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LINEAR COMBINATION OF A NEW SEQUENCE OF
LINEAR POSITIVE OPERATORS

P.N. Agrawal” and Ali J. Mohammad™

ABSTRACT. In the present paper, we study the approximation of unbounded
continuous functions of exponential growth by the linear combination of a new sequence
of linear positive operators. First, we discuss a Voronoskaja type asymptotic formula and
then obtain an error estimate in terms of the higher order modulus of continuity of the
function being approximated.

1. INTRODUCTION

In [1] we introduced a new sequence of linear positive operators M, to approximate a
class of unbounded continuous functions of exponential growth on the interval [0,o0) as
follows:

Let @>0 and f€ C,[0,00) ={f € C[0,%0):|f (1) <M e*" for some M >0}. Then,

oo

(1.1) My (£ 0:2) = 1Y, Py (%) [duya (0 f (Ot + 1+ )" £(0),
v=] 0
where p, ,(x)= (n +:_ 1]x"(l + x)'"'v,xe [0,00), and g, , (1) = i%f.)_, te [0,).

The space C,[0,%°) is normed by Hf”c = sup If(t)[e'a',fe C,[0,) . Alternatively,
@ 0<t<o

the operator (1.1) may be writtenas M, (f(t);x) = .[W" (t,x)f(t)dt, where the kernel
0
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W, (t,x) = ”Z Py (X)qpy- () + 1+ x)"" (1), 6(¢) being the Dirac-delta function.

v=l
The operator (1.1) was studied for degree of approximation in simultaneous
approximation in [1]. It turned out that the order of approximation of the operator (1.1)
is, at best, O(n'l) howsoever smooth the function may be. Therefore, in ‘order to

improve the rate of convergence of the operators (1.1), we apply the technique of linear
combination introduced by May [4] and Rathore [5] to these operators. The
approximation process is defined as:

Following Agrawal and Thamer [2], the linear combination M, (f,k,x) of M dn (fix),
Jj=0,,...,k is defined as:
My, (fix) dg™ do™? .. dy”

-1 -2 —k
(1.2) M, (f kx)= lMd,,,(f ) odT AT T

Mdkn(f;X) dk_l dk_z dk—k
where d,d,,....,d, are k+1 arbitrary but fixed distinct positive integers and 4 is the

Vandermonde determinant obtained by replacing the operator column of the above
determinant with the entries 1. On simplification, (1.2) is reduced to

k
(1.3) M,,(f,k,x)=ZC(j,k)Mdj,,(f;x),
Jj=0
kK d.
L k=0
where C(j,k)=1i=0 dj‘di .
i#j
1 k=0

The object of the present paper is to show that by taking (k + 1)™ linear combination of

the operators (1.1), O(n'(k”)) rate of convergence can be achieved for (2k +2) times
continuously differentiable functions on [0,). Also, the determinant form (1.2) of the
linear combination makes the determination of the polynomials Q(2k +1,k,x) and
O(2k + 2, k, x) occurring in the following Theorem 1 of this paper quite easy.

2. DEGREE OF APPROXIMATION

Throughout our work, let N O denote the set of nonnegative integers,
O0<a;<a; <by <b <o and || . "C[a,b]’ the sup-norm on C[a,b]. To make the paper

self contained, we restate below two lemmas from our paper [1].
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Lemma 1. Let the m*" order moment (me N 0) for the operators (1.1) be defined by

Ty (¥) =M ((t=0)™;x) = annV(x)anvl(t)(t—x) dt+(=x)"(1+x)™"

v=]
Then T, o(x) =1, T, ;(x) =0 and
nT, i (X) = x(1+ x)T, ,,m(x)+m nm (X) +mx(x +2)T, ,,_;(x), m21.
Further, we have the following consequences of T}, ,, (x) :
@) T, ,,(x) is a polynomial in x of degree m, m #1;
(i) forevery x€[0,), T, (x)=0(n 1™/ 2y,
(iii)  the coefficients of n™% in T, 5, (x) and T, 5 (x) are (2k = D! {x(x+2)}* and
CxF(x+2)* (2% +3x+3) respectively, where C is a constant depending only
on k and !! denotes the semi-factorial function.

