments at the top of the figure have length 1, the other segments are larger than 
or equal to it in length. p~! shows, clearly, that the shortest segments are again 
at the top of the figure, all other segments being larger than or equal to them in 
length. This means that in the limit curve r a!, the length of all segments will be 
larger than or equal to 1. If we take l/aN -the smallest factor- we can see (in Fig. 
6: aN=a3) that in every polygonal p%N the largest segments are always unity, and 
p%N adds new segments smaller than the segments in P%~1. SO, the limit curve raN 
will have arbitrarily small segments, and the length of each segment will be always 
smaller than or equal to 1. Finally, if we take an intermediate factor l/aj, #1, N 
(in Fig. 6: aj=a2), each k iteration produces polygonal curves p%i that have both 
larger and shorter segments than those in the preceding polygonal, and therefore 
the limit curve rai will have arbitrarily both small and long segments. 

1 
a~ 
o 1/a, 

a,ta2 ala 
a 1,..ar2 

P,2 --' ........... o 1/a2 

1/a~ 

1/a' 
2 

pa3 , 
["3 

p~3 

a/a3 

a~ 
0 1/a, 

-Il ----In'----'n ......... _-. 1/a' , 0 
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THE DIMENSIONS OF HAUSDORFF AND MENDES FRANCE 23 

This fact causes the limit curves to be very different from one another. Among 
them the only one that is a resolvable curve is r a [, the first one; the others are 
non-resolvable curves. By a resolvable curve we mean the following: we know that, 
for any curve rEFMF, if we take a closed ball in JR2 with centre on r, and we run 
this ball along the curve, the ball always contains a finite arc of r. But if this arc 
increases its length as the ball runs, i.e., ifthe arc inside the ball becomes more and 
more "wrinkled" and larger, then we say that r is non-resolvable. Otherwise r is 
resolvable --the formal definition is in [1]. 

For a resolvable case _ra!- it is easy to calculate the Mendes France dimension, 
because we can have a very good approximation of A(rk(C:)) as c:xfl.k. Then, forall 
resolvable curves r, we have, by Eq. (2): 

. . logfl.k 
dlmMF(r) = hm I-C . 

k-+oo og k 

If we bear in mind that in each step k, the length of polygonal p~ is: 

and 

Ck ~ const. x (:1) k 

we then have 

(3) 

Notice that it is the diametr -and not the shape of Ck·_- the relevant magnitude 
in equation (3). If we want to calculate the dimension for the other non resolvable 
curves, we find that it is very difficult to estimate A(r k (c:)) in the general case. 
Nevertheless, if we call r a!, ra2 , ... , raN the different curves, we are able to affirm 
that raJ is the one with the minimal Mendes France dimension-its segments are 
the longest--, raN is the one with the maximal dimension-its segments are the 
shortest ones, hence the curve is the most wrinkled of them all , and the others 
have intermediate dimensions. The larger the dimension, the smaller the expansion 
factor. 

This is the Theorem 4.1, which will be proven later. 

Theorem 4.1 Let FEFH be afmctal curve constructed with ratios al:::;a2:::; .. ·:::;aN<I, 
and the expansion factors are the recripocals: l/al'21/a2'2 ... ?.1/aN; then: 
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24 R. HANSEN AND M. PIACQUADIO 

In order to relate these dimensions to the Hausdorff dimension -Theorem 4.2----,- we 
will study the geometric differences of the expanded curves ra;, l$i$N. Consider 
one of these curves rai , i#N -so ai<aN. Then, in accordance with what we said 
above, rai has segments as large as we want. Now, to fix ideas, let us consider 
6=1 and the 1-Minkowski sausage. Let us suppose that on each segment of this 
curve we make an ad infinitum iteration of the corresponding process that generates 
the fractal F. This new fractal curve, i ai , just does not belong to :FMF, so there 
is no Mendes France dimension associated with it. The curve does not belong to 
:FH either; however, it has the same Hausdorff dimension d as the fractal F, i.e., 
d=dimH(F) -because now there is a fractal like F where before there was a segment 
of rai. The important thing to note here is that this curve i ai is not covered by the 
1-Minkowski sausage, since, if we take some segment in r ai with length f very very 
large, then the fractal that replaces it is not covered any more by the rectangle with 
area equal to 6xf=lxe. And this fact is true for all values of 6>0. 
Let us take, now, the curve raN expanded by 11aN. All its segments have length 
smaller than or equal to unity. Let us consider again the 1-Minkowski sausage of 
raN and let us make the same ad infinitum iteration of the corresponding fractal F 
on each segment of raN. Thinking in the same manner as before, this new curve iaN 
has a Hausdorff dimension equal to dimH(F), but now iaN is completely covered by 
the 1-Minkowski sausage of raN. If we took some 6< 1 in place of 6= 1, and we take 
into account the simple example of Fig. 6, we conclude that iaN will also be covered 
by the (;--sausage of raN, except for those arcs corresponding to the few segments in 
raN of length larger than 6 -i.e. except for the polygonals of the first iterations. 
This means that raN is the only curve of all expanded curves that "shares" the 
r( 6) with its corresponding iaN for every 6, as if "c; were not able to distinguish" 
between a segment and a fractal built on it. 
Since raN is the only curve, among all of r ai , that exclusively "gets wrinkled" while 
its convex hull increases, this curve is the only one whose shape becomes the fractal 
form of F, as we move away from the plane in which the curves Pi are drawn. 

