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A SIMPLE PROOF OF THE IRRATIONALITY OF THE TRILOG 

PABLO PANZONE 

ABSTRACT. We use orthogonal polynomials to give a simple proof of the irrationality 
of the trilog. An approximating formula for Riemann Zeta-function in the critical 
strip is derived. 

O. Introduction. 

103 

In this note we give a simple proof of the irrationality of the trilog for certain values. 
More concretely we prove that Li3(ljd) = 2::=1 nldn is irrational for 1173 ::;; dEN. 
This result was first proved by M. Rata [6,7}. 

We want to point out that improved results had recently been obtained, by MiIadi in 
his thesis. Also the the techniques developed by Tangily Rivoal in his ·thesis can be used 
effectively to get ITmch better results. 

This note is divided in two sections which are almost independent. In the first section 
we give an approximating formula for Riemann Zeta-function on the critical strip. In the 
second section we prove the mentioned result on the irrationality of the trilog. 

In both cases we use orthogonal polynomials as in Borwein and Erdeli's book [1], 
appendix A2. Indeed the point to stress here is that orthogonal polynomials have an 
integral representation ([1] pg. 373) that permits to guess, at least in some cases, what 
kind of polynomials are needed to prove the irrationality results. 

1. Let ' , r1 X A1 , 
1= I(d,)..1. )..2, £):= 10 (d ± Xl)A2 dx, (1.0) 

with parameters )..1, )..2, d, £ ranging in certain sets of values given below (here yA will 
stand for the positive )..-root of y if y,).. > 0). 

We sometimes use the well-known notation (a)o = 1, (a)n = a(a + 1) ... (a + n -1). 
In what follows An, Bn, Fn{x), an, f3n, 'Yn may depend on d, )..1, )..2, £ but to simplify the 
notation dependence on n is only written. For 1'::;; n we define 

, ' , 

n (-1)n+i(j+Alt1)n 'l 
Fn(x) := L (_.), ., xJ 

i=O n J .J. 

A ._ r1 (Fn{x) - Fn{(=Fd)t») AId 
n'- 10 '(d±Xl )A2 ,x x, 

Bn := Fn({=Fd)t), {_d)l/l:= d1/le!f, 
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Proposition 1. Let f be defined by (1.0) with A1, A2, dE R, 0 ~ A1, () ~ A2 ~ 1, 1 ~ d 
and £ = 1,2,3, ... (if d = 1 and the sign is - then we restrict 0 ~ A2 < 1). Then the 
follo'UJing holds 

i) 

where 

{ (Vd - vd-=-1)2 if the sign is -
h(d) = r, , (Vd+I - V d)2 if the sign is + 

ii) We have th,e following recurrence relation for 3 ~ n, 

B", + (=fand +Pn)Bn - 1 + "fnBn-2 = 0, 

" 1 

An + (=fand + Pn)A.,t-1 + "YnAn-2 = =fan / Fn-l(X)(d ±xe)~-A2;rAldx, 
io , 

where 
, ' (271, - l+~f!J (2n ",2 + ¥ ) 

an =-
, n(n-1+ A1t) , 

A + 1 (2n -1 + Al+1)(2n~ 2 + Al+ 1)(n - 2 + Al+1)(71, -1) 
Pn = (2n - 2 + _1 __ ) _ e, R·· £ 

£ n(n-1+AI71)(2n-3+ AI71) ' 

(71, -1)(2 + 271,2 - 3¥ + (¥)2 +n(3¥ - 5)) 
"Yn = , , 

n(n - 1 + A171 )(2n + A171 - 4)(2n - 3 + A171)2 ' 

if 3 ~ n. Moreover, if A2 = 1 and 3 ~ n then fo1 Fn- 1 (x)( d ± x R)1- A2 XAI dx = O. 