Lemma 2. Let dand ¥ be any two positive real numbers and [a,b] < (0,%). Then, for
any m >0 we have,

sup ”Z Pny(X) Iq,, etdt|=0m™).
xe[a,b]] y=1 |t-x|26
First, we prove the Voronoskaja type asymptotic result for the operator M, (f,k, x).

THEOREM 1. Let f e C,[0,c0) and f**? exists at a point xe [0,0). Then
2k+2 f(m) (x)

2.1) lim n*? M, (f k)= f0l= Y. 2—=> Q(m,k, %)
‘ noree m=k+2

and : :

(2.2) lim e[ M, (fk+ L) - f(0)]=0,

where Q(m, k,x) are certain polynomials in x of degree m . Moreover,

02k +1,k, x) = ( bt Cx* (x+2)* 1 (x* +3x+3)
de
j=0
and

02k +2,k, x)——(——l—)—- Qk+D! {x (x+ 2}

11,
j=0

where C is a constant depending only on k.

Further, if f(2k+” exists and is absolutely continuous over [0,b] and f(2k+2) eL_[0,b],
then for any [c¢,d] < (0,b) there holds
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(2.3)

P: N. AGRAWAL AND A: J. MOHAMMAD

| M, (f.k,x)- f(x)“qc,d] <M n—(k+1)["f"Cm +"f(2k+2)“

where M is a constant independent of f and n.

Proof: Since

2k+2 £(m) ‘ :
Fo=3 LD gm s s, - 0%,

f(2k+2)

exists at xe [0, ), it follows that

!
m=0 m:

where £(t,x) >0 as r—x.
In view of M, (1,k,x) =1, we can write

n ML (f kx) = f()]=n*T Y
m=1

2k+2 £ (m)
P M, ((t-x)" k,x)
m!

L.,JO,b]}

k
+n*1y" (. )M g (et 0) (2 - 022 5

j=0
=1, +1,, say.

’

Using Lemma 1, we have

I (e h® Py (x) Bimi2 ()
djn,m (djn)[(’"“)’z] (djn)[(’"”)’z]*' (djn)m—l ’
for certain polynomials P;,i=1,2,...,[m/2] in x of degree at most m.
Clearly, ‘
k
ZC(j,k)Td,.n,m(x)
j=0
P (x) P, (x) Bimy2) (%) 4o g gk
(don)[('"+l)/2] (don)[(m+1)/2]+1 (don)”‘" 0 0 0
1 P(x) Py(x) Fimi2) (%) PR 2k
=— [(m+1)/2] [m+n/2141 m~1 ! ! !
A (dl"l) (dln) (d]n)
Py (x) P (x) Pimi2y(x) 27 g2 4.k
(d n)[(m+1)/2] (dkn)[(’"“)/z]“ (dkn)”’ 1 k k k
(2.4)
=n"* D O(m k,x) + o)}, m=k +2,k+3, ..., 2k+2.
2k+2 f(m) (x)
So, I, is determined by Q(m,k,x)+o(l).
! ]
m=k+2 :

The expression for Q(2k +1,k,x) and Q(2k+2,k,x) can be easily obtained from
Lemma | in (2.4). Hence in order to prove (2.1) it suffices to show that
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I, >0 as n—oo. For a given £>0, there exists a >0 such that [E(t,x)|<e,

whenever |t—x|<8, and for |t—-x|28, there exists a constant K >0 such that
le(t, )| (1 = x)**? < K e

Let @ 5(¢) be the characteristic function of the interval (x — &, x + ), then

k .
|| <n** Y |CUL R M g (et 0| (= 022 @5 (0);0)
j=0

k
+n Y ICUR| M g (e, 0| (=022 (1= D5 (1) x) = 13 +1 4.
j=0

k
Again, using Lemma 1 we get I <en**! [ZIC(j,k)q max{den,2k+2(x)}< K.

j=0 0< j<k

Now, applying Schwarz inequality for integration and then for summation and Lemma 2
we are led to

k
I, <K n** 2ICUIIM 4, (e (1= @5(1));x) =" O(m™), for any m > 0.