This fact suggests that both dimensions, dimH(F) and dimMF(raN ), are the same; 
and this is the Theorem 4.2. 

Theorem 4.2 Let Ff:FH be a fractal constructed by the contraction factors 
al$a2$ ... $aN<l, and let raN be the limit curve constructed by the expansion factor 
llaN. Then, we have: 

dimH(F) = dimMF(raN ) . 

Now, we are able to give the proofs of the Theorems 4.1 and 4.2 respectively. 

Proof of the Theorem 4.1. Let i be a fixed value, l$i$N; let us suppose that 
a;=artl' where m> 1. Let us consider the corresponding polygonal Pk of r ai for a 
step k. Its length is: 
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THE DIMENSIONS OF H"}\USDORFF AND MENDES FRANCE 25 

whe:re U=Ej=l ai' The diameter in the k-step' is 

.' (l)k 
qiam(pk)~. ai 

Let us now consider the step mk. T~e corresponding polygonal of r ai+l , P~k' has 
length 

and diameter 

Then: 

and then we have 

( : u' )mk 
- , 

. aiH 

l~k > lk . 
Therefore, for a fixed value of e, we have 

and also 

so we have 

Thus 
log A(rki (e)) log A(r~t (e)) 

log (~ ) k < log (ai~l ) mk 

and taking limits when k tends to infinity, we have: 

In the case ai=af.t,l with non integer m, the calculation is the same, considering the 
step [mk]. • 

Proof of the Theorem 4.2. It is known that the Hausdorff dimension of a fractal 
F with these characteristics can be expressed by: 

. d' (F) = I' (2 _ lOgA(F(e))) 
1mH 1m 1 () ., 

&--to og e 
(4) 
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26 R. HANSEN AND M. PIACQUADIO 

A(F(c:)) being the area of the c:-Minkowski sausage of F([2J). Letpk be the polygo
nals of successive k-steps in the fractal iteration of F, and let P~ be the corresponding 
polygonals of successive steps in the iteration of the limit curve r. For a certain 
value of k, we have that Pk and p~ are "alike", that is, they have identical shape but 
different size. Then, if lk=length of Pk and l~=length of P~, we have 

l~ = (a~)klk . 
Besides, if we consider the area of the c:-sausage of P~, we have that the corresponding 
"alike" sausage of Pk satisfies: 

(5) 

On the other hand, we have. that for every polygonal Pk, the largest segment has 
length equal to air; so, for every k we can write: 

(6) 

Notice that A(Pk(,Xk))~A(F(,Xk)) is not valid for all k when 'x<aN; for, as k grows, 
so does the difference between ,Xk and air, breaking down the comparability stated 
in (6). 
Therefore, taking c:=l, from (5) and (6) we have: 

A(p~(l)) ~ (a~ rk 
A(F(at)) 

Then: 
. .. logA(pk(1)). log ( (.,~ t A(F(at))) 

dlmMF(r) = hmk~oo ( )10 = hmk~oo ()" = 
log a~ log a~ 

= lim (2 _ IOgA(F(at ))) 
k~oo log(a~) 

and then, by (2): 

• 
The following theorem states that the inequalities from the Theorem 4.1 are strict 
inequalities. 

Theorem 4.3 Let T, iElN be such that T<i and ar<G.i; let raT and ra;be the 
expanded limit curves corresponding to the factors ljar and ljai respectively. Then 
the following inequality holds: 

dimMF(raT ) < dimMF(ra;) . 

First we need two results: 
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Lemma 4.1 For k~2, kEIN, and XE[O,l]: 

Proof. In fact, 

Then, 

and therefore 

(~)XO > (~)xk 

(k) I > ( k ) k-l 
1 x k-l x 

( k k )X~-l > 
2"-1 

( k ) ~+l 
k 1 x . 
2"+ 

k (k) . L i Xl. 

i=~+l 

To both sides of the last inequality we add the first side, and we obtain: 

that is to say 

1 k 
> 2(I+x) . 

