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ON SPACES ASSOCIATED WITH PRIMITIVES OF
DISTRIBUTIONS IN ONE-SIDED HARDY SPACES

SHELDY OMBROSI

ABSTRACT. In this paper, we introduce the 'Hg;j; (w) spaces, where 0 < p < 1,
1 < g < oo, a>0, and for weights w belonging to the class A} defined by E.
Sawyer. To define these spaces, we consider a one-sided version of the maximal
function N, (F,z) defined by A. Calderén. In the case that w = 1, these spaces
have been studied by A. Gatto, J. G. Jiménez and C. Segovia. We introduce a
notion of p-atom in H2F (w), and we prove that we can express the elements of
HP¥ (w) in term of series of multiples of p-atoms. On the other side, we prove
that the Weyl fractional integral P, can be extended to a bounded operator from
the one-sided Hardy space HY (w) into 'Hfl’;;’ (w). Moreover, we prove that this
extension, if o is a natural number, is an isomorphism.

1. NOTATIONS, DEFINITIONS AND PREREQUISITES

Let f(z) be a Lebesgue measurable function defined on R. The one-sided Hardy-
Littlewood maximal functions M* f(z) and M~ f(z) are defined as

1 z+h B 1 T )
Mfe) =sup [ @ldeand M fe) =sup s [ 150 e

As usual, a weight w(z) is a measurable and non-negative function. If E C R is a
Lebesgue measurable set, we denote its w-measure by w(E) = [, w(t)dt. A function

1/s
f(z) belongs to L*(w), 0 < s < 00, if || fl| s,y = (f_oooo f(x)sw(m)dm) is finite.

A weight w(z) belongs to the class Af, 1 < s < oo, defined by E. Sawyer in (7],
if there exists a constant ¢ such that

1 [° 1 [=th AN
sup <-—/ w(t)dt> (—/ w(t)"s—ldt) <c,
h>0 \h z—h h T ‘

for all real number 2. We observe that w(z) belongs to the class AT if M~w(z) <
cw(z) for all real number z.
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82 SHELDY OMBROSI

Given w(z) € Af, 1 < s < oo, we can define two numbers z_o and Lo
—~00 < T_oo < Thoo < 00, such that

(i) w(z) = 0in (—00,Z ),
(i1) w(z) = o0 in (T4e0,00), and
(i) 0 < w(z) < oo for almost every = € (T_co; Too)-

In order to avoid the non-interesting case T_o, = T1c, We assume that there exists
a measurable set E satisfying 0 < w(E) < oo.
Let us fix w € A} and let z_o be as before. Let L}, (2_s0,00) ,1 < g < 00, be the

space of the real-valued functions f(z) on R that belong locally to L? for compact
subsets of (Z_ao,00)). We endow L, (Z_o, 00) which the topology generated for the

seminorms
1/q
= (! Ty ).
o= (117 [1r0ran)

where I = [a,b] is an interval in (240, 00) and |I| = b — a. ‘
For f(z) in L} (7_co,00), We define a maximal function nf (f; ) as

Mgalfi2) = sup o™ |fly ey

where « is a positive real number.

Let N a non negative integer and Py the subspace of L} (z_u,00) formed by
all the polynomials of degree at most N. This subspace is of finite dimension and
therefore a closed subspace of L} (z_c,00). We denote by Ef; the quotient space

of L} (T—00,00) by Pn. If F' € E};, we define the seminorm

IFll, =it {|fl,: f e F}.

The family of all these seminorms induces on EJ; the quotient topology.

Given a real number a > 0, we can write it @ = N + 3, where N is a non negative
integer and 0 < 8 < 1. Now we fix @ > 0 and its decomposition & = N + 3 in the
previous conditions.

For F in EY, we define a maximal function N/, (F;z) as

N, (Fyz) =inf {n},(f;z): fe F}.

We say that an element F' in EY belongs to H2F (w), 0 < p < 1, if the maximal
function N, (F;z) € LP(w). The “norm” of F'in HYY (w) is defined as 1yt 0y =

,a

NG (F5 2) | oy

Definition 1.1. We shall say that a class A € EY; is a p-atom in HP% (w) if there
exist a representative a(y) of A and an interval I (non necessarily bounded) such
that

i) IC(2-00,0), w(I) < o0
ii) supp(a) C I
i) N, (A,z) < w(I)7P for all @ € (20, 00).
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ON SPACES ASSOCIATED WITH PRIMITIVES 83

We shall say that I is an interval associated to the p-atom A.

Given a bounded function f(y) with support in an interval I = (2_, 0] where b
is finite and if a >0 we consider the Weyl fraccional integral

o0
Pf(@) = g7 [ =) F)dy for 2 € (-nr00).
where I'() denotes the Gamma function. It is easy to see that P, f(z) belongs to
L, (2, 00) whenever f € L®(Z_n0,b] . So, if « = N + 8 where 0 < <1 and N
is an integer, we denote P, f the class in EY, of the function P, f(z).

As usual, CP(R) denotes the set of all functions with compact support having
derivatives of all orders. We shall denote by D (z_x., 00) the spaéo of all functions
in C§°(R) with support contained in (z_q,00) equipped with the usual topology
and by D'(z_o, 00) the space of distributions on (_, 00).

Given a positive integer v and € R, we shall say a function ¢ in C§°(R), belongs
to the class @, (z) if there exists a bounded interval I, = [z, b] containing the support
of 1 such that D7y satisfies :

1,/ ID", <1
For f € D'(z_c, 00) we define f _(r) as
Fir(@) = sup {[{F, )] 9 € B, ()},

for all z > 2_o. Let w € AF and 0 < p < 1. If v is a natural number satisfying

(y+1)p>s>1lor(y+1)p > 1if s =1, then a distribution f in D'(7_u,0)
1/p

belongs to HY . (w) if the “p-norm” || f|| HY (w) = ( [ fi o (@)Pw(a)d: ) "es finite.

These spaces havc been defined by L. de Ro%a and C. Segovm in [6] ’

A function a(z) defined on R is called a p-atom in HY , (w) if there exists an
interval I containing the support of a(z), such that

(i) I is contained in (z_c0,0), w(I) < 0o and ||a||,, < w(I)~V/P
(i) If the length of I is less than the distance d(z_o, I) from z_, to I, then

/ a(y)y*dy =0,
I

holds for every integer k, 0 < k < .
The following theorem is of fundamental importance for the proof of Theorem 2.3
below.