Jj=0

=0(n*™™)=0o(1) for m>k +1.
Since € >0 is arbitrary, it follows that I3 — 0 for sufficiently large n. Combining the
estimates of /5 and I, we conclude that/, — 0 as n— e . The assertion (2.2) can be
proved in a similar manner as M, ((t-x)",k+1x)= O(n'(/”z)) , for all
m=k+3,k+4,.2k+2.
Now, we shall prove (2.3). Let W(¢) be the characteristic function of [0,b], then
M, ((f k,x)=M,(Y@)(f@) = f)),k,x)+ M, (1=F@) ()= f(x),k,x)
= 15 + 16 .
Proceeding as in the estimate of 1,, we have for all x€ [c,d],
I¢ < ||f||c O(n™™), where m>0.

From the hypothesis on f, we can write, for all € [0,b] and x€ [¢,d],

%+ () ¢
_ S (x) i 1 U+l (2k+2)
f(t)—f(x)—-i%:————;——(t—x) +m£(f—w) T (w)dw.

Therefore

2k+1 (i) .
15= Z f il(x)M,,(\F(t)(t—x)’,k,X)
i=1 :

1
2k +1)!

+

, ,
M, (Y@ j(t—w)z"” @D () dw, k, x)
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U+ £ ()
[ &)
=25

- {M (=% k,x)+ M, (@)= 1)t - %)’ kx)}

i=l
1

ot
_ ) 2kt £(2k+2)
T k) M, xj(’ TS (w)dw,k, x)

{1; +15}+ 1.

- zi' f"’ @
i=] :
In view of (2.4), we have I; = O(n'(k+’)), uniformly for all xe [c,d]. Since #(¢) is the

characteristic function of [0,b] and x € [c,d], we can choose & > 0 such that It - x| >4.
Using Lemma 1, we have Ig = o(n~**y, Again, applying Lemma 1, we get

“19“C[a,b] <K, p kD) f(2k+2)

. Combining the estimates of I; —Ig, we have

L,.[0,b]
(C "f( ) “ ] )
[a,b] L.[0,b]

b (3]0
i=1

Now, applying Goldberg and Meir [3] property, the required result is immediate.
In our next theorem we estimate the degree of approximation of M, (f,k,x) to f(x) in

terms of the higher order modulus of continuity of f m
Theorem 2. Let f € C,[0,). Then, for sufficiently large n, there exists a constant M
independent of n and f such that

(2.5) 1M, (k) = Flega, o, SM{"’zm(f’”_mval b))+~ 1] }
Proof: For f e Cy[0,%0), the Steklov mean f;;,,(x)€ CH¥*2 of (2k+2)" order is
defined as
G k p ~(2k42) Easy
Frakn (=7 [... []enka ey fO)+ ( ) (x) Hduv,
-n/2 /2
k+1

v=l
where (k+1)277 < minf{a, - a;,b, —b,} and 47 is the rt symmetric difference operator
defined by:
. 2k+2 2k+2
A fx)= Z( 1) ( ; )f(x+(2k+2—z)2u ).

v=l
Then the function f, 54 42(x) has the following properties:

2 —(2k+2
I (2k+ ) <M177 (2k+ Y0rs2 (fm,01,b)

(2.6) 2k+2
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(2.7) ”f _fn'2k+2“C[a2,b2] SM2 w2k+2(f! , q ’bl) ’
(2.8) ||fn,2k+2"c[a2'b2] SM;, "f"C[ahb,l < M4||fl|ca ’

where M, =M, e, M;'s are certain constants depending on k only and

@442 (f 7, a1,by) is the modulus of continuity of order 2k + 2 corresponding to f :
W42 (f 1,01, by) = sup |Aik+2 f(X)|-
|<n
x,x+(2k+2)hela b ]
Now, in order to prove (2.6), notice that