PROOF. We have for 0 ~ x < 1 

The idea is to construct polynomials which are orthogonal to the powers of x that appear 
in (1.1). For this we define Fn(x) as 

~ 1 (t + A1 + l)(t + A1 + £ + l)(t + A1 + £2 + 1) ... (t + A1 + £(n - 1) + 1) :rJdt 
2rn'Y t(t-£) ... (t-n£) 

= ~ 1 P(t)xtdt, 
27l',t 'Y 

(1.2) 

where "Y is a positively oriented closed curve enclosing 0, £,2£, .. or!'/! lying in the half 
plane Re(t:) > -1/2. Using residues OIle easily sees that Fn(:r:) is of the form stated 
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in Proposition 1. Now Fn(x) is orthogonal toxAl , X£+Al, X2C+Al , ; .. , x(n-1)£+Al on [0,1] 
i.e. 101 Fn(x)xAl+iCdx = Oifj = O, ... ,n- L This is straightforward upon using the 
definition ofFn{x), integrating first inx, then in t = Rei () and taking R ---+ 00 ( see [1]). 

N t th . t 1 f1 Fn{x)x Al d .. t· . ow we compu e e m egra Jo (d±xt)A2 x m . wo ways: 

i) Due to the orthogonality of Fn(x) and (1.1) we have (here {) = (_l)n if d + xc; {) = 1 
if d - xC ) 

-:-::---'---'-:;-:--;:- dx = 11 Fn(X. )xA1 

o (d ± Xl)A2 

11 1 \ .. (\ + ··1) nl+Al \ (\ + ) (n+1)£+Al = {) F ( ) _. _ ( /\2 . .. /\2 n -. _x __ /\2 . .. /\2 . n x )d = 
o n X dA2 dn n! =f dn+l n + I! + . . . x 

= {) {I Fn(x)w(x)dx = ~ {11 P(t)w(x)xtdtdx = ~ 1 (I P(t)w(x)xtdxdt = Jo 27rZ Jo -y.. 27rZ -y Jo 
- {) l p ()( A2 ... (A2+n-l). A2 ... (A2+n) )d 
- dA227ri -y t dnn!(t + nf + Al + 1) =f dn+1(n + l)!(t + (n + l)f + Al + 1) + . .. t. 

(1.3) 
If j = qf, q = n, n + 1, ... and ,,(', "(" are positively oriented curves, the first around 

-j-A1 -1 of radius E < 1 and the second a circle centered at zero of radius much larger 
than nf or f+ Al + 1 then 

-1-1 P(t) . 1 dt + -1-1 P(t) . 1 dt = 
27ri -y . (t+f+A1+1) 27ri -y' (t+j+A1+1) 

_1 1 P(t) 1 . dt. 
27ri -y" ( t + j + Al + 1 ) 

(1.4) 

Also 2~i I-y" P(t) (t+i+\, +1) dt = 0 upon taking the radius of "(" tending to infinity. 
Using this fact, (1.4) yields . 

_1 l p (t) 1 dt--P(-'-A -1)- (q-n+l)n (15) 
27ri -y (t + j + Al + 1) - J 1. - f(q + AlII )n+l' . 

Let us recall the hypergeometric function formula (valid for Re(c) > Re(b) > ° ) 
( ._ f(c) {I b-1 c-b-1 -a _ ~ (a)n(b)n n 

2F1 a, b, c, z) .- r(c _ b)f(b) Jo T (1 - T) (1 - TZ) dT - ~ (c)nn! Z . 

Using this formula and (1.5) we have that the last formula of (1.3) is equal to 

{) (A2)n (A2+nh(n+ Al11h (A2+nh(n+ Al11h 

dA2 f27ri dn(n + ¥ )n+l (1 =f (2n + 1 + ¥ )d!d + (2n + 1 + ¥ h2!d2 =f'" = 

_ {) (A2)n f(2n+l+¥) (I n+Ad l _ 1 (1 )n(I±T)-n-A2 d 
- dA2f27ri dn(n + AlII )n+l r(n + l)f(n + AIr) Jo T t - T d T. 
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Therefore we get that our, integral is different from zero and this yields the left in­
equality of i). Now (i~-ii .has its maximum at TO = d - J d(d - 1) being thi" maximum 

equal tod( Vd - y'(I-=1)2. Also (i~-i}has its maximum at TO =jd(d + 1) ~ d being 

this maximum equal to d( y'd+ 1 - Vd)2. Therefore ' 

11 "'j+1 T . T(l- T) n j'l "'1+ 1 T Tn+ e -1(1-T)n(1±_)-n->'2dT s:: (max ) r e -1(1±-)->'2dr o d '" TE[O,l] (1 ± ~) . 0 d' 