Theorem 1.2. Let w € A, v > 1 an integer and 0 < p < 1 such that (y+1)p >
s>1or(y+1)p>1ifs=1 Then, if f € H} (w) there exists a sequence {a;}
of p-atoms in HY _(w) and a sequence {\;} of real numbers such that f = N\a; in
D' (-0, 0), and "

‘ “F”Zfﬁ_’(w < Z I)‘ PP < €2 ”F”Hl' (w)”

hold. Furthermore, the intervals associated to the p-atoms a; can be assumed to be
bounded.

Rev. Un. Mat. Argentina, Vol. 42-2



34 ' SHELDY OMBROSI

For a proof see [6].

Let F € EY and f € F. Since f belongs to Lf, (o, 00), DV*'f is defined in
the sense of distributions. On the other hand, since any two representatives of F'
differ in a polynomial of degree at most N in (z_s,00), we get that DN*Lf s
independent of the representative f € F' chosen. Therefore, for F' € Ef,, we define
DN+1F as the distribution DV*1f, where f is any representative of F.

2. STATEMENT OF THE MAIN RESULTS

With the notation and definitions given in the section 1 we can state the main
results of this paper. ' :

Theorem 2.1 (Descomposition into atoms ). Letw € A} and0 < p <1, such that
(a+1/g)p>s>1or(a+1/q)p>1ifs=1. Then, if F € Hb:} (w) there ezists
a sequence {\;} of the number real and a sequence {A;} of p-atoms in HP'x (w) such
that F =" X\ A; en B (2_c0, 00). Moreover the series ), \;A; converges in HEE (w)

and there exist two constants ¢; and ¢y such that

(1) 1 ”F“HP +( )y — Z |)\ |p < C2 |IF“HPJ;(TD) N

The next corollary proves that is enough to consider bounded intervals in the
Definition 1.1. '

Corrolary 2.2. Under the hypotheses of Theorem 2.1 we can take the p-atoms {A;}
in the decomposition having bounded associated intervals I;.

The following theorem shows that, in particular, if « is a natural number the
spaces HY , (w) and HP'E (w) can be identified. -

Theorem 2.3. Letw € AF,0<p<1,and (a+1/q)p>s>1or(a+1/q)p>1
if s = 1. Let v an integer such that v > «. Then, P, can be extended to a bounded

. o . Pt . .
linear operator from HY ,(w) into HEE(w). Moreover, if we suppose that o is a
natural number this extension is an isomorphism.

3. SOME PREVIOUS LEMMAS

The next lemma contains the basic results for A} weights and one-sided maximal
functions that we shall need in this paper.

Lemma 3.1.

(1) Let 1 < 51 < s2 < oo. if the weight belongs to the class A}, then it also
belongs to A}

(2) Let 1 <s < o0. The one-sided Hardy-thtlewood maximal M* is bounded on
L*(w) if and only if w belongs to Af.

(3) Let w € Af,1 < s < 0o. Let a < b be the end points of the bounded interval
I. Then, the interval I~ with end points a — |I| and a, satisfies

w(I7) < cpw(l),

where the constant ¢, does not depend on I.
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ON SPACES ASSOCIATED WITH PRIMITIVES 85

(4) Given w € A}, 1 < s < oo for every a € R, the w—measure of the interval
(@, 00) is equal to infinite.
(5) Let 1 < s < co. Then, if w € A} there exists € > 0 such that w € A_,.

Proofs of parts (2) and (5) may be found in [7] and [5]. Proofs of parts (1) and
(4) are very simple and shall be omitted. Part (3) is an immediate consequence of

(2).

Lemma 3.2. There exists an infinitely differentiable function ¢ with support in

[—1,0], such that
= [APwo0E — sy,
for all polynomials P(x) of degree less than or equal to N and for every A > 0.
The proof is the same as Lemma 2.6 in [2].

Lemma 3.3. Let fi and f, be two representatives of an element F in Ef, and
P(y) = fi(y) — fa(y). There exists a constant ¢, such that

(%)%P(w

holds for every z1, z3 and y in (z_u, 00).

< e (nf o (f1,20) + 1y (fo, 22)) (|21 — y| + |22 — y)* "

Proof. we assume that x5 > z1. First, we suppose that y > 9, in this case, by
Lemma 3.2 and proceeding as in the proof of Lemma 1 in [1], we get

Now, if y < z, taking into account that D*(f;(y) — fa(y)) is a polynomial of degree
at most N — k, and by its Taylor’s expansion we have

® < e (g fum) + nfo(form2)) (y — 21y — )",

@ DA - ZDH/ ) - hy| Y=

y=x2 /'
Using (2) with y = x5, we obtain
| D51 - W),

<c (";a(flywl) + “;a(f2»372)) |z1 — x‘»?la—k—

Then,
(4) le fily) — f2("/))|
_ a— kN = ly—$2l
< C(n},(fr,21) + 0} (f2, 2)) (22 — 21) Z Ty — 7

Since |1 — 22| < |y — x1] + |y — @2, we obtain that the right side of (4) is bounded
by

+(F + ok (1Y — T2 + ‘Z/‘— ] Nk
Cn (n},(f1,21) + 1, (fo, 22)) (w2 — 1)

To — I
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86 SHELDY OMBROSI

From this fact and taking into account that a = N+ B3, we obtain that

IDk(fl(y) - fz(y))l <c (n;a(fh T1) + n;a(fzﬁﬁ)) (ly = Ty + |y — $§|)a_ >
holds for every y. =

Lemma 3.4. Let F' belongs to E, with N}, (F,z) < co. Then:

(1) there exists a unique f in F' such that n},(f,zo) < oo and, therefore,

(F x()) =Ny, a(f) 1:0)
(ii) For any interval I = [a, b] C (T—o00,00) With a > zo, there exists a constant c
dependmg on zo and I such that if f is the unique representative of F' given
n (i), then

1Fllgr S 1flgr < enga(fiz0) = ¢ NG (F, 7o)
The constant ¢ can be chosen mdependently of z¢ provided that zo varies in a
compact set.
Proof. The proof is similar to that of Lemma 3 in [3]. O

Corrolary 3.5. If{E;} is a sequence of elements in Ef; converging to F' in HEL (w),
0 < p<1, then {F;} converges to F' in Ef.
Proof. Let an interval I = [a,b] C (Z_c0,00). Since a > z_q, d(2_00,a) =7 > 0.

r

5, and we consider the interval

Let n be the first positive integer such that % <
I, = [a - m ] . Now, for (ii) of Lemma 3.4

(5) IF = Fillg; <
On the other hand, since I; C (2-c,00), w(I;) > 0. Then

CiN/ (F — F;; ) for every = in I

F—Fj, < Crw(l; N+ (F — Fz)'w(z)dz < ey |F = Fillh
Hq ()’

ol =
which proves the corollary. m

Lemma 3.6. If {F;} is a sequence of elements in Ef; such that the series
> NS (Fi,x) is finite a.e.  in (T—c0,00). Then

(i) The series E F; converges in EY, to an element F' and

(6) L (F; CC)<ZN+ (F;,z) for all z € (2_c0,0).