2
=1 ( ¥ ) 2L k2 (0)

k+1
n/2 N2 [2k+2 2k+2 2k+2
= [ . j Z (—1)( ; ]f(x+(k+l—z)Zu )+ (=1) [ ]f(x)} Hduv
-n/2 -n/2L v=]
n/2 N/2 | 2k+2 2k+2 2k+2
= . Z - 1)( , Jf(x+(k+1—t)2uv I14u,
-n/2 -n/2|¢ ! v=] v=]
t¢k+l
n2 n2r k ) 2k+2
= [ . Z(—l)'[ , )f(x+(k+1—t)2u )
-n/2 -n/2L i=0 l v=l
2k+2 2k 2k+2 2k+2
+ > (=D [ _ )f(x+(k+1—t)2uv):| [14u,
i=k+2 ! v=l v=]
n/2 n’2 g 2k+2
= ] X 1)( _ ){f(x+(k+l—z)2uv
-n/2 ...n/21 =0 ! v=]
2k+2 2k+2
+f(x-—(k+1—i)Zuv)}Hduv.
v=l] v=l
Since
d2k+2 n/2 n/2 2k+2 2k+2 242
SEETIO) {f(x+ Zuv)+f(x— Z“ )}Hdu =2A" (2k+2)f x),
dx -n/2 -n/2 v=l v=l

and a)2k+2(f;|k +1—i|77) S|k+1-z|a)2k+2(f;77), we have,

~(2k+2) 2k +2
= Z< b [ ; ) 25 T

(2k+2)
nf Claz.by]  (2k+2
k+1

n.2k+2

Clay b))
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17-(2k+2) k (2k+2
i=0

: 2k +2 2;
( k+1 )
and thus (2.6) follows.
From the definition of f 5,5, we have

; )(k+1—i)w2k+2(f,n,a,,b1)

-l T e s 1T
f- fn 2k+2|=T7A7 L AN Ay 7 flx du,
2k+2 2 2| X v=l
k+1 v=l

SM’ gpn (fin(k +1),a1,b)) Sk + DM’ @y in (f31,a1,b))
=M 5 Wyp42(f37m,ay,by) forall xela,,b,],

which proves (2.7). The proof of the inequality (2.8) is trivial and therefore we omit it.
Now, we shall prove (2.5). we can write

M, (fk,x)= f()=M,(f = fans2- k%) + (fpau42(X) = F(X))
+ (M" (fﬂ_2k+2,k,x) - fﬂ'2k+2(x)) = 11 (x) + 12 (.X) + 13 (x), say.
From (2.7) we have

) - =112
||12”C[a2,b2] SM o0 (fi1a1,0)) =M@y n (fin 7 ay,by).
Next, proceeding as in the estimate of I, in the previous theorem, we have

SE Z|C(J,k>| jwd AED|F(O) = Fraksa 0] d

j=0
and

Wan@.0|f = fraa@|dt= [+
0 |t-x|<8 |t=x|>8
<|f - f,,,2k+2||c[az_5'b2_5] + Ky n " | £, forall m>o0,
where, § <min{a, —a;,b; — b, }. Hence, again in view of (2.7)
"11||C[a2_,,2] <My 0ysr (fin™%,a),b) +Kpyn™" "f"c,, .

Finally, in order to estimate /5(x), we observe that by Taylor expansion

2+2 f(%k+2 (x) ‘ 1
2.9 t)= e - x) 4 ———— (2k+2) £ — x)2*2
29)  fraxe®= Z(;) 0 e Trake 9 :

where & lies between ¢ and x. Operating M(.,k,x) on (2.9) and separating the
integral into two parts as in the estimation of /,(x), from Lemma 1 and (2.4) we are led
to
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“Mn(fn,2k+2’k") - fn-2k+2|C{a by

-(k+1) (i)
SMsn Z ” Faaker

Using [3], we get

‘ (i)

(2k+2)
fn.2k+2

Cla, b2] ' 2k+2

+
Clag by)
Cles bz] (”f m 2k+2l

'C[ﬂzybzlj ’

and choosing m 2 k + 1, we have further that
—(k+1) (2k+2)
“Mn(fn,2k+2,ky-) "fn,2k+2"c[azlb ySMan ['fn 2k+2" “ Fn2ke2

Now, applying (2.6), (2.8) and the definition of f,, 54., We get:

||13||C[a2'b2] <My (coz,ﬁu‘,(f;n-llz,a1 by)+ n—k+D "f"Ca )
Combining the estimates of I;(x)—I3(x) we obtain (2.5).

o)
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