Also ~n+1+¥ ~ = 1. From this the right inequality of i) follows. 
(n+ e )n+lr(n+ e ) 

ii) We compute the integral in a second way showing that it s~,ti"fics a rec;llTellce 
relation. 

rl Fn(x)x>'l dx = 
io (d±Xl )>'2 

rl (Fn(x) - Fn((=t=d)l))x>'l 1 rl X>'l 
io (d ± Xl )>'2 ,dx + Fn((=t=d) e) io , (d ± :r f )>'2 dx := An + Bnf. (1.6) 

where (_d)l/f := dl/ReT. From the orthogonality relations for Fn(x) one has, if 3:( n 

(1.7) 

for some constants cxn,f3n, 1n. In fact, the coefficient of xnRin Fr,(x) is not zero and nn, f3n 
can be adjusted to give Fn(x) + (cxnxf + f3n)Fn- l (x) = ao + aIxi' + ... + an_2x(n-2)€. 
This can be written as a linear combination of Fn - 2(x), ... , FI(x), 1. If this equality is 
multiplied by X>'l and orthogonality is used then only the coefficient of F n - 2(:r:) survives. 

So if we let x = dl / f or x = (_d)l/f in (1.7) then ' 

respectively. Also 

Thus, 
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and one gets the recurrence relations of ii). Observe that in the last formula the integral 
is zero due to the orthogonality if A2 = 1 and 3 :::;; n. 

Finally, Q.n,f3n,'Yn are obtai~ed from (1.7) making the coefficients of xnl!,x(n-1)J!, 
x(n-2)l!equalto zero. This tedious calculation is omitted .• 

Next we give two applications of Proposition 1. 
In the next two examples we take the + sign in (1.0).; Example 1 is quite well known. 

See [10] for example. . 
Example 1. If one puts A1 = O,.e = 1, A2 = 1, then Fn(x) are the Legendre polyno-

mials. They can be written more simply as . , 

Thus if An, Bn are as defined in Proposition 1 then AnTn, Bn E N where 
Tn = lcm{l, 2, ... ,n} (recall Tn = O(e(1+e)n) by the prime riumber theorem}. Thus by i) 
of Proposition 1 if 1 :::;; dEN 

0< IAnTn + Log d: 1 BnTnl =0(( v'd+1- v'd)2ne(1+e)n), 

giving the irrationality of Log4f1for 1 :::;; dEN. 
The following example seems to be new. 
Example 2. Assume i.= 1, A2 = 1, d = 1 in (1.0) and A1 = A. Then 

f(A) = 11 (1: x)dx = I! A - 2! A + 3 ~ A - ... 

Our interest in this function comes from the fact that if 0 < i:T < 1, s = (j + it. then 

«(s) = sin('lrs) {'X) f(A)A-SdA 
'Ir(l - 21- 8 ) Jo· , 

where «(s) is the zeta function of Riemann ([3] formula (1.3)). 
Let g(s) :~ 1000 f(A)A-SdA = «s):~(~~;-.). In this case in Proposition 1 one gets 

A := A (A) = f1 Fn (x)-Fn (-1)x Adx and (-l)nB '= (-l)nB (A) = "'T?' (j+A:~)n n n Jo . x+1 n . n L.JJ=O n-J!Jt . 

. Theorem 1.. The analytic function gn(s) := 1000 ~:~~~A-8dA,0 < (j < 1, converges 

uniformly to -g(s) 'inside'the critical strip, i~e. , Ign(s)+ g(s)1 :::;; h(~))2n ;e if E :::;; 
(j :::;; 1 - E and 0 < E < 1/2. 

Proof: Note that An(A) is continuous in [0,+00) and 0(An-1). Also (-lWBn(A) is 
a positive, increasing function on [0, +00) and behaves asymptotically as CAnas A -t 

+00, (C =I 0). From this it is easily seen that gn (s) is analytic in the strip 0 < (j < 1. 

From i) of Proposition 1 we get IAn(A) + Bn(A)f(A)1 :::;; (~~~);;. Thus, . 
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n(y'2-1)2n roo)..-a 
:::;; (-1) 2nBn(O) io >. + 1 d>.. 