27 

• If we take the kth-step in the construction of the limit curve raj -i fixed, expansion 
factor l/ai- we see that the segments of the polygonal p~ have lengths ~; the 
denominator B is always af, the numerator A is always a product of powers of 
aI, a2, ... , aN in such a way that the sum of their exponents is equal to k: 
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28 R.HANSEN ANDM.PIACQUADIO 

For one such configuration (jt,h, .. ·,iN) wepose the question: how many seg~ents 
of this length are there in step k? Answer: the number of such segments is the 
numerical coefficient of the term whose "literal".part is a{1 a~2 ... a{i ... a;, in the de
velopment of (al + a2 + ... + aN)k.That is to say, there are: 

( ~) (k ~ il) (k - i.l - h) ... (k - j1 ~ '" -iN-2) (k - i1 - .... - jN-I). ' 
Jl J2 J3 IN-1 IN'' ',' 

Let us now consider those segments f()r'Yhich the numerator A has the following 
configuration: half -or less- of the factors that ap"pear in A are equal to al, and the 
rest of them -to complete a totalof k factors- are combinations of a2, aa, ... , aN. 
That is to say, jlE[O, ~l. ' 

Lemma 4.2 If i1 E[O, ~l, then, the number of segments wich have the configuration 
descripted above, is larger than or equal to ~ Nk, where Nk is the total number of 
segments appearing in step k. 

Proof. Indeed, let us fix exponent ja, a=/=N -1, jN-1 will run from 0 to k-j1- ... -jN-2; 
and let us count the corresponding number of such segments: 

k-i,f iN-2 (~) (k ~ i1) ... (k -j1 ~ ... - jN-2) = 
. 0' Jl J2 IN-l IN-I= 

(k) (k .) (k' .) k-i1-···-iN-2 (k' .) =. ~ Jl ... - J1 ~ ... -IN-3L: - 11 ~ '" - IN-2 = 
11 J2 .IN-2 iN-I=O IN-1 

== (~) e ~/1) ... e -j1 ~;~'2- jN-3) 2k-i1- ... -iN-2 

Now, let us fix allja, except j N:c-2 which will be allowed to run from 0 to k-j1- ... -jN-3, 
and let us obtain the total of the corresponding segments: 

k-il-···-iN-3 Gk) (k .) (k' .) L: . ~ J1 ... - J1 ~ ... - IN-3 2k-il- ... -iN-3TiN-2 = 

iN-2=O 1 J2 IN-2 

= 2k~j,-" .. -jN-3 ~ ••. -}J -:- ... - IN-4 L - Jl -:- ... - IN-a 2-jN-2 = G) (k ' .) k-j,- ... -jN_3 (k' .) 
, 1 IN-3 jN_2=O IN-2 

(
k) (k _ . _ -' ) ( 1)k-il-... ~iN:"3 

=2k-il-... -iN-3 jl ... Jl j;~'3 IN-4 1 + 2' ' 

Next, let us fix all ia, except iN-3, that we will run from 0 to k-i1- ... -iN-4, doing 
the same as before, and we again obtain the total number of corresponding segments: 

( ~) (k ~ il) ... (k - i1 ~ ... - iN-5) 4k-i1- ... -iN-4 . 
J1 J2 IN-4 
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THE DIMENSIONS OF HAUSDORFF AND MENDES FRANCE 29 

Proceeding in this way with the rest of the ja, let us fix jl and let us run j2 from 0 
to k-jl. Counting as above, the corresponding number of such segments is: 

(~) (N - l)k-it , (jl = jN-(N-l)) . 

Finally, running jl from 0 to ~ we obtain the total number of segments, and by the 
Lemma 4.1,·we have: 

( )
k 

k 1 11k 
>(N-1) - 1+-- =-N 
- 2 N-1 2 

• We can prove the theorem now. 

Proof of Theorem 4.3. We will make here a simplification, considering the case 
7=1 and l<i$.N, since the proof for the general case -such as it is at present--: 
would exceed the limits of this work. 
We want to prove that if i>l, then dimMF(rai ) > dimMF(ral ). We will suppose, 
without loss of generality, that al <a2$.ai, i fixed between 2 and N. 
Let P~ be the polygonal of the corresponding kth step of the limit curve ra;. The 

diameter of this polygonal is equal to (~) k. 

As we said before, in this polygonal there are Nk segments whose lengths can be 
written thus: 

Let mEIN, m<k, and let P!n be the corresponding polygonal. This polygonal has 

Nm segments, and a diameter equal to (~) m. 