(i) Let zo be a point where Zz N, (Fi;zo) is finite. If f; is the unique repre-

sentative of Fj satisfying n/,(fi; o) = Nj,(Fi;zo), then 3, f; converges in

L} (2_c,00) to a function f that is the unique representative of F' satisfying
q,a(f,xo) N;,’O((F; Zo).

Proof. First we prove (ii). Let zo be a point where ), N, (F}; zo) is finite. Then,
by Lemma 3.4, for each i there exists a representative f; of F; satisfying ngo(fisz0) =
N (Fi;m9) < 00. Let 2 € (200, 00) another point such that > N (Fiz) is finite,
then for each i there exists a polynomial P;(z,y) of degree at most N such that

nt,(fiy) — Pi(z,y); z) = N (Fi; z). Using Lemma 3.3, we get

(7) |Pi(,y)| < (Nl Fis0) + Nfo(Fi;2)) (ly = ol + |y — 2[)*
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ON SPACES ASSOCIATED WITH PRIMITIVES 87

Let us fix an interval I = [a,b] C (Z_c,00) and we consider z; < a such that
> N (Fi; 1) < oo. Then, by (i) of Lemma 3.4 and (7), we obtain

|filyr < fi = Bi(za, )y g + [Piza, ), s
S Cf,fl:l,ct:o (Nq,a(Finy) + N;:a(F‘hIl)) .

Thus
k m k k
Zfi_z.fi < Z |fz q,1 —szlmo Z (N;:a(ﬂ;xo)+N;:a(E;x1))’
i=1 i=1 g1 i=m+l i=m+1

which proves that there exists f en L} (2_o,00) such that Z fi = f in this space.

Let us denote by F' the class of f in Ef,. Since ,
(8) Nga(fiz0) Y nta(fiwo) = Y Nio(Fiszo) < o0

we have that f is the unique representative of F' satisfying N, (f; o) = N/, (F; o).
Now, we will prove (i). As consequence of inequality

K K
ZE—F < Zfi—

we have F' = Z F; in Ej,. Moreover, from (8) we obtain

i=1

)

q,1 q,1

o(F;20) <ZN (F3; o).

This conclude the proof. m
Corrolary 3.7. The space HE:f (w), 0 < p <1, is complete.

Taking into account Lemma 3.6, the proof of this result is similar to that of
Corollary 2 in [3].

Lemma 3.8. The mazimal function N (F,z) associated with a class F in E}; s
lower semicontinuous.

See Lemma 6 in [1].

Lemma 3.9. Let f a representative of F' in EY. We suppose that N} (F;z) is

finite and we denote by P(z,y) the unique polynomial of degree almost N such that
ngo(f(y) = P(z,y);x) = N} (F;z). Then f(z) = P(z,z) for almost every = such
that N (F;z) is finite.

See Lemma 2 in [1].

Lemma 3.10. Let F' in EY;. We suppose that N}, (F,z) <t for every x belonging to
aset E C (z_,0). Let f a representative of F' and P(z,y) the unique polynomial
in Py such that N (F;z) = nf (f(y) — P(y,z);z). For each z in E we define
Ap(z) = D?’;P(x,y)‘y:z. Then,

)

Au(e) = Y0 20— B Aua(®)| <t [ —
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88 SHELDY OMBROSI

for all x and T in E. Furthermore, Ay satisfies a Lipschitz-3 condition on E with
constant ct (we recall that « = N + 3, where 0 < 8 < 1) and if 0 < k < N, Ag(z)
satisfies a uniform Lipschitz-1 condition on every bounded subset of E.

By Lemma 3.2 and proceeding as in the proof of Lemma 5 in [1] we obtain the
proof of this lemma.
The next results will be used in the proof of Theorem 2.3.

Lemma 3.11. Let f € L™, with supp(f) C I = (2_0, b] where b is finite. Then

(10) N;,'a(_Pa__f; z) < C|flly, for every z € (£-c0,0),
where C does not depend on f.

Proof. For z € (z_w,00) and z > 0, we define

! ” *= - a-1-k _k
ey [/+ =z =2 - | (; Cra(y = 2)"' 2 ) f(y)dy] ,

where (ZIILO Cha (Y — x)a"l—k zk) is the Taylor’s expansion of order N of the func-

tion (y —z — 2)*™". Let p > 0. We will estimate p~® [R(z..)| We recall that

a = N + 3, and we consider first the case 0 < 8 < 1. Since

T+22
R(z,z) = _1—‘/ (y—z—2)" fy)dy

¢,[0,p]"

F(a) +z
n 1 0 (y_.CL'—Z)a—l “ick (y—.’l))Nthk f(U)dU
F(Oz) z+22 — e J !
(12) 1 ZNjC /m+2z (y—2)* 7 fly)dy 2 = A+ Ay — A
T(a) ko e VAN =4 2 — As.
F(a) k=0 x

For A,, by the mean value Theorem and since § < 1, we obtain

4] < C Il / (v — 22 dy 2N < Ol fl =

z+22
For As, we have

(13)
N T+22 N -
Al SCIAILY [ e < Ol Y < Ol
k=02 k=0
In the same way we obtain
|4l < OISl 2
Then, for 8 < 1, we have that
(14) |R(z,2)] < Cllfllw 2
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ON SPACES ASSOCIATED WITH PRIMITIVES 89

however (14) also holds for 8 = 1. In fact, since (y —z — z)N is a polynomial of
degree N, it coincides with its Taylor’s expansion of order N, so we have that

R(z,z) =
(e e N
m\fl;T) [/+ (y—z—2)" fy)dy - / (g an (y—2)N7F f(y) zk) dy}

z+z

1 N
=:_f671jj§zcwv/‘ (y—2)"" fly)dy 2.
k=0 z

Then , in the same way that we obtained (13), we can prove that (14) also holds in
this case.