Notice that (2;) :::;; (~1)nB~(O) and 1000 ~~~ d>.:::;; 2je. This proves the theorem .• ' 
2. On the trilog. We prove in this section the following: 

'T'l. b L (jd) - \. ..... 00 1 - 1 f1 Log(x)2 d .. t" l.f· Theorem 2. .L ne num er i3 1 - L.m=l d""n3 - 2 Jo d-,", ,x ~s zrra ,wna J or 
.d E N, 1173 :::; d. 

Proof: Let n E N and define 

Here 'Y is a po~itively oriented curve enclosing 0, 1, ... , 3n in the half plane ~! < Re( t). 
Notice that Fn(x) is orthogonal to Log(x)2, xLog(x)2; . .. , :r;n-1 Log(:r) 2. 

Observe that 

11 Fn(X)L ()2d -11 Fn(x) - Fn(d)L ()2d F, (d) 11 Log(x)2 d --d-- og x x - d og x x + n, d x - .. 
o -x 0 -x ' o' -x 

and also that 

r 1 Fn(x) 2 1 11 2 Xn X"+l io d - x Log(x) dx = d io Fn(x)Log(x) ~d" + d,,+l + ... )dx = 

1 r11 x" x"+l ' 
27rid io 'Y P(t)xtLog(x)2(dn + dn+1 + ... )dtdx. 

Changing the order of integration we obtain, 

(2.1) 

We have used the same idea of Proposition 1 to get the equality in the last formula (see 
(1.5) above). But ttP(t) = P(t)(t~l + ... + t!n - t2k - .. '. - t_k3_3,.) := P(t)b(t). 

Therefore :f:2P(t) = P(t)(b(t)2 + b'(t)). Notice that b(-n - j)2 + b'(-n - j) = h(n,j) 
with h defined by 

3 '3 3 1 1 1 h(n,j):=(-:-+-.-+"'+ . ____ _ ... __ '_)2_ 
J J + 1 n + J - 1 n + j n + 1 + j 4n + .i 

3 3 3 1 1 1 
-(p + (j+1)2 + ... + (n+j-1)2 - (n+j)2 - (n+1+j)2 - ... - (4n+J)2) 
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2 3 4 

Thus (2.1) is equal to 

S(n, d). 

dn +1 (4n + 1) (i~) (~~) (2:) , 

with S(n, d) as defined in the following l~mma which we prove later. 

Lemma C. Let 

S(n d) := ~ (n+ j)3 (n + 1) ... (n + j) h(n,j + 1) 
,. ~ j. (4n+2) ... (4n+j+1) dj 

3=0 . 

a) There exists no such that S(n, d) is non-zero iJ4 ::::;; d, no ::::;; n 
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(2.2) 

(2.3) 

b) S(n, d) = O(Log(n)( 4n + 1) (i~) 1.3718n+1 maxtE[Olj{ tn(l - t)3n}) if 1000::::;; d (the 
constant involved in this O-term is absolute). 

We continue with the proof of Theorem 2. Up to this point we have a chain of equalities 
so using Lemma C a) we 'get that (2.3) is non-zero if n is large enough and 4 ::::;;d. Using 
residues in the definition of Fn(x) we obtain 

F ( ) = (_l)n ~ (3n) (n+j)3(_1)j j 
n X (3n) (2n) ~. . \ X , 

2n n j=O J J 

and it is easily seen that Anrn EN, Bn (~~) e:) EN if rn = (~~) (~) (lcm{l,2, .. . , 3n})3. 
Recall that by the prime number theorem (lcm{l, 2" .. , 3n})3 ::::;; e(9+€)n for large n. 

Therefore we have proved that 

. e(9+€)nIS(n d)1 
0< IAnrn + Bnrn2Li3(1/d)1 ::::;; , (4 )' 

dn +1 (4n + 1) 3~ 

if n is large enough and 4 ::::;; d. Using Lemma C b) and Stirling's formula one gets that 
L'i3(1/d) is irrational whenever 1.371::933 < lor what is the same when 1173 ::::;; dEN .• 

The proof of Lemma C depends on Lemmas A and B which we give below. 