Let P!n be a polygonal with the same shape as P!n but expanded by a ratio equal to 

(~)k-m. The diameter ofP!n is, now, (~r, and the lengths of its segments are of 

the form: 
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30 R. HANSEN AND M. PIACQUADIO 

~that is to say jl=h=~ and j3= ... =jN=O-is comparable to unity. 
This entails that segments, whose lengths have a "configuration" such that jl::;~, 
the remaining jn arbitrary -the sum always being m- become larger than or equal 
to unity. 
Now then, the number of these segments is, by virtue of Lemma 4.2, larger than or 
equal to the half of the total number of segments, which is Nm. 
In other words, if lm is the length of P!n, and lm is the length of P!n, we have: 

and also: 
lm < lk 

Therefore, taking €=1, it is true that: 

(Ef=l aj)m 
af 

But, since more than half of the total number of segments are segments larger than 
or equal to unity, it follows that: . 

1- . 
1 x 2lm < A(P!n(l» 

and then 

Therefore, 

log (! (Ei=laj)m) 
2 af < logA(PHl)). 

- log (af) (7) 

Next, we will calculate the explicit value of m -which we have chosen in order to 
satisfy the last inequality. The value m was chosen requiring that: 

then, 

= 
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THE DIMENSIONS OF HAUSDORFF AND MENDES FRANCE . ., . .. 

That is to say: 

2k 
,therefore 

m(l + logal (eta)) 1 
~ 

2k loga;(al) , 

that is to say 

so that 
m 2 

'" 
k '" loga; (alll2) 

Going back to inequality (7), we have that: 

log (~) + m log (L:j':l a;) + k· log ( ~ ) 

k log.(~) " ' 

:5 log A(p~(l)) 

klog (~) 

Replacing 7! by the expression (8), we obtain: 

2 log (L:f=l aj) 
loga; (al a2) log (~) 

10gU) 
+ 

k log (t) 
+1 

< 10gA(pi(1)) 

k log (t) 
and taking limits when k tends to infinity, we have that: 

log (L:j':l aj) 
log (Ja~a2) 

Finally, since al <a2, we have .1.. > .,fal a ' so that: al I 2 

1 + 
log (L:f=l aj) 

I ( 1 ) og Jala2 

Therefore, taking equality (3) into account, we have: 

31 

(8) 

• 
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32 R. HANSEN AND M. PIACQUADIO 

5 Remark 

The preceding theorem's proof is based on arguments and ideas that are strongly 
geometrical; however, if we consider the extremal cases 7"=1 and i=N -minimal and 
maximal dimensions respectively- a completely different -and much shorter!
proof of the corresponding inequality can be given. 

Remark 5.1 
(9) 

Proof. Indeed, for the first curve ral we have a formula that allows us to calculate 
its dimension, and for raN -which is the only curve whose dimension is equal to the 
dimension of the associated fractal, by virtue of Theorem 4.2- we have an implicit 
equation that is satisfied by the Hausdorff dimension of the fractal. The Hausdorff 
dimension is the value dH=dimH(F) that satisfies: 

N 

2:a?H = 1 ; 
i=1 

on the other hand, if d=dimMF(ral ), then d satisfies: 

since we have 

if and only if 
N 

a~2: ai = 1 
i=1 a1 

Taking logarithms in this last equation, we obtain: 

d log(.,) + log e=:,' a;) = 0 , 

and then: 
log (Ef=1 ai ) 

d = al = dimMF(ral) . 
log (!l) 

Let us consider now the following functions: 
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According to what we just wrote, we have: 

f(d) = 0 and g(dH ) = 0 . 

Besides, f and g are decreasing functions (ai<l, i=l, ... ,N). Let us compare any 
term in the expression of f with the corresponding term in g -except the first term 
which is equal in both functions: 
for x>l, we have 

x-l < ax - l (i::J 1) a l l , 

so 
ai x < a'!' -al _ , 
al t 

therefore 
f(x) < g(x) for x> 1 

in particular 
f(d H ) < g(dH ) = f(d) , 

and therefore 
d < dH 

• Note. From this remark we conclude that the study of Hausdorff and Mendes 
France dimensions of curves r a;, 1 "5:i"5:N, associated with the same fractal curve F, 
has a very different nature for the case i=l, i=N, and for the case i::Jl,N. Because 
of this we gave the proof of Theorem 4.3 restricting the general situation 1"5:7<i"5:N 
to 7=1, since, as stated above, the proof of the general case, such as it is at present, 
would exceed the limits of this paper. 
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