As consequence of (14) we obtain

PRy =0 (5 /IRwZI"dz) ’
<cliflore (3 [ d) <.,

which implies (10). =

Lemma 3.12. Let a(y) a p-atom in HY (w) with vanishing moments up to the
order N. Furthermore, we suppose that supp(a) C I = [z0,b] and ||a||,, < w(I)7/P,
Then, for every natural number k and if z € (T_c0,00) M|z — zo| > 2|I|} holds
that

II|N+2

| D* Paa(z)] < Cr w(I)~1/7

o7

Proof. Without loss of generality, we can suppose that I = [0,b]. Assupp(a) C I,
the result is trivial if = > 2b, then we consider z < —2b. In this case P,a(z) =

5 Jo (@ — 1) " a(y)dy and

b
DkPaa(x) = ck,a/ (y — m)“_l_k a(y)dy.
0

Then, taking into account that a(y) has vanishing moments up to order N, 2 < —2b,
and recalling that o = N + 3, we have

b N o
Cha /O ((y — ) ;ca,i (=)t y’) a(y)dy

pN+2
I:L.IQ-HC—ﬁ ’

|D’°Paa(ac)| =

IA

b
Claf™* [l " dy < ()
0

4. PROOF OF THE RESULTS

The following lemma states some properties of a one-sided partition of unity that
can be found in [6].
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90 SHELDY OMBROSI

Lemma 4.1 (a one-sided partition of unity). Let a < b and we consider the inter-
val I = (a,b). Then there exists a sequence {n;}32; of C§° functions satisfying the
following condztzons

1) 0 <n;(z) < 1 and 35 7;(2)X(ab)(T) = X(a) (2)-

2) For each positive integer 7, if I; = [a+277(b—a), a+277*2(b—a)]  supp(n;) C
I;. If we denote r; = gb;Ta), then for every z € I; r; < x —a < cr;, where ¢
does not depend on j.

3)If I; = (a+27971(b — a),min{a + 2 —i+2(h — g),b}) , U;I; = I. Furthermore,
the number of interval I that intersect to other interval [k does not exceed
two.

4) If k is an integer, k > 0, we have

|Dk77j (x)' < C’krj_k,

where Cj does not depend on j.

Let F € HPF (w) . Given t > 0, we consider
Q=0 = {2 € (T-0,0) : NJ,(F,z) > t},

since N, (F,z) € LP(w), w(Q) < oo and by Lemma 3.8 this is an open subset
of (T_wo,00). Then Q = |J;2, I;, where intervals I; = (a;,b;) are the connected
components of . We observe that b; < oo, since w (I;) < w () < co (see part (3)
of Lemma 3.1). If there is an interval I; with a; = z_«, then we will assume that
i = 1. If not, we shall assume that I; = (). Let f belonging We define

(15) 01(y) = xn, () (f(y) — P(b1,9)),
where P(by,y) € Py and N, (F,b1) = ngq (f(y) — P(b1,9)) -

On the other hand, for each ¢ > 1, Let {;;}i>1,>1 be the partition of unity as
Lemma 4.1 associated with each interval I; = (a;,b;) and we denote I; ; and .fl 4 that
intervals I; and I of the same lemma. We define z; ; = b; if j = 1,2 and z; ; = a; for
j > 2. Let C = (T_oo,00) — 2. We observe that each point z; ; satlsﬁes d(I”,C)
d(fiyj,:niyj) where fm = (a; +27771(b; — a;), min {a; + 2~ I*+2(b; — a;),b;}). Further-
more, as the points z;; belong to C, we have that N, (F z;j) < t. We denote
P(z;;,y) the polynomial satisfying N\, (F,z;;) = nJ, (f(y) — P(zi;,y)). Now, for
each 2 > 1 and j > 1, we define
(16) 0:,5(y) = ni,;(¥)xn (W) (f(y) — P(zij,)) -

The functions 6; ; and 6; belong to L] (z_«,00). Let us denote by ©; ; and ©; the
class of 6; ; and 6, in EY respectively.
For the following two lemmas we will use the previous notation.

Lemma 4.2. Let F € Hb} (w), and f € F. If g(y) is defined in (Z_00,00) as

o(y) = { e Xt WXL W) P(2i5,9) + X0 W) P(br,y) if y € 2
flw) fy¢Q,

and G denote its class in EY;, then there exists a constant C' such that
. N} (G,z) < Ct for all x € (T, 00).
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ON SPACES ASSOCIATED WITH PRIMITIVES 91

Proof. It will be enough to prove that the function g agrees almost everywhere
with a function having derivatives continuous up to order' N and its derivative of
order N satisfies a Lipschitz-3 condition with constant ¢t on (z_s, 00). The function
g(y) is infinitely differentiable on 2, and if = € 2, we have that

(17) Dkg(z) =
o oo k
ZZZ Ak D ’IzJ( )Dk hP(lz;,U)| ey T xrn(x )D/‘ /'P(b] )l/::u:“
=2 j=1 h=0

Let z € C. By condition (3) of Lemma 4.1 we have, for = in €2, that

(18) DSPE,y)|,_, =

k
Z (K __] D"n j(x )Dl‘ hP(l-’!/)L: + xr, () D P (T, 1/)|

h=0

M8
M8

y==a

Il
Y
||
-
-

i J

Let T € C = (Z_w0,00) —; z € Q and we denote 7 the point in C closest to z. From
(17) and (18), we obtain for z € § that

(19) Dtg(x) - DEP(E,y)| _, =
o oo k
ZZZ h' 771.7( ) {Dk hp(”vj’y)lyzn; - Df‘/_hP(;E’ y)’u::rj‘
=2 j=1 h=0
v, (@) [ EP(by,y)|,_, — DSP@E.y)],_ }—}-Di}'P(ZE,y)L - DR, g)|u_,

We suppose that = € I, ; = (a; + 279 (b; — a;), min {a; + 277+2(b; — a;), b;}) for some

1 .
i>1and j > 1. Wedenote r;; = }"21 = [2J| Since z;; = 2;» = b; and x; ; = a; for

j > 2, and taking into account (2) of Lemma 4.1, we have that

|T — x| < |2y — 2| <cryy, and

T — 2| <|ry — 2| <.c|F—x.
By Lemma 3.3 and since z; j, Z, and Z belong to C, we obtain

53

' ij"LP(xi,j,y)Iy:m - DS""P(&?,y)Iy:m‘ <ct |z - [“ —kph and

(20) ' DSP(;E’ y)]y=ﬂf - DZ;P(T’ ',l/) l‘y=mt S ct (Ij - "I"I)”_k .

Applying These estimates in (19), and using condition (4) of Lemma 4.1, we have
that

(21) |D¥o(a) - DEP@,y)],_,| < etz — 2™
If v € [} = (_o0, b1), we have that T = b;. Since in the right member of (19) all the

terms are cancelled except the last one, by (20) we have that (21) also holds in this
case.