Lemma A. If 0::::;; w ::::;; 1/1000 then 

f (n ~ j) 3 wi ::::;; (1; )3(n+l) ::::;; 1.3718n+1. 
j=O J 

Proof: Recall that 2:;:0 (njj)uj = (l_;)n+l' Therefore, if 0::::;; w 

f (n~j)3wi::::;; (f (n~j)wi)3 = ( 11 n+l)3. 
j=o J j=o J (1-:-w 3 ) 

The lemma follows if we take 0 ::::;; w ::::;; 1/1000 .• 
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Lemma B. a) There exists a natural number no and absolute constants 0 < Cl, C2 such 
that 

Cl ~ h(n,j), 

if 1 ~ j ~ 3n, no ~ nand 
hen,j) ~ C2, 

if no ~ n, 3n ~ j. 
b) We have Ih(n,j)1 ~ c2Log(n) for all 1 ~ n,j. 

Proof: a) The proof is divided in four cases. Recall formula (2.2): 
Case 1. 1 ~ j ~ Log( n). Itis easily seen that in this case 

3Log(Lo n(n)) + 0(1) ~ L; L' Land L are 0(1). 
9 1 2 3 4 

So the function hen, j) is greater than 2Log( Lo;(n)) if n is large enough. 
Case 2. Log(n) ~ j ~ n. In this case 

3Log(2) + 0(1) ~ L' L ~ Log4 + 0(1), Land L are 0(1). 
1 2 3 4 

Notice that (3Log2 - Log4) = .69 .... So the function hen, j) is greater than (3Log2 -
Log4? + o( 1) if n is large enough. 

Case 3. n ~ j ~ 2n. The argument is the same as in case 2, i.e. 

3Log(3/2) + 0(1) ~ L, L ~ Log(5/2) + 0(1), Land L are 0(1). 
1 2 ~~ 4 

But 3Log(3/2) - Log(5/2) = .3 .... This yields that the function h(n,j) is greater than 
(3Log(3/2) - Log(5/2))2 + 0(1) if ri is large enough. 

Case 4. 2n ~ j ~ 3n. Similarly, 

3Log(4/3) + 0(1) ~ L' L ~ Log(2) + 0(1), Land Lare 0(1). 
1 2 3 4 

Notice that 3Log(4/3) - Log(2) = .169 ... So the function h(n,j) is greater than 
(3Log(4/3) - Log(2))2 + 0(1) if n is large enough. This proves the first inequality. 

It is easy to see that the second inequality and b) hold. They are left to the reader.. 

Proof of Lemma C: a) Write Sen, d) as L~:~l + Lj:3n = L5 + L6' Thus, using a) 
of Lemma B we get that if no ~ n then the sum L5 is greater than one of its summands, 
namely that with j = n. Thus 

( 2n) 3 (n + 1) ... (2n) 1 "" 
Cl - ~ L.t. 

n (4n+2) ... (5n+1)dn 5 
(2.4) 

Also, using a) of Lemma B one gets if 4 ~ d, (here we use (n~j) ~ (i~) (1Y-:3n if 3n ~ j 

which is proved using that (n~~il) = n~~il (n~j)) 

ILI=O(I= (n+j)3 (n+1) ... (n+j) 1)= 
. j (4n+2) ... (4n+j+1)d.7 

6 J=3n 
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= O( (4n) 3 f (~)3(j-3n) (n + 1) ... (n + j) 1.) = 
3n j=3n 3 (4n+2) ... (4n+j+1)dJ 

= O( (4n) 3 (n + 1) ... (4n) (~)9n f ((t)3)j = 
3n (4n+2) ... (7n+1) 4 j=3n d 

=O((~)3n (n+1) ... (4n) ). 
33d (4n+2) ... (7n+1) 

From this and (2.4) it is easily seen that 12::6 f < 2::5 if n is large enough. This proves 
a). 

b) Noticing that (4n + 1)(~~) f01 tn+j (l - t)3ndt = (4~:~)~::(4<;::1~1) and using b) of 
Lemma B one gets that 

S(nd)=O(~(n+j)3 (n+1) ... (n+j) Log~n))= 
, ~ . j (4n+2) ... (4n+j+1) dJ 

J=O 

~ O(Log(n) G:) (4n + 1) l' '"(1- ,)3"{t, (n; j) 3~ }dt). 

Now recall that 1000 ~ d and thus 0 ~ w = t/d ~ 1/1000. This inequality together with 
Lemma A yields the desired result .• 

I want to express my gratitude to the referee for pointing out several references and 
for remarks that improved the final form of this note. Also I want to express my thanks 
to Tanguy Rivoal for his kindness in sending me his beautiful results and for answering 
my questions. 
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