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ABSTRACT

In this work we study the multiplicity of solutions for a stationary nonho-
mogeneous problem associated to the nonlinear one-dimensional Schrédinger
Equation.  We prove the existence of a number kg € IN such that for every
j > ko there exist at least two solutions of the Dirichlet problem with ex-
actly j zeroes in (a,b). Moreover, if the forcing term f is constant, then for
j=2n—1> ko these solutions are T -periodic with T' = b%“

1. INTRODUCTION

This paper is devoted to the study of boundary value problems related to the
nonlinear Schrédinger equation

(1) v 8¢ = i02¢ + i|¢|** ¢
with initial condition
for ¢ > 0 and ¢ a function in an appropriate Sobolev Space. Problem (1)

arises on the propagation of electromagnetic waves in a nonlinear medium, as
a laser beam in an optical fiber [C], [Be], [L], [R], [S], [W1-3].

Under appropriate conditions existence results of local [B] and global [K] solu-
tions can be proved using different conservations laws, such as mass and energy
conservation given by the following functionals:
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N (@)= 519l

1 1 o
H(9) = 5 10:81l3 ~ 5o 9l25 13

This leads to the eigenvalue problem

¢" (@) + |9(=)* $(z) = Ed(a)
where the constant E is theenergy of the system.

We consider the more general nonhomogeneous problem

(2) ¢" (@) + |6(2)** $(z) = f(z) + E(z)$(x)

where E and f are continuous functions. For example, a nonconstant function
E(z) = E + V(x) is obtained when a term iV (z)¢(x) is added to the right
hand side of equation (1).

Under a Dirichlet condition

(D) ¢(a) = ¢(b) =0

we prove the existence of kg € IN such that for every j > ko there exist at
least two solutions of (2-D) with exactly j zeroes in (a,b).  Moreover, if E

b_T“— periodic for

and the forcing term f are constant, these solutions are
j=2n-1>ko.
We remark that the zero-order term g(¢) = —E¢ + |¢|?°¢ is superlinear,

namely
w10 _

1 “+00
|¢lsoo &

For g sublinear, topological and iterative arguments are appliable [AMS] and
the solution of (2-D) is unique.

2. MULTIPLE SOLUTIONS OF PROBLEM (2-D)

In this section we prove the existence of infinitely many solutions of (2-D). Our
main result is the following:
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THEOREM 1

There exists ko € IN such that for every j > ko problem (2-D) admits at least
two solutions with exactly j zeroes in (a,b).

Without loss of generality, we shall assume that (a,b) = (0,1) and consider
for A € IR ¢, as the unique local solution of the initial value problem

/1 20 4 —
(IVP){¢ +|¢|*¢=Ed+ f
$(0)=0, ¢'(0)=2A
Then we have:

LEMMA 2

Let us assume that ¢, is defined over [0,T] for T < 1. Then there exists a
positive constant o independent of T' such that for any R large it holds:

3) if |lgallcrqoy) 2 R, then @3+ (43)* > R* on[0,T)

Proo

We may assume that ||§allc1(po,z)) = max{||¢allco, l[Phlloc} = R. Integrating
equation (2) we obtain:

o ’ |¢A|26+2 _ i / /
@ @l v [ (g +re)

As )\? = ¢/ (0)2 < R?, we deduce for R large the existence of a constant c
depending only on ||f|lcc and ||E||c such that

|pa(x)[27+2

< cR?
o+1 -

for any z € [0,7], and hence
[rloo < 1R < R
Thus, for some g it holds that
|$5(z0)| = R

Replacing into (4), we obtain:

|¢‘/\($0)|20+2
oc+1

2
R? < (¢4)(z0) + R

< A2 4 RMHHT + 3R < A2 + 5
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if R is large enough. Hence,

Let us fix a constant o with a < ;lﬁ . Then, if z is such that ¢,(z)? < R*,
we have that

7 oN2 )2 ¢ / A |pa(2)[>7+2
@ =342 [ (Bordh+18) - 2B
R2 141 R2a(a—+1)
> tom -
-2 calt e oc+1
for R large, and the proof is complete. O

As a simple consequence we have:

LEMMA 3
¢ is defined over [0,1]

Proof

In the situation of the previous lemma, it suffices to choose R'large such that
R% > )2, Thus, l#allcr(o,ryy < R for any T'< 1 and the proof follows from
classical results in ODE’s theory. ' O

LEMMA 4
Let )\ be large and A be the set defined by

A={z €0,1]: ¢x(z) =0 or ¢} (z) = 0}

Hence
A={0=z9<z1 <..<zN}

where zeroes and critical points alternate. More precisely,
¢ (z25) = 0 # ¢\(225)
Pr(22i4+1) = 0 # da(z25+1)