Rev. Un. Mat. Argentina, Vol. 42-2



92 ’ ' SHELDY OMBROSI

Now, we take k = N + 1. Assuming that € I; for i > 1, from (19), we obtain
(22) . DV¥g(x) =

oo oo N+1 .
Y3 e D) [P Pl - PED,.]

Since xz € I; where ¢ > 1, then = belongs to T.. jo for some jo > 1. We suppose that
jo > 5. Then D", ;(z) = 0 for j = 1,2,3. Moreover, for j > 3, T = z;; = a;,
then DN*lg(z) is vanished. On the other hand if jo < 5, then z ¢ I,; for j > 7.
Furthermore if j < 7, we have that r,; > 2~ |I |. From the last estimate and by
condition 4) of Lemma 4.1, we obtain

| DPnii(z)| < e|LI™"
Now, applying Lemma 3.3 and recalling that o = N + 3, we obtain

DY *P(ayy,y)|,_, — DYTP@E, )|, | < et rfy <t 1P

From (22) and taking into account these estimates, we obtain
(23) IDN+1g(:c)| <ct |L|P* forevery z € I. -

If € I, g(z) = P(b1,z), and therefore in this case DV*1g(z) = 0 and (23) also
holds. Now, for each k = 0,1,2,...N + 1, we define the function By in (z_,00) as

_ [ DFg(z) sizeQ
Bi(x) = { Ai(z) sizeC’

where Ai(z) = DEP(z, y)|y=z is the function of Lemma 3.10. Then, if z € 2, and
T € C the inequality (21) can be rewritten as

)

(24) Bk(zj Z Biein(T) ( <ct |z—a]*"

)

para 0 < k < N. Now since N, (F.z) <t in C, Lemma 3.10 shows that this
inequality holds also for z € C. ThlS shows that By(z) is continuous for 0 < k < N,

and for z in C. Furthermore, for 1 < k < N, Bi(z) is continuous in (z_, 00) since
Byi(z) = D*g(z) in Q. By (24) with k = N we obtain that By satisfies

(25) |Bn(z) - Bv@)| < ct e -yl

for every x and y € (T_q, 00) and one of them in C. Now we will prove that (25) also
holds without every z and y in (z_e,00). We consider z; < x5 in §, then z; € I;;,
and 5 € [;, = (ai,, bi,) . If 41 # 1, we have

(26) lz1 — as,|® + |22 — a3, |° < 2|2y — 2%

Taking into account that a;, € C, using (25) and (26) , we obtain
|Bn(z1) — Bn(22)| < |Bn(21) — B (as)| + |By(z1) — B (as,)|

(27) <ct [|a:1 —a, |’ + |22 — aiziﬁ]

<ctlz; — zz|ﬁ.
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On the other hand, if i = 4y, i.e., 21 and z9 in ;. Then, taking into account that
Byyi(z) = DN+, ( ) for z € Q, (23) and the inequality |z; — x| < |I;, |, we have

|By(71) = By (22)] < [Bys1 ()] 21 — 22| < cz‘lv%;—‘l—;—l
(28) | B

As consequence (25) , (27) and (28) , we obtain that By satisfies a Lipschitz-3 condi-
tion in (2_e, 00) with constant ct. The inequality (24) shows that D*By(z) = By(x)
in C, identity which also holds in . Furthermore, Lemma 3.9 permits us assert that
Bo(z) = Ao(z) = P(z,z) = g(z) almost everywhere in C. Thus we conclude that
g(z) coincides almost everywhere in (z_o,00) with By(z) which has continuous
derivatives up to order N in (z_,0), and its derivative of order N satisfies a
Lipschitz-3 condition with constant ct. m

With the notation given in (16) we have the following result.

Lemma 4.3 (one-sided Calderén-Zygmund-type). Let F' € HPF (w) and w € Af,

q,
where (« +1/q)p > s> 1 or (a+1/q)p > 1 if s = 1. Then, the following condi-
tions are satisfied:
() Hzely=/(a+27"(b — a;), min {a; + 277+2(b; — a;), b;})
N+ (@i,j;x) CN;: (F (IT) and

q,o
ONJ (F,z)x,(z) for all z € (z_, 00)

<
N;,-a(el,x) S

(i) fz>z_o andz ¢ f,J

Njo(©15,7) < et [M*x, ()

at+l/q
; |

(iii) The series 3=, ; N, (©:5;%) + N, (©1;2) is pointwise convergent for almost
every z in (z_q, 00). Moreover,

/(Z ra(©ijix) + N, (Ol;:z:)) (1T<(‘/ gl Fox) Pw(r)de.

i>1,7
iv) The series >, .0, ; + ©; = O converges in E%, and for almost every x in
i>1 j 2J N
(T 00y 00),
(29) NFo(©;2) < Y Nf(©:52) + N, (O1; ).
i>1,7

(v) Furthermore,

/ 1a(©, ) Pw(z)dz <(/ S(Fz) Pw(x)de.
(vi) f G=F - ©, N} (G,z) < ct. '

Proof. The proof follows the lines of the argument in Lemma 10 of Gatto-
Jiménez-Segovia [3]. Let us prove (i). First, we consider i > 1, and j > 1 and
z € I;;. We can assume that N, (F;z) < oo, otherwise, there is nothing to prove.
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Let P(z,y) be the polynomial of degree at most N satisfying ng.(f(y)~P(z,y);z) =
N}, (F;z). Since supp(7:;) C i ;, we have for j > 1

0.5 (y) = mi;(y) (f(v) — P(=i;,9))
We define the polynomial

N ( 3 x)k
Qij(z,y) = DElmij(w)(P(z,y) — P(zis9))|,_, yT

- k=0
Let us estimate p=*[0;;(.) — Qi (%, )|y (504, - We have that
(30) Qi(z,y)
3 b2 w-2"
=3 | DEP(a,y) - Pig )], (Z Dy (2) )}
k=0
Let r;; = %% and we consider y € [z, z+p]. Then, taking into account that z; ; = =b;

if j =2 and z;; = a; if j > 2, and by (2) of Lemma 4.1

|@;; — x| < 4r;;, and

ly — x| + |y = zi] < 2|y — 2| + |55 — 2| < 4o +7iy)

Since N, (F,z;;) <t < N, (F;z) and by Lemma 3.3, we get that
(B1)  |DEP(z,y) — P(zij, )| < C Niu(Fio) (ly — ol + |25 — )
Assume first that p > r; ;. In this case, we have
(32) 16:,5(y) — Qui(@, Y| = Imiy(y) (f W) — P(2i5,9)) — Quj(,y)|

< mi,() 1f(y) = P(@,9)| + mi3(y) |(P(z,y) = Pz, v)| +|Qis(2,9)]
For the second term of the right hand side of this inequality, we obtain
(33) Mi5(Y) |(P(x,y) = P(1;,y)] < ¢ N (F;2)p"
Now, let us estimate |Q; ;(z,y)|. From (31) with y = x, we have

DY (P(z,y) = P(2i,y))],,| < eNgulF32)r;

Then, from (30), by condition (4) of Lemma 4.1, and recalling that p > r;; and
o = N + (3 it follows that

N
(34) 1Qui(@,y)] < e Nio(Fiz)ris*o* (Z cr:j‘p")
k=0
< N/ (F;z) p*.

Integrating (32) over [z,z + p] and using the estimates (33) and (34), we get for
p2Tij

(35) : P 10:5() = Qi (@, Mg s
<o~ f W) = P(@Y)lgparn T € NS (F;z)
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Now we consider the case p < r; ;. We rewrite Q; ;(z,y) as

ij(x y) . . _
b h ' (:l/ - :1"),’
- Z 7hJ k! (;) D, 1 l/ (L‘Ify,/'1 y))ly:m /)' ):r :

Addmg and subtractmg the expression

N y — )k
1,3 (V) P(z,y) + ZDkﬂi,j(ﬁ) W %l )

k=0

(P(z,y) — P(zij,y))

to Q;j(z,y) we obtain ‘
' 1655 (y) = @iz, U)i < 0i(y) 1 (y) — Pla,y)]

k
-z
["713 ZkaJ %l )
N

—x)k
z[ . ] <
| y—a)t
B [(P(T,y) 7”’ Z Dh (1"J‘y))|y=:v (J ‘]‘L! ) >:| .

<|f( P(z,y)| + S1 + Sa.

Ifye [:L x4+ p], and considering condition (4) of Lemma 4.1 and (31), recalling that
a=N+pg3and p <r;;, we get

|(P(x,y) = Pzi,9)|

(36) +

_ r)N+1

— | N+1 (y . .
Sy = |DV* 'fh',j(ﬁ)—er!—‘ |(P(z,y) — P(zi;,y)]

<o 7~T§N+1)pN+1N;:a(F§$) e < eNF (Fy ) p®

<ery;

As for Sy, similar arguments show that v
N ‘ k AN+1-k

y— 1) - Yy—2z
Sz = kz_; [Dkﬂi,j(w)( o ] [D;V“ “(P(z,y) = P(zis, )], %——]
N ‘
<o Y rEtNL(Fi ) (rig + o) oV < oN, (Fi )

k=1 )

Integrating (36) and by the estimates just obtained we get that (35) also holds for
p < r;;. This shows that

NS (8ij,z) < e N/ (F;z).

Now we conslder the classes ©;; withi > 1 and z € I“ = (a; +27%(b; — a;), b;). We
can express 6;1(y) as following way -

0:1(y) = mia(9)x.(y) (f(y) — Pbi,y)) v
= 1:,1(y) (f(y) = P(b:,9)) = mia(¥)Xpp.o0) () (f () = P(biy))
(37) = gll(ll) i, 01 (y)-
We denote ©}, and ©7, the classes of 8},(y) and 62, (y) respectively.
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For the class 9},1, arguing as before we get;
N}, (©],,2) < eNJ (F,x),

for all z € f, 1. Now we consider the class 92L Let us’ estlmate z+p |9 )quy.
Since supp(62,) C [bs, a; + 2(b; — a;)], we can assume that z + p > b;, if not the
integral that we want to estimate is equal to zero. By (1) of Lemma 4.1, and since
z < b;, we have

z+p AT bi+p ¢
[l ar < [ 1) - Peanltdy < N(F b o0
and since N, (F,b;) <t < N}, (F;z) we obtain N, (67,,z) < < N}, (F;z). Then, it
follows that
a(ez 17'7:) <c Ta(F; 1‘) A

To finish the proof of (i) let us estimate N}, (©1,2). Let z € I} = (T—c0, b1) . We
define the polynomial Q;(z,y) = P(z,y) — P(b1,v). :

Let us estimate p~*[01(.) — Qi(, )|, pa4p - We assume first that z 4 p < b;. In
this case, by (15) we have :

. ‘ 1 z+-p ‘ l/q ‘
p~101(.) — Q1= g zzin) = (/E | f(y) = P(z,y)|? dy>
' < NS (Fsz).
If £ 4+ p > by, using Lemma 3.3 we obtain that -

z+p .
5 1000) = Qa0 ganan < NiulFia) 0 [ 1Pl y) = Pl o) )
| < o(NF(Fiz) + Ny (F.by)) < eNi(Fa),

Then, N (©1,7) < cN+ (Fyx)xn(z) ifr e L. Moreover, since 6;(y) =0if y > b1,
we have that N, (Gl,m) =0ifz > b;. :

Let us prove condition (ii). Again, we work first with the classes ©; ;,j for @ > 1
and j > 1. Let £ > T_o, and z ¢ I,J We will estimate p™* ]9”| fz_o <
T < a; +27971(b; — a;), since supp(6; ;) C I;;, we have that |0, ;| is equal to
zero unless [z, 7 + p| N I; ; # 0. Then,

(38) p>a; + 2_‘7(b, - ai) — .

Jaa+pl

q,[z,z+p]

On the other hand, since supp(n; ;) C I;; C |ai, a; + 47|, we get,
(B9) P Wuslyppary = P / M3 () 1 (y) = Plig,y)|" dy) /0

rait+4r; ;- ) .
P lf() - P(ai’ ')|q,[ai,ai+4n,j] + m(/ IP(xi,j,y) - P(aivy)[q dy)l/q

Since z;; = a; for j > 2, the second summand of the last line is null except in the
case j = 2. In this case z;2 = b; and using Lemma 3.3, we obtain

a;+4r; ; 1/‘1'
( / |P(2i,y) = Plas, y)[* dy) <ctrf,
ag : : .
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Therefore, substituting in (39) and by (38), we get

a+l/q .
—a Tij a+l/q
P il s < CE ( - T) <ct [M'J“xfid (:1:)] :

041,-|-2 J(b7 - CL,‘) —
This implies that

4, )

(40) Ni(©ugia) <t [Mhy @]

for #_o < z < a; +27971(b; —a;). Since 6; ;(y) is equal to zero for y > a; +2772(b, —

a;), we have that (40) also holds for z > a; + 2792(b; — ;). By (37) and using a
similar argument we obtain (ii) for the classes ©; ;.