Proo
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From (3) it follows that ¢) and ¢} cannot vanish at the same point, and it
is clear that between two zeroes ¢, has a critical point. On the other hand, if
#5(z) =0 then |@x(z)| is large, and from equation (2), it follows that

sgn|$x(z)] = —sgn[gx(z)]

Hence, if ¢x(z) > 0 then z is a maximum, and if ¢x(z) < 0 then z is a
minimum, proving that between two critical points ¢, has a zero. O

Let us define

S LY@ PTE - o (f + Edy)
o0 =5 | ET O

By Lemma 2, if |)\| is large, then ¢()\) is well defined and the integrand is

positive. A simple computation shows that

(810 + [&x%7+2 = 6a(f + Edn) _ (4h)2 = 60}
PR &+ 9,

Hence, ¢()\) measures the net fraction of turns that the curve &®,(z) =

= [arctg(%)]l

(#5(z), #a(z)) performs around the origin when z moves between 0 and 1.
From the previous considerations it follows that ®, winds clockwise, without
passing through (0,0). Moreover, each complete turn -starting at the point
(A, 0) - corresponds to a pair of zeros of ¢, , which are obtained when ®,(z)
intersects the x-axis.

LEMMA 5
e(A) >+o0  as Ao o0

Proo

Let A be as in lemma 4, and let zk,zx+1 € A. We shall prove that zxq —
zr — 0 as |A\| = co. From the computations in Lemma 2 we know that for
“¢,\|ch([0,11) 2 R it holds that

|¢,\|26+2

112>' 2
($3)° = cR oc+1

and
”¢z\”oo < ER:’%T
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for some positive constants c,¢. Let

L= {z € loe,men) : 1a(@)| < (R0 +1)) 7 = M}

As ¢, # 0 on (mk,ik+1) we may assume without loss of generality that
#5\(zk+1) = 0, which implies that I. = [k, zc] for some z.. For z € I. we
have:

_ loa(z)Po+?

$h(@)] 2 ez - 2EL

and hence

M,
€ d
mc—xk=/ :L'Cde/ ——————¢————
o 0 JeR?-Tir

Substituting by z = —A% we obtain that

T T < M. /1 dz =0
c k= \/ER o ,——-——1 — 2012
as R — 0o. On the other hand, on [z.,Zk+1] we have:

2041

|4 = |f + Edx — x> dal = Mcz

for R large. Then, for any z € [z¢, Zk41]

20+1

h@l= [ 1812 T =)

Thus,

Tk M2cr+1 (xlc+1 _ zc)2

o
oy > —=
I )\| = 4

|fa(Tht1) — da(zc)| = /

Tc
As

2041

|6a(@rs1) — da(@e)| < 2pa(@rsr)| < ZERFT,  MZT=CRH

we conclude that zxy1 — . — 0, and the proof is complete. O

Proof of Theorem 1

From classical ODE’s theory we know that ®; — @, uniformly on [0,1] as
X — ). Hence, ¢ is continuous, and by Lemma 5 we deduce that taking ko
large enough, for any j > ko there exist A <0< )\;' such that

+ __J
‘P(Aj)_'z'
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This completes the proof. O
3. MULTIPLE PERIODIC SOLUTIONS OF (2)

In this section we prove the existence of infinitely many periodic solutions of
(2) for constant E and f. More precisely,

THEOREM 6

There exists ko € IN such that for every j > ko odd equation (2) admits at

least two periodic solutions with exactly j zeroes in (a,b) and period T =
2824 |

Proo

Let ko be as in Theorem 5, and j > kg odd. As f and E are constant, if ¢

is a solution of (2-D) with j zeroes on (a,b) then

@7+ 07 a2 1 2fp 4 B8
oc+1
Hence, if

a=cp<c1<..<cj1="b
are the zeroes of ¢ we obtain that
¢'(c2)® = ¢/(a)?
Furthermore, since ¢ vanishes only once in (a,c2) it is clear that ¢'(c2) =
¢'(a) . If we define
Y(z) =d(x+c2—a)
then 1 satisfies (2) with
Y(a) = ¢(c2) =0, ¥ (a) = ¢/(c2) = ¢/(a)
By uniqueness, 9 = ¢. It follows that ¢ is (c2 — a)-periodic, and hence
cor = a+ k(c2 — a)

In particular,
1

b=a+‘7-; (cg —a)

which completes the proof. ]
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