As for condition (iii). Since w € A((v+1/q)p and (o + 1/q)p > 1 and taking into

account (i), (ii) and (2) of Lemma 3.1, we have

p
/ (ZZ qa Lja +N(N(Ol,1)> ( dax

i=2 j=1

<c/ oo (B z)Pw(z dr-%—cZZ/ o (F;z)Pw(x)dx

i=2 j=1
‘ 7 (at+1/q)p
+Zth”/ [AI’LXEI(:I:)] w(z)dz
=2 j=1 (%-20,00) '
<c/ o(F 2)Pw(z)dr + ctPw(Q /N+ (F; x)Pw(x)dx

Condition (iv) is a consequence of condition (iii) and Lemma 3.6. As for condition
"(v), it follows from conditions (iii) and (iv).
Now we will prove (vi). We consider a point xy ¢ €2, such that
Z ©;,5;x0) + Nqu(Ol;mo) < 0.
i>1,j
Since 6; ;(y) and 6, (1/) are the representatives satisfying N «(©ijs20) = nt F(8, 51 20)
and N+ (©4; o) = n,(01; 70), by Lemma 3.6,

g,

=3 1 Wxe W) (f@) = P(iz, ) + x5, ) () — Pby,y))

i=2 j=1
is a representative of © and therefore
() = Diea 2o Mg WXL (W) P (i, y) + X1, (v) P(br,y)) if 2 € Q,
9 fw)ifzg o,
is a representative of G = F' — ©. Thus, by Lemma 4.2 N (G;z) < ct. m

Proof of Theorem 2.1. The method that we will use to prove the theorem it was
developed in [4]. Proceedings as in [4] we can show, as a conscqucncc of Lemma 4.3,
that if H is an element of E}; satisfying Nt (H; a") <1land [N, qa (H;z)"w(z)dx <
oo, for some 0 <7 < p <1, (a +1/q)r > 1 and such that w € A7 (at1/q)e then there
exists a numerical sequence {A;} and a sequence of p—dtoms {A;} of HEF (w) such

q,0

that H = 37 MA; in HE:F (w). Moreover, 3 |\if” < [ N (H;2)"w(z)dz.

Rev. Un. Mat. Argentina.. Vol. 42-2



98 © v SHELDY OMBROSI"

From this fact, the proof of theorem caﬁ be obtained following the same lines of
the proof of the Theorem 4.3 of [4]. =

In order to prove Corollary 2.2 we will need the folidwing lemma.

Lemma 4.4. Sea I = (—o0,b). There erists a sequence {y;}2

of C§° functions
satisfying the following conditions ‘

]""—OO

1) 0 <yj(z) < Land 3, v(z) = X(—o0) (@) :
2) For each mteger 7, if we denote I = [-277+b, —2-i- 24-b) then supp(v;) C
Letr] 21, then for every z € I , 1 <b—x<ecrj.

3) the number of interval I; that 1ntersect to other interval Ij, does not exceed
4) ;‘fyz'is an integer, k > 0, we have
‘ | D*u;(2)| < Crrj*
where Cj, does not depend on j.
See [6], pag. 167
The proof of Corollary 2.2 is a consequence of Theorem 2.1 and of the next lemma.
Lemma 4.5. Given a p-atom A in 'Hf; "+ (w) there exists a numerical sequence {{i},

and a sequence of p-atoms {Ax} in HPE (w) with bounded assoczated intervals, such
that

(41) | A= Ay in B and Y |ul’ < C,
where C is a finite constant not depending of A.

.~ Proof. If there exists a bounded interval associated to the p-atom A the result is
immediate. Then, we assume that w ((—o0,b)) < 0o, where (—o0,b) is an interval
associated to p-atom A. Let a(y) be the representative of A, such that supp(a) C
I = (—00,b], and we denote P(z,y) the polynomial of degree at most N, such that

N} (A;z) = Nf,(a(y)— P(z,y); z). We observe that N, (4;b) = 0 and P(b,y) = 0.
We consider the sequence of functions {v;}2 1= oo Of Lemma 4.4 associated to interval
I = (~00,b). Then, by condition (1) of Lemma 4.4
(42) a(z) = Z Z 6;(

j=-—o0 j=—00

For each integer j, we denote ©; the class in £}, of the function 6;(z) = v;(z)a(z).
We claim that ’

(43) NS (©51) < Cw(I)~V/7 for all z,

where C' does not depend of j. By (2) of Lemma 4.4, supp(uj( Ja(y)) C I;

[~277 4+ b;—2792 + b]. Then, N/, (6;;2) = 0if z > —2797% + b. Now, we suppose

that z < —27772 + b. For this case, since P(b,y) = 0 and by Lemma 3.3 we have
|D*P(z,y)| = | D* [P(z,y) = P(b,)]| < cw(I)™*(ly — 2| + |b— y})*~

Taking into account . this estimate, the conditions of Lemma 4.4 and proceedlng as
in the proof of (i) in Lemma 4.3, we obtain (43) For each integer j, we define

w(l: 1/p :
p=0C <w((1;))> and a;(y) = 4170, (y),
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where C is the constant in (43). We denote by A; the class in EY of a;(y). Then.
by (43), we have N (Aj;2) < w(l;)~*? and supp(a;) C I;. Then, the classes A,
are p-atom in H&F (w) with bounded associated intervals. Using (3) of Lemma 4.4,
we get >0 |ul” < CTtis not difficult to show that the norm in H?} (w) of a

g,

p-atom is bounded by a constant C' not depending of the p-atom, then we have that

Z ”IU‘]A ”'Hp'*_(w) Z I:u‘le ”A |IHP+(w) —_ C Z I/’L]]p < 0.

j==o0 j=—o0 j==oc0

Thus, by Corollary 3.7 there exists F' in H2F (w) such that F' = 3772 A, in
Hy (w) and by Corollary 3.5 F'= 3772 ;A in EY, and by (ii) of Lemma 3.6
and (42) we have that F = Ain E}. m

Lemma 4.6. Let f € D'(2_s,00), and we suppose that DN f = 0. Then ]‘ agrees
with a polynomial of degree less than or equal to N +1 in D'(x_ue, 00).

This is well known and we will be omitted its proof.
The following lemma proves the first part of Theorem 2.3.

Lemma 4.7. Let w € Al and (a+1/q)p > s> 1 or (a+1/q9)p > 1ifs =1,
where 0 < p <1, and let v > . If a(y) is a p-atom in HY (w) then

v ”Pa“HHfj;;L (w) = <C,
where C is a finite constant not depending on a(y).

Proof. Withouﬁ loss of generality, we can suppose that z_s, < 0 and supp(a) C
I=1[0,b]. Let z € (z_c0,00) and z > 0. As in(11) of Lemma 3.11, we define

R(z,z) =
o N

%ﬁ[/: (y— 2 —2)""a(y)dy - / (D ke (y = 2)* " Maly)dy 2.

k=0

We suppose that z < —4b. We observe that if there exists z € (z_q, 00) such that
r < —4b then d(2_,I) > |I| = b, therefore a(y) has vanishing moments up to
order v — 1 and since v > a = N + 8, we have that a(y) has vanishing moments up
to order N. We will prove the followings estimates

(i) Ifz < &,
. a+1
|R(z, 2 | < Cw(I)~Vp <|b|) 2%,

(i) If z > IT' and |z + z| > 2b then

. ‘ bN+2- b. a+1
R T,z S C'I_U I “1/])_______________ -+ Cuy I =1/p (_) z(,l'
R, < Culhy s+ Cutr) (2
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(iii) If z > & and |z + 2| < 2b then

|R(z, z)| < Cw(I)~ ;/P (I_bl) z.‘"

Let us consider (1) . We get that

R(z,2) = Tlw—z- 2" cha (y— 2)*" 7" 2Fa(y)ldy

1
F( ) x+z
Zc;m/ y—1xz)* 1= ka(y)dyz —R1+R2

Thus since z + z < 0 and supp(a) C [0,8], it follows that Ry vamshes As for Ry,
by Taylor’s formula and Lemma 3 12, we have that

bN+2
|$‘2+N+1—ﬂz

3 b a+1 p N+l—a b a+i‘
cut ()" (F)  w=omm(g) =

which implies (i).
We observe that

N+1

|Ry| < |DN*'Paa(z - 02)| 2N < Cw(1)7VP

INA

N
(44) |R(@,2)| < |Paa(e +2)| + C Y | D*Paa(@)]

k=0

Then, if z > ]%', by Lemma 3.12, we obtain

k k -1/p b2 1 b \*"
(45) |D*Poa(a)| #* < cw(I)™V s <o w(I)~V/P (|x|> o
In case (ii), i.e., when |z + z| > 2b, applying Lemma 3.12 with k = 0, we get
pN+2
Pa(z + 2)| < Cw(I) VP —m—;,
|Paa(z + 2)| (' ) PR

and thus (ii) holds. As for (iii), we have that |z + 2| < 2b, then it follows that:

b .
(Puaa+ )| < Cllll, [ ly=a= 2" dy < Cult)y e,

z+z
therefore, since % i > 1/2, we obtain

(Paa(z +2)| < Cu(l) ™7 (‘,’])a -

Then, from (44), the estimate above and (45), we get (iii).
Taking into account (i), (ii) and (iii) and arguing as the proof of Theorem 1in (3]
we obtain that for z < —4b ,

a+l/q
(46) N;a(m; :1:) < Cw(I)™VP (%) < C’w(I)"l/” (M"'x;(a:))aH/q
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holds. This estimate also holds if > b, since Pya(z) = 0 for 2z > b. If —4b < 2 < b,
by Lemma 3.11, and since [jal| , < w([)‘l/f’, we get
(47) »} N (Paa x) < Cw(I)~'?,

q,x
Since M*x;(z) > 1/5 if © € [—4b,b), it follows that (46) holds for every z €
(T—50,00). Then, the lemma follows from (46) and part (2) of Lemma 3.1. If

d(2-o0, 1) < |I| the conclusion of lemma follows from (47) and part (3) of Lemma
3.1 m

Proof of Theorem 2.3. The first part of theorem follows fr om Theorem 1.2 and
Lemma 4.7.

Now, we suppose that « is a natural number. Thon if a(z/) is & p-atom in H 5 (w),
it is not difficult to see that

(48) D*Pa(z) = (—1)" a(z).
We will study the application D* in HE¥ (w). Let F € HPt (w) . Since N (Fz) €

q,

LP (w), N (F;z) is finite almost every point = € (#-c0, 00); we consider a point

« in this conditions and Let f be the representative. of F' satisfying N (F;x) =
nt(f;x). Let ¢ € ®,(x) and we suppose that supp(¢) C I, = [z,¢]. Then, by the

definition of D*F', taking into account that o < 7 (then ¢ € ®,(z)) and applying

the Holder’s inequality, we obtain

(DF, $)| = |(D*f.6)| = |(f, D°¢)| = l / @)D (y)dy

< [

OIE (Iz/> < NI (F;z).
STF <|f¢ [ el
Therefore (D*F)’ _ () < N, (F;x), which implies that

g,

(49) ID*Fllgr ) < 1 Mg

Goa (w)

(y)D*b(y)dy| <

We denote ﬁaf the extension of the first part of Theorem. We will prove that ]3”
is onto. Let F' € HPL (w), by (49) D*F € HY | (w), then by Theorem 1.2 we have
that

(50) D°F = ZA aj, where Z A~ 1D Fllg o,
Then, if we denote f = (—1)“ > Ajaj, that belongs to HY | (w) we get that
(51) P.f % ZA Paaj € HUY (w) .

As consequence of Lemma 4.6, we have that D is one to one. From this fact, (51)
and (48) we obtain that P,f = F. The fact that P, is one to onc is consequence
of Theorem 1.2, (49) and (48) m
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We observe that the last Theorem, its proof and Theorem 1.2 give other proof of
the Theorem 2.1, always that « is a natural number.

To finish, we will observe that in general, in the case that a is not a natural
number, the extension P, is not onto. We suppose that 0 < o < 1, w = 1, and
(a+1/q)p > 1. Let ¢ € C5°, and we assume that |¢| > ¢ > 0 in some interval. We
define

. cos 2"
a(z) = ¢ (z) (Z 27) :
n=1
It is well know that the previous series defines a Lipschitz-a function (e.g. see [9]),
then a(z) is a Lipschitz-a function. If we denote by A the class of a(z) in E§, we
have that N, (A;z) is bounded and since supp(a(y)) C I for some interval I, we
get that A € HE:¥ (1). However, It can be shown that does not exist any distribution

- fin HE (1) such that A = P.f.

We would like to thank C. Segovia for his help and encouragement
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